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Abstract 

Achieving thermal comfort through sustainable indoor design is an increasing concern. 

Thermal comfort modelling is crucial for achieving building energy saving. This study reviews 

and categorizes major developments and trends in the field of thermal comfort research in 

recent years. Discrepancies between actual and predicted results of thermal sensation and 

thermal satisfaction suggests a performance gap in Fanger’s model. Based on the current 

research gaps identified, a practical solution is proposed to improve the reliability of thermal 

comfort predictions. Two Bayesian updating protocols, namely individual updating and global 

updating, are put forward and the use of Bayesian approach to systemically update current 

thermal comfort beliefs with openly available field data is demonstrated. Besides being a 

practical tool for modelling thermal comfort using the best information available (i.e. existing 

models and field survey data), the proposed Bayesian updating provides an achievable solution 

to the present challenges in establishing a reliable thermal comfort prediction model. 
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1. Introduction 

Maintaining high standards of thermal comfort ensures excellent indoor environmental quality; 

however, huge amounts of energy will be consumed by the Heating, Ventilation and Air 

Conditioning (HVAC) systems to achieve this [1]. Over the past 40 years, despite the immense 

research efforts put into evaluating building thermal performance, only a number of thermal 

comfort models have been proposed for predicting occupant thermal satisfaction based on 

human psychological and physiological responses towards the thermal environment [2]. 

 

The most highly cited model for the evaluation of indoor thermal environment is Predicted 

Mean Vote (PMV) model developed by Fanger in 1972. The model considers the heat balance 

between human subjects and the thermal environment in a controlled climate chamber 

experiment. It is based on the assumption that responses driven by thermal stimulation are 

purely physiological regardless of the potential influencing factors like ventilation mode and 

climatic variation, which was confirmed by Fanger’s experiment in which subjects with 

different climatic experience produced similar thermal preferences. With four indoor 

parameters (air temperature (Ta), mean radiant temperature (Tr), relative humidity (RH) and air 

velocity (Va)) and two occupant’s criteria (metabolic rate (Me) and clothing value (CL)), the 

predicted mean vote (PMV) and predicted percentage dissatisfied (PPD) under certain 

environmental conditions are determined for thermal assessment [3]. PMV model has been the 

basis and reference of thermal comfort modelling and standards including ANSI/ASHRAE 55-

1992 and ISO 1994. 

 

The universality of the PMV model has been questioned due to the discrepancies between the 

model and field surveys. Humphrey found a strong relation between indoor comfort 

temperature and outdoor climate, suggesting strong climatic influence could happen on thermal 



comfort in building with natural ventilation [4]. Evidence also shows that thermal sensation is 

influenced not only by physical and physiological interactions but also by cultural, sociological 

and climactic factors [5]. An adaptive thermal comfort model was therefore developed by de 

Dear and Brager to take occupant adaptive behaviour into account. They concluded that 

thermal adaptation can be obtained from field data instead of collecting from experiment. 

Based on the RP-884 database which contained approximately 21,000 thermal comfort field 

data from a wide range of climatic zone,  the adaptive model proposes that contextual factors 

and past thermal history (thermal adaptation) affect one’s thermal preferences and thus thermal 

satisfaction. There are three categories of thermal adaptation identified in this model: 

behavioural adjustment, physiological and psychological. For premises that are naturally 

ventilated (NV), where occupants have higher degree of indoor climate control than those in 

office buildings, the adaptive model is more suitable. Adaptive models have been implemented 

in ANSI/ASHRAE 55-2004 and 55-2010 for NV buildings, EN 15251 for mixed-mode 

buildings under natural ventilation and ISO 7730.  

 

In 2001, Huizenga et al. [7] developed the Berkeley Comfort Model (CBE model) based on 

Stolwik’s 25-node thermoregulation model. Unlike the PMV model that requires a steady state 

for accurate thermal comfort prediction, this model is able to simulate transient and spatially 

asymmetric environmental conditions. Sequential phases with respect to duration, Me, 

physiological constants, clothing, Ta, Tr, Va, RH and contact surface thermal properties are 

simulated for sixteen body segments and the corresponding equivalent homogenous 

temperatures (EHT) are used for comfort predictions. The CBE model can identify local 

thermal discomfort and is applicable to transient non-uniform thermal environments [8,9]. 

 



Among the above-mentioned thermal comfort models, Fanger’s PMV model remains the most 

generally accepted. In his review, Van Hoof [10] summarized the discrepancies between actual 

field data and predictions by the PMV model, and other criticisms regarding the PMV model 

and its input parameters. Considering the inadequacy of the PMV model, some adjustments 

and modifications have been proposed in early 2000 to improve the accuracy, reliability and 

applicability of the model. Two distinct examples are: 1) using ePMV to include the expectancy 

of occupants in the calculation [11]; and 2) employing PMVnew to reduce bias and extend the 

applicability of the PMV model [12]. Nevertheless, all attempts seem to be unable to generalize 

the original PMV model and make it applicable to all types of environment and all kinds of 

people. PMV model is still the most cited one and widely adopted in building research and 

design reference. In order that smart, green buildings of today and tomorrow can be fully 

realized, an accurate and reliable thermal comfort model is essential. 

 

The present study aims at reviewing the development of thermal comfort research especially 

in the area of thermal comfort sensation and acceptance modelling and identifying any solution 

to improve the model accuracy. It is important that this study does not intent to quarrel with 

any existing model or propose a new model, but rather provide analytical solution to improve 

a thermal comfort model. This paper first reviews and categorizes major developments and 

research trends in the field of thermal comfort in recent 10 years. Current gap in thermal 

comfort research is then identified and the impacts of inaccurate thermal comfort models on 

other thermal comfort research is discussed. Using Fanger’s PMV–PPD model as the basis, 

Bayesian updating framework is proposed to provide an analytical solution to improve the 

existing models using field survey data. It is believe that with limited resources, this Bayesian 

approach for PMV–PPD (or any) model updating can be a solution to improve the prediction 

accuracy. 



 

2. Literature review 

Focusing on thermal comfort model development and improvement, this review mainly aims 

to identify recent research trends in the field of thermal comfort and continue the work by Van 

Hoof [9]. No attempt will be made to review all thermal comfort topics but mainly concentrate 

on those related to thermal comfort model in steady thermal environment. To enhance the 

coverage, indoor thermal comfort reviews published recently are also discussed. The literature 

search tasks are listed as follows: 

1) Discuss on recently published review paper related to indoor thermal comfort; 

2) Categorize and analyze recent research trends related to thermal comfort; 

3) Identify developments and improvements in modelling thermal comfort sensation and 

acceptance; and 

4) Provide suggestions for future development of thermal comfort modelling. 

Databases on the Web of Science were searched for relevant articles. Figure 1 shows the results 

of SCI publications on indoor thermal comfort in the past 10 years (2008–2018) with the search 

words “CFD or numerical or simulate”, “system control”, “field study”, “thermal manikin”, 

“model development”, “climate change” and “energy efficiency”. It can be seen that there is a 

spike in 2013 and the number of publications has quadrupled over the past 6 years. Table 1 

exhibits the contribution of each category to the total number of indoor thermal comfort 

publications from 2008 to 2018. The search results may be attributed to the increasing concerns 

related to climate change (p-value<0.01, t-test) and building energy efficiency (p-value<0.01, 

t-test). While research efforts on simulation, system control and thermal comfort sensation have 

stayed the same, the focus on model development was slightly greater in 2018. It can be 

concluded that thermal comfort research is still very active after nearly 45 years.  



 

2.1. Review paper related to indoor thermal comfort modeling 

Indoor thermal comfort model review paper in recent 10 years is searched using Web of 

Science and looked into. Some researcher focused on the thermal comfort parameters and 

discussed about their impacts on thermal comfort sensation and satisfaction. Karjalainen [13] 

investigated the differences in thermal comfort between genders and found out that females are 

usually more sensitive and easily dissatisfied especially in cool environment. Mishra and 

Ramgopal [14] reviewed about thermal comfort field studies based on climatic zones and 

discussed the effects of relevant environmental, physiological and contextual factors on 

thermal comfort. The adaptive opportunities in terms of the use of air-conditioners, selection 

of building materials, occupant’s behavior, etc. were also examined. Vesely and Zeiler 

presented the effect of personalized conditioning systems on thermal comfort and suggested an 

energy reduction up to 60% can be achieved with the use of personalized conditioning system. 

Halawa et al. [15] investigated the impacts of thermal radiation field on thermal comfort and 

the ways to minimize it. Authors concluded that the existing thermal comfort standards have 

not adequately addressed the influence of radiation on thermal comfort, that is to say, existing 

thermal comfort needs to be improved. Djamila [16] reviewed and identified the 

methodological problem of thermal comfort data analysis using the ASHRAE RP-884 database. 

Indoor thermal comfort parameters and collected data were investigated and analysed. New 

classifications for temperature and relative humidity were proposed to describe indoor climate. 

The study presented a new procedure to find out natural temperature, which gives similar 

results by existing least squares linear regression analysis, but provides more insight and 

understanding to the database. 

 



Others reviewed about the existing thermal comfort model, standards and indices. Djongyang 

et al. [17] comprehensively reviewed existing thermal comfort models, both heat-balanced 

approach and adaptive approach. Human body thermoregulatory system and the mathematical 

model for heat exchanged between human body and the environment were also presented. 

Halawa and van Hoof [18] summarized the foundation and principle of adaptive thermal 

comfort approach and emphasized that future research should look into the improvement of 

validity of Fanger’s PMV model and extension of its application. Cheng et al. [2] reviewed and 

compared thermal comfort models for non-uniform (transient) thermal environment. Human 

thermal physiological and psychological models were reviewed. By comparing the CBE model 

and ISO 14505, the author suggested that ISO 14505 is more sensitive to warm environment 

than cold environment, which makes it suitable only for thermal neutral situation. Carlucci and 

Pagliano [19] discussed about the indices for evaluating thermal comfort and concluded the 

necessity of having a new index that more comprehensive. Taleghani et al. [20] described the 

development of the concept of thermal comfort and reviewed existing adaptive thermal comfort 

standards. It was concluded that the standards were fundamentally different in terms of the 

equations since the database used to generate the standards were different. Holopainen et al. 

[21] presented existing thermal comfort assessment approaches and compared different thermal 

comfort indices. The potential applications of these indices for enhancing building 

sustainability were also discussed. Croitoru et al. [22] reviewed some thermal comfort models 

and methods for thermal comfort assessment in indoor environment, suggested that most of 

them are not comprehensive enough or limited in application. Fu et al. [23] reviewed on the 

human heat transfer and thermoregulatory responses model. A manikin-human thermal model 

coupling simulator was developed to improve the performance and validity of the human 

thermoregulatory model. Katic et al. [24] conducted a review of existing thermos-physiological 

models for whole body and isolated body segments, and the applications of the models were 



discussed. Enescu [25] presented an overview of thermal comfort parameter and indices and 

illustrated the application of thermal comfort model in system control strategies. Author 

proposed to include adaptive comfort model into the control system for the consideration of 

occupant’s preference. 

 

2.2. Simulation 

Refined searches suggest that the majority of thermal comfort research is related to numerical 

simulation of indoor thermal environment. Simulation software programs, including 

computational fluid dynamic (CFD) and the building energy simulation (BES) tool 

EnergyPlus™, are commonly used to study the thermal environment and evaluate the 

performance of building ventilation system or design. Chiang et al. [26] used CFD to simulate 

the indoor air temperature distribution in an office environment with a radiant cooling ceiling 

system and validated the outcome experimentally. The PMV model was then applied to 

evaluate the original and improved thermal conditions. In some passive houses in Sweden, 

Rohdin et al. [27] employed CFD to simulate indoor air flow and air temperature and used BES 

to predict energy consumption. For evaluating the passive house thermal performance, both 

PMV and PPD were utilized to relate the simulated physical parameters and thermal comfort 

sensation. Du et al. [28] used DesignBuilder, a user interface to EnergyPlus™, and CFD to 

simulate indoor temperature and indoor air velocity distribution respectively. Their simulated 

results were analysed using adaptive thermal comfort model. In short, numerical analysis and 

physical building structures are used to analyze the distribution of thermal comfort parameters 

(e.g. air temperature, air velocity, radiation). In order that thermal sensation and acceptance 

can be assessed based on simulated results, a reliable thermal sensation model and a 

corresponding thermal acceptance model (i.e. PMV–PPD model) are required.   

 



2.3. System Control 

System control research related to thermal comfort usually focuses on optimizing the 

performance of building HVAC system to achieve energy efficiency as well as acceptable 

thermal comfort. Freire et al. [29] proposed two model based predictive control strategies for 

promoting thermal comfort and reducing energy consumption. Based on ASHRAE comfort 

zone and PMV, their control algorithm optimizes the temperature set-point and humidity 

control to maintain indoor hygrothermal conditions within the comfort zone or the PMV 

comfort boundary, while balancing thermal comfort and energy consumption. Mossolly et al. 

[30] proposed two control strategies for a multi-zone air conditioning system: 1) to maintain 

temperature set-point and indoor air quality (IAQ) by varying supply air temperature and fresh 

air flow rate; and 2) to maintain PMV and IAQ by varying supply air temperature, fresh air 

flow rate and the amount of fresh air. Results showed that maintaining the PMV instead of the 

temperature set-point saved about 20% more energy, indicating that multi-variable control 

strategies perform better than single-variable ones. In short, system control research related to 

thermal comfort requires a reliable thermal comfort model as the reference for developing the 

system control algorithm. To attain energy savings, occupant thermal comfort may have to be 

maintained at acceptable level rather than at optimal level.     

 

2.4. Field Study 

Thermal comfort field studies contribute some 20% to the total number of publications on 

thermal comfort. A field study, which is able to capture various contextual factors and occupant 

adaptive behaviours, is undoubtedly the most accurate way to assess thermal comfort in an 

indoor environment. However, it is not desirable because of the huge amount of resources 

involved. It is also not feasible for buildings in design stages. There are usually two parts in a 



thermal comfort field study: physical measurements of thermal parameters, and questionnaires 

for collecting occupant responses to the thermal environment. Some studies will compare their 

field results with existing models and relate them using regression analysis. Lu et al. [31], 

Cheng et al. [32], Yu et al. [33], Ning et al. [34], Yang et al. [35] and Jiao et al. [36] investigated 

thermal comfort in living environments. Rupp and Ghisi [37], Thapa et al. [38], Kajtar et al. 

[39], Gallardo et al. [40], Manu et al. [41] and Luo et al. [42] looked into occupant’s thermal 

comfort in office environment. Hamzah et al. [43], Fang et al. [44], Liu et al. [45], Wang et al. 

[46], Calis and Kuru [47] and Hamza et al. [48] carried out thermal comfort survey in schools 

and classrooms. Cardoso et al. [49] conducted a thermal comfort survey in a bus terminal in 

Portugal. Wang et al. [50] investigated and analysed the thermal environment and thermal 

adaption of worker in a rubber factory. Sattayakorn et al. [51] carried out survey to identify the 

thermal comfort of healthcare occupants in Thailand. Liu et al. [52] studied the thermal comfort, 

vibration and noise in a ship cabin during winter time. Yang et al. [53] investigated thermal 

comfort in a cotton textile workshop. Yang et al. [54] conducted an adaptive thermal comfort 

study in an environmental chamber. Hussin et al. [55] compared actual field data with PMV 

prediction in an air-conditioned mosque in Malaysia. 

 

2.5. Thermal manikin 

Research related to thermal manikin focuses on the development of thermal manikin which is 

capable of mimicking the human thermos-physiological responses toward different thermal 

conditions. Koelblen et al [56] identified in their study that precise tools like human simulator 

(thermal manikin) can provide reliable response data for thermal model to predict thermal 

sensation and acceptability, which save us from time-consuming and resource-demanding tasks 

like conducting survey and field data collection. A methodology that combines thermal 

manikin, thermoregulation model and thermal sensation model was therefore proposed 



improve the prediction performance. Apart from thermal sensation prediction, human manikin 

is also used to reproduce the air flow, thermal environment and particle concentration around 

the breathing zone in order to validate the CFD simulation related to building ventilation 

system and heat transfer between human and the surroundings. For example, Alsaad and 

Voelker used thermal manikin to validate a CFD model in order to evaluate the performance 

of ductless personalized ventilation system [57]. Assaad et al. investigated the performance of 

an intermittent periodic personalized ventilation coupled with mixing ventilation with a 

transient 3-D CFD model which was validated by experiment conduced in a climatic chamber 

using thermal manikin [58,59]. Mustakallio et al. used thermal manikin to determine the 

manikin-based equivalent temperature in order to compare the thermal environment in an office 

with different cooling system [60]. Mao et al. conducted a numerical study on the convective 

heat transfer between a sleeping individual and the surrounding environment in bedroom 

equipped with a task/ambient air conditioning system using a thermal manikin [61]. 

 

2.6. Model development: Thermal sensation model 

Research related to improving or developing thermal comfort prediction models is limited. Yao 

et al. [62] developed a theoretical adaptive thermal comfort model based on PMV and the 

“Black Box” theory. The model takes cultural, climatic and social factors into account and 

incorporates an adaptive coefficient into the PMV model. Adaptive behaviour can thus be 

related to the experimental results by Fanger, and differences between measured and predicted 

mean votes shall be minimized. Langevin et al. [63] used the Bayesian parameter estimation 

approach to extend the PMV model to field use. They developed Bayesian thermal sensation, 

acceptability and preference distributions to formulate a new relationship between PMV and 

PPD. Wong et al. [64] presented a Bayesian approach to refine Fanger’s model with the use of 

field survey data. The approach allows systematic updates on our current beliefs about thermal 



dissatisfaction. Based on the best information available (i.e. existing models and field survey 

data), it evaluates the statistical importance of field data with a chosen target sample size and 

an acceptable error value. By integrating the PMV model with the adaptive approach, Marino 

et al. [65] developed a subjective-adaptive thermal comfort model for predicting thermal 

sensation. This approach, which uses a multi-agent system (MAS) to survey user thermal 

preferences and adapts itself to user choices, is able to achieve personalized thermal comfort 

controls.  

 

Alternatively, thermal comfort can be assessed individually. In fact, the number of personal 

comfort models is on the rise. Personal thermal comfort model is a data-driven approach to 

assess thermal comfort by predicting individuals’ responses instead of averaging the thermal 

comfort of a group of occupants. Individuals’ thermal comfort data are directly feedback to the 

system with the help of Internet of Things (IoT), and with the additional personal data, machine 

learning algorithms, such as logistic regression techniques [66], support vector regression [67] 

and Bayesian network [68] are employed to train a personal comfort model [43]. With six 

different machine learning algorithms (Classification Tree, Gaussian Process Classification, 

Gradient Boosting Method, Kernel Support Vector Machine, Random Forest, Regularized 

Logistic Regression), Kim et al. [69] showed that personal comfort models gave much better 

prediction performance than conventional PMV and adaptive thermal comfort models. 

Although a personal comfort model has its data-driven flexibility, its machine learning 

approach requires an expensive feedback and sensing system for identifying actual individuals’ 

preferences. Besides, it is not feasible for buildings in design stages. As a result, personal 

comfort model is excluded from the discussion in this study. 

 



2.7. Model development: Thermal acceptance model 

While considerable research has been devoted to developing or improving thermal sensation 

models, far too little effort has been directed towards assessing thermal acceptance. Despite the 

fact that new Bayesian approaches have been developed for the improvement of PMV–PPD 

representation (e.g. [63,64]), the conventional PMV–PPD model is still the primary tool for 

assessing the thermal acceptance of occupants in most thermal comfort research studies. 

 

2.8. Summary of literature review 

Figure 2 illustrates the relationship of different research areas, connected by thermal sensation 

and acceptance models, in the field of thermal comfort. Simulation, system control and thermal 

manikin are the modules for analysing building performance with respect to thermal comfort; 

and field study is the module for investigating the relationship between predicted and actual 

thermal sensations as well as the relationship between predicted and actual thermal acceptances. 

In model development, efforts are currently put into generating refined models. While thermal 

sensation modelling is the main focus of thermal comfort research, research efforts in thermal 

acceptance are lacking.  

  

3. Current gap in thermal comfort research 

Some studies found discrepancies between actual and predicted results of thermal sensation 

(thermal sensation vote (TSV) and PMV) and thermal satisfaction (actual percentage 

dissatisfied (APD) and PPD) of occupants. The correlation between TSV and PMV can be 

expressed by Eq. (1).  

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐶𝐶1 × 𝑃𝑃𝑃𝑃𝑇𝑇 + 𝐶𝐶0  (1) 



Research has shown that this correlation depends on the following: ventilation system type 

[49,70], thermal perception, tolerance and adaptation of occupants [31,44,49,50,70–80], 

occupant characteristics (gender and age) [76,81], climatic or seasonal variation [49,82–86], 

and the state of environmental characteristics (i.e. steady or transient) [49]. Table 2 summarizes 

some on-site thermal comfort assessment results over the past five years. C1 and C0 shown 

were either acquired from the data reported in the study, or estimated from graph provided. The 

differences found between TSV and PMV suggest that PMV model adjustment is required for 

actual field use. 

 

As buildings are designed to provide an acceptable environment for the occupants, extreme 

TSV values (i.e. +/-3, representing hot and cold) are rare in field data. According to Table 2, 

+/-3 votes contribute an average of 5.08% to the total number of thermal votes. Depending on 

the analysis method adopted, such a small sample size (e.g. less than 5 extreme votes in some 

assessments) will make the regression output either statistically insensitive or biased. As a 

result, the reliability of the extrapolated PMV–TSV regression is questionable [64]. 

 

Similarly, the thermal acceptance of occupants was found different when compared to Fanger’s 

PPD model. Some field study results over the past five years are summarized in Table 3. A 

field study conducted in a tropical island region (Hainan, China) reported that the APD at an 

extreme value of TSV (-3: 8.7% or +3: 40.91%) was much lower than the corresponding PPD 

(99%). In that study, there were 59.7% and 43.5% of occupants expecting no changes in indoor 

temperature at TSV = -2 (cool) and TSV = -3 (cold) respectively [31]. Another study carried 

out in Bangkok hospitals showed that while the medical staff were satisfied with the predicted 

thermal neutrality, patients and visitors preferred a warmer environment [37,43,51,87–89]. In 



fact, many studies of thermal preferences revealed a broader thermal acceptance range among 

building occupants [37,43,51,52,87–89], which can be due to the thermal tolerance and 

adaption [90–93]. This finding suggests that there is a certain degree of disagreement between 

field outcome and the PPD by Fanger’s model. 

 

While thermal sensation is related to thermal environmental parameters, thermal acceptance 

examines whether the thermal environment is acceptable to building occupants. From a 

practical point of view, discussing the sensation may not be useful if the correlation between 

sensation and acceptance is inconsistent most of the time. According to the field study results, 

a cold (-3)/ cool (-2)/ warm (+2)/ hot (+3) sensation does not necessarily mean an unacceptable 

thermal environment, and a neutral sensation (0) does not imply an acceptable thermal 

environment. 

 

3.1. Effects and implications of the performance gap of PMV–PPD model 

The development of thermal comfort models has not made much progress since 2008 due to 

the complex relationships between physical parameters and choice-making aspects. Although 

Fanger tried hard to make his model as objective as possible, subjective psychological effects 

have increasingly been proved to exert great influences on thermal sensation and acceptance.  

The discrepancies between predicted and measured results suggest a performance gap in the 

PMV–PPD model, and that may induce research errors. 

 

A number of studies applied PMV control to improve energy performance together with 

thermal comfort. For instance, a study using PMV as the reference parameter for controlling 



ground-source heat pump system (GSHP) to maintain thermal comfort showed that a 20% of 

energy could be saved without jeopardizing thermal comfort [94]. Another study employing 

PMV control rather than dry-bulb air temperature control reported 7.3% less annual energy 

consumed by gas boilers and 28.8% less annual electricity used for cooling [95]. Yet, regardless 

of how impressive these findings look, their implications would not be valid or useful if the 

model basis itself is inaccurate.  

 

According to the field survey, PMV = 0 does not necessarily give TSV = 0. According to the 

field results shown in Table 2, the corresponding range of PMV to TSV = -1, 0 and 1 by Eq. 

(1), and the corresponding PPD are illustrated in Table 4. It can be seen that TSV of -1 to 1 

gives a range of PMV from -3.59 to 5.64 (mean: -1.79 to 1.51), which basically covers to whole 

range of PPD (mean: 66.7% to 51.7%).  If PMV is assumed to be equal to TSV, i.e. as presumed 

in most thermal comfort studies, the PPD values for the votes TSV = -1, 0 and 1 shall be 26.1%, 

5% and 26.1% respectively, indicating a PPD difference of up to 73.9%. 

 

The use of Fanger’s model as the basis of thermal comfort research also results in differences 

between PPD and APD. Currently, maintaining a minimum value of 5% thermally dissatisfied 

persons for PMV = 0 is adopted in thermal comfort management practices and research related 

to system control and simulation. However, the field study outcome in Table 3 revealed that 

occupants were actually satisfied with a wider PMV range when PMV = TSV. Examples 

include a study by Lu et al. [40] that demonstrated a TSV range from -2 to 0 corresponded to 

ADP < 2.8%, and an assessment by Pereira et al. [96] that reported a minimum percentage 

dissatisfied when TSV ≠ 0.  

 



If the discrepancies between PMV and TSV as well as those between PMV and PPD are taken 

into consideration, the PMV–PPD model may be unfit for thermal comfort analysis. This can 

be shown using the GSHP study by Fang et al. [94] as an example. In that study, a non-linear 

relationship between PMV = -0.05–0.4 and power consumption = 1.4–2.5 kW (power 

consumption = 1.77 kW at PMV = 0) was described. The study also reported that a 20% of 

energy could be saved by maintaining the PMV at a level of -0.07, corresponding to a PPD of 

5.1%. According to Table 5, which presents the corresponding TSV values at PMV = 0 and -

0.07 determined from the assessment results in Table 2, however, thermal comfort (PPD < 5%) 

can neither be maintained at PMV = 0 nor -0.07. On the other hand, thermal comfort can be 

achieved at PMV = -0.14 (corresponding to a mean value of TSV = 0), while energy reduction 

can be attained at PMV = -0.24 (corresponding to a mean value of TSV = -0.07). The difference 

between PMV and TSV can be easily noticed. 

 

Figure 3 shows the power consumption for the PMV data extracted from the GSHP study, with 

the assumption PMV = TSV. It should be noted that a linear relationship was assumed to 

simplify the calculation. Based on the field data collected from the literature search, the actual 

PMV values, which are calculated using Equation (1) and mean C1 and C0 from all studies 

(shown in Table 2), are plotted in the figure for comparison. The uncertainty range resulted 

from the difference between PMV and TSV was from 31.5% to 3.0%, with an average of 14.8%. 

This range is extremely significant when compared to the 20% energy savings claimed in the 

study. 

 

Another uncertainty can be found in the range of PMV/TSV that represents the 5% dissatisfied. 

Figure 4 exhibits the relationship between PMV and thermal dissatisfaction. It can be seen that 

the APD is generally lower than the PPD, resulting in a wider PMV range (i.e. PMV = -0.64 – 



0.58) for maintaining the thermal comfort level with less than 5% dissatisfied while achieving 

higher energy efficiency. Since the GSHP study did not discuss about the power consumption 

below PMV = -0.07, the effect of energy savings with a wider range of acceptable PMV values 

cannot be quantified when no actual energy data is available. Nevertheless, a wider acceptable 

PMV range offers greater energy savings potential for both heating and cooling systems.  

 

In spite of the fact that the PMV–PPD model may not be able to accurately evaluate thermal 

comfort, it is still being used as the basis of most thermal comfort research, especially for 

research related to indoor environment simulation and system control. Before a model that can 

truly represent thermal comfort sensation and acceptance is available, the PMV–PPD 

representation can be updated accordingly using the field data gathered from worldwide 

research efforts to minimize the performance gap of the PMV–PPD model. 

 

Based on the efforts by Wong et al. on Bayesian numerical representation [64], this study 

presents a novel analytical solution for target sample size selection and demonstrates the use 

of Bayesian approach to systemically update the PMV–PPD model with openly available field 

data.  

 

4. Bayesian estimates and parameters 

Bayes’ theorem, which relates the conditional and marginal probabilities of stochastic events 

A and B (where B has a non-vanishing probability), asserts that the probability of event A given 

event B depends not only on the relation between events A and B but also on the marginal 

probability of occurrence of each event. This theory can be applied to a sample size not large 

enough for decision-making purposes, yet relevant enough for statistical analysis. Its general 

formulation and various applications are available in the literature [97].  



 

The proposed approach predicts collective acceptance of an environmental condition using the 

readily available information (event A) and the new measurements from an indoor environment 

(event B) [64].  

 

If a measured acceptance value ρ is significantly different from a prior belief of the acceptance 

ρ0, then |ρ0 − ρ| > ε, where ε is the cut-off value of an acceptable error.  

 

Given a measured acceptance value ρ of an environment with attributes j approximated by a 

normal distribution, ρj,m~ N(µ,σ2), the posterior estimate of the acceptance ρj,1~N(µ1,σ12) is 

expressed by the following Bayesian rules [98], where ρj,0~ N(µ0,σ02) is the prior estimate of 

the acceptance towards environmental attributes j, p is the probability, µ and σ2 are the mean 

and variance of the normal distribution function, and µ, µ0, and µ1 are the best estimates of the 

measured, prior and posterior acceptance values respectively, 

  

𝑝𝑝�𝜌𝜌𝑗𝑗,1�𝜌𝜌𝑗𝑗,𝑚𝑚� = 𝑝𝑝�𝜌𝜌𝑗𝑗,0�𝑝𝑝�𝜌𝜌𝑗𝑗,𝑚𝑚�𝜌𝜌𝑗𝑗,0�  (2) 

 

𝜎𝜎2 = 1
𝜎𝜎0−2+𝜎𝜎−2

; 𝜇𝜇1 = 𝜇𝜇0𝜎𝜎0−2

𝜎𝜎0−2+𝜎𝜎−2
+ 𝜇𝜇𝜎𝜎−2

𝜎𝜎0−2+𝜎𝜎−2
 (3) 

 

In these rules, the weightings are proportional to their respective variances, and the posterior 

mean is a weighted average of the prior mean and the measured value given. This posterior 

mean can be characterized by the ratio of standard deviations and expressed as a parameter β2.   

𝛽𝛽2 = 𝜎𝜎2

𝜎𝜎02
 (4) 

 



Suppose repeated measurements will deliver the measured acceptance ρ and denote 𝑋𝑋 =

𝜎𝜎0−2

𝜎𝜎0−2+𝜎𝜎−2
= 𝛽𝛽2

1+𝛽𝛽2
 and 𝑌𝑌 = 𝜇𝜇𝜎𝜎−2

𝜎𝜎0−2+𝜎𝜎−2
= 𝜇𝜇

1+𝛽𝛽2
, then the posterior estimates µ1, µ2,…,µn are given 

by, 

 

𝜇𝜇1 = 𝜇𝜇0𝑋𝑋 + 𝑌𝑌;  

𝜇𝜇2 = 𝜇𝜇0𝑋𝑋2 + 𝑋𝑋𝑌𝑌 + 𝑌𝑌; 

⁞ 

𝜇𝜇𝑛𝑛 = 𝜇𝜇0𝑋𝑋𝑛𝑛 + 𝑌𝑌(𝑋𝑋𝑛𝑛−1 + 𝑋𝑋𝑛𝑛−2 + ⋯+ 𝑋𝑋 + 1) 

= 𝜇𝜇0𝑋𝑋𝑛𝑛 + 𝑌𝑌(1−𝑋𝑋𝑛𝑛)
1−𝑋𝑋

  (5) 

  

In Eq. (6), µn µ when n∞. Taking n as a finite number of the repeated observations such 

that the n-th estimate shows no significant difference from the measured acceptance, i.e. |µn − 

µ| ≤ ε, then β 2 can be determined by,  

𝜇𝜇𝑛𝑛 = 𝜇𝜇0𝑋𝑋𝑛𝑛 + 𝑌𝑌(1−𝑋𝑋𝑛𝑛)
1−𝑋𝑋

= 𝜇𝜇0 �
𝛽𝛽2

1+𝛽𝛽2
�
𝑛𝑛

+ 𝜇𝜇
1+𝛽𝛽2

×
1−� 𝛽𝛽2

1+𝛽𝛽2
�
𝑛𝑛

1−� 𝛽𝛽2

1+𝛽𝛽2
�

= 𝜇𝜇 + 𝜀𝜀  (6) 

𝛽𝛽2 = 𝑐𝑐𝑟𝑟
1
𝑛𝑛

1−𝑐𝑐𝑟𝑟
1
𝑛𝑛
; 𝑐𝑐𝑟𝑟 = 𝜀𝜀

|𝜇𝜇0−𝜇𝜇|
 (7) 

 

Constant cr is the ratio of the acceptable error to the difference between the prior PD value µ0 

and the measured PD value µ. 

 

With a sample size m < n and β 2 as given in Eq. (7), the Bayesian estimate for the PD value 

µp is expressed by,  

 



𝜇𝜇𝑝𝑝 = 𝜇𝜇0𝑋𝑋𝑚𝑚 + 𝑌𝑌(1−𝑋𝑋𝑚𝑚)
1−𝑋𝑋

; 𝑋𝑋 = 𝛽𝛽2

1+𝛽𝛽2
; 𝑌𝑌 = 𝜇𝜇

1+𝛽𝛽2
 (8) 

 

4.1. Thermal comfort database 

Thermal comfort database selection aims to demonstrate the percentage effects of field data 

sample size (m) on target sample size (n) under the Bayesian approach. A total of 4 thermal 

comfort datasets, outlined in Table 6, were selected for the demonstration: 1) residential 

buildings in Hainan, China (m = 1944) [31]; 2) hospitals in Bangkok, Thailand (m = 928) [51]; 

3) elderly homes in Shanghai, China (m = 672) [36]; and 4) residential buildings in Hong Kong, 

China (m = 177) [99,100]. The first three datasets, obtained from the literature search 

conducted in this study, contain the necessary parameters for Bayesian thermal comfort 

analysis and cover samples of very small apartments [101]. The fourth is a published dataset 

created by this research team. Showing typical field survey results, all datasets have votes 

heavily concentrated (about 78%) in the range from -1 to +1; and their percentages of extreme 

votes (i.e. -3 and +3) are all below 10 % except for the +3 votes in Dataset 4. In Table 6, the 

PMV values (corresponding to each TSV) were calculated using the correlation coefficients C1 

and C0, while APD (μ) and the sample size of each TSV (m), with PPD (corresponding to each 

PMV) as the prior acceptance (μ0), were used to compute the posterior acceptance (μ1). 

 

4.2. Bayesian updating procedures, results and practical implications 

Two updating protocols, namely individual and global, are proposed in this paper to update the 

current PMV–PPD belief. Since individual updating uses one single dataset to update the prior 

belief, the sample size of each TSV is required (Datasets 2–4). This kind of updating, which is 

based on both prior information (PMV–PPD relationship) and new information (survey data), 

generates a unique relationship between PMV and percentage dissatisfied (PD) of a particular 



environmental setting. Figure 5 shows the posterior PD estimated by the Bayesian thermal 

comfort model. With a selected acceptable error ε = 0.001 (i.e. 0.1%) and a target sample size 

n = 1000, posterior estimation of PD can be computed using Equations. (5)–(8). An exemplary 

calculation demonstration is presented in Appendix 1 for reference. Results show that the 

posterior PD estimated is always closer to the measured PD than PPD. If the sample size m of 

each vote is significant comparing to the target sample size n, the posterior estimate will be 

closer to the measured PD. This can be observed generally at vote = 0 because most of the 

environments are designed to provide comfort for occupants. On the other hand, the sample 

size of an extreme vote (i.e. -3 or +3) is usually small, therefore the posterior PD is closer to 

PPD instead. As Bayesian estimation can evaluate the significance of a small dataset (as small 

as a one-sample dataset) and update the prior belief (the PPD in this case), the reliability 

concerns in regression analysis when the extreme vote sample size is too small are eliminated 

[64]. This individual updating protocol gives a thermal comfort model that incorporates the 

adaptive and contextual parameters from occupants in a specific type of environment (or even 

as specific as from a particular environment). After updating with available field, the posterior 

PD can act as an updated tailor-made model that can be used as basis for further thermal 

comfort study.  

 

Global updating treats each dataset as one sample size and updates the PPD belief for a general 

indoor environment rather than a particular environmental setting. Presently, PMV–PPD based 

comfort standard is widely used regardless of the type of environment. Although contextual 

factors and adaptive behaviours strongly influence thermal comfort acceptability, modelling 

thermal comfort for each unique environment is resource demanding as field data collection is 

inevitable. By adopting the PMV–PPD concept, global updating can update the PPD belief 

using field data from different environments to generate a model that incorporates the influence 



of field settings on thermal comfort. Figure 6 graphs the posterior PD estimated by the Bayesian 

thermal comfort model with acceptable error ε = 0.05 and different target sample size n = 5, 10 

and 20 to demonstrate the effects of target sample size difference. It can be seen that since one 

vote is regarded as one sample, when sample size is considered small and less significant 

compared to a preset target number (in case of n = 20), the posterior estimates are closer to the 

prior PPD belief (i.e. Fanger’s as demonstrated) than the actual field data. With a smaller target 

sample size (in case of n = 5), Bayesian estimate will give an updated PMV–PPD model that 

makes prediction closer to actual data than the original model. The figure demonstrates that 

Bayesian updating can significantly improve prediction quality. An exemplary calculation 

demonstration can be found in Appendix 1. 

 

To further illustrate the practical implications of using Bayesian updating, the proposed global 

protocol was applied to the GSHP study by Fang et al. [90], with error ε = 0.05 and target 

sample size n = 10. Showing a PMV range from -0.062 to +0.062 for having 5% thermally 

dissatisfied people, the updated PMV–PPD relationship was found slightly narrower than the 

original PMV–PPD. As a result, the minimum power consumption would be approximately 

1.46kW at a PMV of -0.062. 

 

5. Conclusion 

This study reviewed thermal comfort research in recent years and found that indoor simulation, 

system control and field survey are the three most discussed categories in the field of thermal 

comfort. While a developed thermal comfort prediction model is required as the basis of 

reference in these categories, the existing models are not yet comprehensive enough to give 

accurate thermal acceptance prediction. Some efforts has been done to improve Fanger’s model 

by introducing adaptive parameters and expanding the applicability, still the modifications 



could not achieve model generalization. This study identified the current research gaps in 

thermal comfort modelling include: the need for improving the predicted mean vote (PMV) 

model for actual field use, lack of adequate field data from extreme votes, and disagreement 

between actual percentage of dissatisfied (APD) and Fanger’s predicted percentage of 

dissatisfied (PPD) model. The performance gap between actual field data and model prediction 

can lead to substantial error in research that based on an inaccurate model. In order to overcome 

these research gaps, this study proposed a novel Bayesian approach to update existing thermal 

comfort model. Two Bayesian updating protocols, namely individual and global, were 

presented to demonstrate the analytical solution for target sample size selection to systemically 

update current thermal comfort beliefs with openly available field data. This method allows the 

incorporation of field settings into any existing model even with a small sample size. Results 

showed that with Besides being a practical tool for modelling thermal comfort using the best 

information available (i.e. existing models and field survey data), the proposed Bayesian 

updating provides an achievable solution to the present challenges in establishing a reliable 

thermal comfort prediction model. While existing model can be updated using Bayesian 

approach, a comprehensive data-driven thermal comfort model shall be developed in the future. 
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Nomenclature 0 prior 
Ta air temperature 1/ p Posterior estimate/ (with measured sample size m) 
Tr mean radiant temperature ρ measured acceptance 
RH relative humidity ε acceptable error 
Va air velocity j environmental attributes 
Me metabolic rate N normal distribution 
CL clothing value μ mean of measured acceptance 
PMV predicted mean vote σ2 variance 
PPD predicted percentage dissatisfied p probability 
TSV thermal sensation vote β ratio of standard deviations (σ/σ0) 
APD actual percentage dissatisfied n target sample size 
C1 slope of PMV–TSV plot m measured sample size 
C0 y-intercept of PMV-TSV plot cr Ratio of ε to difference between prior and 

measured acceptance A, B events 
 
 
Table 1. Contribution of different categories to the total number of publications. To identify significant differences 
between contributions before and after 2013, paired t-tests were done and the p-values are shown in the table.   

 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 p 

Simulation 52% 48% 40% 42% 51% 46% 53% 55% 55% 51% 43% 0.250 
System control 37% 31% 41% 34% 29% 32% 30% 35% 34% 33% 35% 0.656 
Field study 11% 17% 23% 20% 19% 20% 18% 20% 21% 20% 19% 0.438 
Thermal manikin 0% 1% 5% 2% 1% 4% 2% 2% 3% 2% 1% 0.852 
Model development 0% 1% 3% 1% 1% 3% 2% 1% 1% 1% 1% 0.547 
Climate change 2% 11% 11% 10% 10% 14% 12% 12% 14% 15% 12% 0.053 
Energy efficiency 13% 10% 14% 19% 17% 17% 21% 23% 31% 25% 26% 0.004 

Remark: The total percentage in each year does not add up to 100% as some of the publications belong to more 
than one category. 
 
 
 



 
Figure 1. Number of publications related to indoor thermal comfort from 2008 to 2018 on the Web of Science. 
Shown in the figure are the results with the search words “CFD or numerical or simulate”, “system control”, “field 
study”, “thermal manikin”, “model development”, “climate change” and “energy efficiency”. Overlapping of 
categories may appear during refined searching.  
 
 

 
Figure 2. Involvement of different research areas in the field of thermal comfort. APD: actual percentage 
dissatisfied; TSV: thermal sensation vote. 
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Table 2. Occupants’ thermal sensation votes (TSV) in various studies over the past 5 years (2018–2014) 

Ref. Location Building Ventilation Köppen–Geiger 
climate Season Sample size C1 C0 

TSV (no. of vote) 
-3 -2 -1 0 1 2 3 

[31] Hainan, China Residential 
building FR Dry-winter humid 

subtropical 
Transitional 

season 1944 0.9426 -0.3076 – – – – – – – 

[32] Tibet, China Stone 
dwellings NV Cold semi-arid Winter 327 1.371 0.979 27 41 154 95 11 0 0 

[33] Tibet, China Residential 
building NV Cold semi-arid Summer 609 0.6883 0.382 8 26 129 351 74 17 4 

Winter 573 0.7573 0.3883 13 18 51 202 173 79 37 

[34] Harbin, China Residential 
building H 

Monsoon-influenced 
hot-summer humid 

continental 

Cool  
exposure 304 1.1346 0.7558 4 6 62 187 24 19 2 

Warm 
exposure 321 0.7345 0.0213 0 2 28 209 40 20 22 

[35] Korea Elderly 
centre NV/AC/H Hot-summer humid 

continental 

Cooling 114 0.32 0.15 0 0 4 68 40 2 0 
Mid-season 182 1.16 0.44 8 22 50 80 22 0 0 

Heating 102 0.84 0.15 2 26 42 20 10 2 0 

[36] Shanghai, China Elderly 
home FR Humid subtropical Winter 342 0.598 0.394 1 52 33 212 43 1 0 

Summer 330 0.373 0.038 0 0 11 188 82 46 3 

[37] Brazil Office 
building 

AC Tropical savanna/ 
Humid subtropical 

Spring to early 
winter 

1236 (A) 0.51 0.15 5 48 328 713 132 10 0 
AC/NV 823 (B) 0.49 0.22 3 24 180 461 139 13 3 
AC/NV 530 (C) 1.08 0.66 0 6 115 266 106 27 10 

[38] India Office AC Hot semi-arid/ 
Tropical savanna All year 444 0.963 0.27 1 33 166 165 71 8 0 

[39]* Hungary Office AC Warm humid 
continental Winter 278 1 0.275 NA 50 106 72 31 19 NA 

[40] Quito, Ecuador NV office NV Temperate oceanic Summer 441 0.3203 0.0698 7 12 88 246 81 7 0 

[41] India Office 
NV Hot semi-arid/ 

Tropical savanna All year 
2005 0.8 0.664 – – – – – – – 

NV/AC 2470 0.7647 -0.4924 – – – – – – – 
AC 1849 0.65 -0.5275 – – – – – – – 

[42] Shenzhen, 
China Office AC Monsoon-influenced 

humid subtropical Summer 321 0.5702 0.1428 3 9 16 174 102 11 6 
NV 513 0.4550 0.0603 21 45 17 241 183 4 2 

 
MVS: mechanical ventilation system; AC: air-conditioned; FR: Free-running; HVAC: Heating, ventilation, and air conditioning; NV: natural ventilation; H/NH: Heating/ no 
heating;  
'–' indicates that the TSV values are not available in the corresponding studies;  
*a 5-point scale was used for thermal sensation evaluation.  



Table 2 (cont.’). Occupants’ thermal sensation votes (TSV) in various studies over the past 5 years (2018–2014) 

Ref. Location Building Ventilation Köppen–Geiger 
climate Season Sample size C1 C0 

TSV (no. of vote) 
-3 -2 -1 0 1 2 3 

[43] Makassar, 
Indonesia 

Secondary 
school NV Tropical monsoon Summer 1594 0.676 -1.052 0 21 317 588 493 167 8 

[44] Hong Kong, 
China 

University 
classroom 
(Chamber) 

HVAC Monsoon-influenced 
humid subtropical Summer 946 0.667 0.382 – – – – – – – 

[45] Weinan and 
Wuwei, China 

Rural 
school NV Cold semi-arid Winter 763 0.4184 -0.1044 11 58 230 362 82 17 3 

[46] 
Shaanxi, China 

School H/NH 
Cold semi-arid 

All year 
345 0.45 0.1175 14 45 110 131 36 8 1 

Gansu, China Cold semi-arid  360 0.3514 0.1292 6 16 70 213 40 11 4 
Qinghai, China Cold semi-arid 421 0.3902 -0.5112 3 14 68 126 126 69 15 

[47] Aegean, Greek Classroom HVAC Hot-summer 
Mediterranean 

Heating 449 0.9702 0.2942 0 14 36 139 139 85 36 
Cooling 345 1.2906 0.0288 14 24 42 62 69 55 79 

[48] Indonesia University 
classroom NV Tropical rainforest Autumn 118 0.4624 0.4306 0 0 19 26 50 20 3 

                

[49] Porto, Portugal Bus station MVS Warm-summer 
Mediterranean Summer 240 0.603 1.065 0 1 17 105 71 38 8 

[50] Shandong, 
China 

Rubber 
factory NV Hot humid 

continental Summer 40 0.888 -1.21 0 0 2 10 16 10 2 

[51] Bangkok, 
Thailand Hospital AC Tropical savanna Summer 

451 (Patient) 0.5187 0.0035 5 45 74 255 41 25 6 
146 (Staff) 1.2372 -0.9764 8 27 45 25 20 14 7 

331 (Visitor) 0.6278 0.0518 8 36 61 182 26 18 0 

[52] 
China 

subtropical 
monsoon area 

Ship cabin AC Monsoon-influenced 
humid subtropical Winter 

100 (Seated) 0.971 0.444 – – – – – – – 
100 (Light 
working) 1.24 1.133 – – – – – – – 

[53] Henan, China 
Cotton 
textile 

workshop 

AC Humid subtropical Summer 
123 (worker) 0.5869 0.3402 0 0 0 6 42 48 27 
69 (student) 0.9068 0.7629 0 0 0 0 16 29 24 

           

[54] Chongqing, 
China 

Environ-
mental 

chamber 
Controlled Humid subtropical 

climate All year 440 0.45 -0.1 – – – – – – – 

[55] Penang, 
Malaysia Mosque AC Tropical rainforest Cooler and 

hotter seasons 330 0.2462 -0.3888 1 5 39 108 105 69 3 

 



Table 3. Review of actual percentage dissatisfied (APD; %) in various studies over the past 5 years (2018–2014) 

Ref. Location Building Types of 
ventilation 

Köppen–Geiger 
climate Season Total sample 

size, ∑n 
 TSV 
 -3 -2 -1 0 1 2 3 

[31] Hainan, China Residential 
building FR 

Dry-winter 
humid 

subtropical 

Transitional 
season 1944 

APD 
(%) 

8.7 2.3 2.8 2.8 19.3 23.2 40.9 

[51] Bangkok, 
Thailand Hospital AC 

Tropical savanna 
Summer 

451 (Patient) 66.2 31.5 8.5 0 3.1 9.2 22.3 
146 (Staff) 91.5 62.3 26.2 7.7 11.5 23.1 38.5 

331 (Visitor) 71.5 34.6 8.5 0 2.3 6.2 16.2 

[56] New South 
Wales, Australia 

Primary school 
NV/AC 

Humid 
subtropical 

climate 
Summer 

3545 85 49 16 8 17 38 65 

Secondary school 1321 60 23 8 9 20 43 72 

[61] Beja, Portugal Classroom A HVAC Hot-summer 
Mediterranean Spring to summer 26 NA NA 17 0 0 NA NA 

Classroom B 19 NA NA NA 1 0 0 NA 

[36] Shanghai, China Elderly home FR Humid 
subtropical 

Winter 342 100 94 79 0 7 100 NA 
Summer 330 NA NA 27 0 84 87 100 

       Min 8.7 2.3 2.8 0 0 0 16.2 
       Max 100 94 79 9 84 100 100 
       Mean 69.0 42.4 21.4 2.9 16.4 36.6 50.7 
        PMV 
        -3 -2 -1 0 1 2 3 

 Predicted percentage dissatisfied % (PPD) in Fanger’s model 99 75 25 5 25 75 99 
FR: Free-running; NV: natural ventilation; AC: air-conditioned; HVAC: Heating, ventilation, and air conditioning; 
‘NA’ due to 0 sample size under the vote. 
 
 
Table 4. Corresponding PMV and PPD for TSV = -1, 0 and 1 

TSV transforming TSV to PMV by Eq. (1) PPD (Assume TSV = PMV) PPD (transforming TSV to PMV by Eq. (1)) 
-1 -3.59 – 0.24 (mean = -1.79) 26.1% 100% – 6.2% (mean = 66.7%) 
0 -1.77 – 1.58 (mean = -0.14) 5% 65.3% – 55.2% (mean = 5.4%) 
1 -0.11 – 5.64 (mean = 1.51) 26.1% 5.2% – 100% (mean = 51.7%) 

 
 
  



Table 5. Corresponding TSV and PPD for PMV = 0 and -0.07 
 Minimum Maximum Mean 

PMV = 0 TSV -1.21 TSV 1.13 TSV 0.14 
PPD (%) 35.7 PPD (%) 32.0 PPD (%) 5.4 

PMV = -0.07 TSV -1.27 TSV 1.05 TSV 0.086 
PPD (%) 38.8 PPD (%) 28.1 PPD (%) 5.2 

 
 

Table 6. Selected databases for Bayesian thermal comfort model demonstration  

Ref. Total sample size, 
∑m C1 C0 

 TSV 
 -3 -2 -1 0 1 2 3 

[31] 1944 0.9426 -0.3076 
m – – – – – – – 

PMV -2.86 -1.80 -0.73 0.33 1.39 2.45 3.51 
APD (%) 8.7 2.3 2.8 2.8 19.3 23.2 40.9 

[51] 

451 (Patient) 0.5187 0.0035 
m 5 45 74 255 41 25 6 

PMV -5.79 -3.86 -1.93 -0.01 1.92 3.85 5.78 
APD (%) 66.2 31.5 8.5 0 3.1 9.2 22.3 

146 (Staff) 1.2372 -0.9764 
m 8 27 45 25 20 14 7 

PMV -1.64 -0.83 -0.02 0.79 1.60 2.41 3.21 
APD (%) 91.5 62.3 26.2 7.7 11.5 23.1 38.5 

331 (Visitor) 0.6278 0.0518 
m 8 36 61 182 26 18 0 

PMV -4.86 -3.27 -1.68 -0.08 1.51 3.10 4.70 
APD (%) 71.5 34.6 8.5 0 2.3 6.2 16.2 

[36] 

342 0.598 0.394 
m 1 52 33 212 43 1 0 

PMV -5.68 -4.00 -2.33 -0.66 1.01 2.69 4.36 
APD (%) 100 94 79 0 7 100 NA 

330 0.373 0.038 
m 0 0 11 188 82 46 3 

PMV -8.14 -5.46 -2.78 -0.10 2.58 5.26 7.94 
APD (%) NA NA 27 0 84 87 100 

[99,100] 177 2.49 -0.02 
m 0 2 15 76 47 12 25 

PMV -1.20 -0.80 -0.39 0.01 0.41 0.81 1.21 
APD (%) NA 50 0 0 8.51 66.7 100 

Remark: PMV values (corresponding to each TSV) were calculated using the correlation coefficients C1 and C0; 
'–' indicates that TSV values are not available; 
‘NA’ due to 0 sample size under the vote. 



  

Figure 3.  Plot of thermal sensation vote against power consumption. PMV data was extracted from Fang et al. 
[94]. Actual votes were calculated using Bayesian using coefficients gathered from field studies.  

 

 

 

Figure 4. Plot of PMV against thermal dissatisfaction. 
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Figure 5. Posterior PD by Bayesian thermal comfort model using individual updating method with ε  = 0.001 and 
n = 1000; (a) Patient, Sattayakorn et al. [51]; (b) Staff, Sattayakorn et al. [51]; (c) Visitor, Sattayakorn et al. [51]; 
(d) Winter, Jiao et al. [36]; (e) Summer, Jiao et al. [36]; (f) Residential, Lai et al. and Mui et al. [99,100]. 
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Figure 6. Posterior PD by Bayesian thermal comfort model with ε  = 0.05 and n = 5, 10 and 20; a) Lu et al. 
[31]; b) Patient, Sattayakorn et al. [51]; c) Staff, Sattayakorn et al. [51]; d) Visitor, Sattayakorn et al. 
[51]; e) Jiao et al. [36]; g) Residential, , Lai et al. and Mui et al. [99,100]. 
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Appendix 

Exemplary calculation steps 

 

Sample 1: Individual updating – Dataset 2, TSV vote = 0; PMV vote = -0.01 

Given: Target sample size n = 1000 

 Acceptable error ε = 0.001  

Sample size m = 255 

Prior acceptance ρ1,0/ μ0 = 0.05 

 Measured acceptance ρ1,m/ μ = 0 



   

By  Eq. (7) 

cr = ε (µ0 − µ)−1 = 0.001 × (0.05 – 0)-1 = 0.02 

β 2 = cr
1/n / (1 − cr

1/n) = 0.021/1000 / (1 – 0.021/1000) = 255.12 

 

By  X = σ0−
2 / (σ0−

2 + σ−2) = β 2 / (1 + β 2) = 255.12 / (1 + 255.12) = 0.9961 

Y = µ σ−2 / (σ0−
2 + σ−2) = µ / (1 + β 2) = 0 / (1 + 255.12) = 0 

 

By Eq. (8) 

µp = µ0 X m + Y (1 − X m) / (1 − X) = 0.05 × 0.9961255 + 0 × (1 – 0.9961255) / (1 – 0.9961) 

= 0.01846 

 

 

  



Sample 2: Global updating – Dataset 1, TSV vote = -2; PMV vote = -1.80 

Given: Target sample size n = 10 

 Acceptable error ε = 0.05  

Sample size m = 1 (one study is treated as 1 sample) 

Prior acceptance ρ1,0/ μ0 = 0.67 

 Measured acceptance ρ1,m/ μ = 0.023 

   

By  Eq. (7) 

cr = ε (µ0 − µ)−1 = 0.05 × (0.67 – 0.023)-1 = 0.0775 

β 2 = cr
1/n / (1 − cr

1/n) = 0.07751/10 / (1 – 0.07751/10) = 3.432 

 

By  X = σ0−
2 / (σ0−

2 + σ−2) = β 2 / (1 + β 2) = 3.432 / (1 + 3.432) = 0.774 

Y = µ σ−2 / (σ0−
2 + σ−2) = µ / (1 + β 2) = 0.023 / (1 + 3.432) = 0.00519 

 

By Eq. (8) 

µp = µ0 X m + Y (1 − X m) / (1 − X) = 0.67 × 0.7741 + 0.00519 × (1 – 0.7741) / (1 – 0.774) 

= 0.522 

 

 

 

 




