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An accurate indoor environmental quality (IEQ) model is essential to design and 

maintain a comfortable indoor environment. Due to the complexity of IEQ modelling 

and subjective nature of IEQ responses, there is a need to update the subjective–objective 

relationship of IEQ model when new information is available. In this study, a Bayesian 

approach for IEQ model updating is proposed to systematically relate new subjective 

IEQ responses towards the environment to existing beliefs. With a selected target sample 

size and an acceptable error, the statistical significance of data is evaluated and 

incorporated into the updated IEQ model. Bayesian updating framework is able to 

enhance the accuracy of IEQ prediction and shall be a useful tool for managerial decision 

making in maintaining a comfortable indoor environment.     

1. Introduction 

Indoor environmental quality (IEQ) acceptance is a significant topic in built environment as it 

affects occupant’s comfort, productivity and health. A longitudinal study in offices showed that 

inadequate IEQ reduced self–reported work performance, measured cognitive performance and 

well–being by indirectly lowering motivation and enhancing tiredness and distractibility (Lamb 

and Kwok 2016). Poor IEQ can also lead to Sick building syndrome (SBS), mental health 

problems and a number of long–term illnesses (Bluyssen 2009, 2014; Al Horr et al. 2016a).  

Current IEQ research mainly focuses on working environment, since the cost to 

presenteeism, i.e. working under reduced productivity (Johns 2010), and absenteeism can be 

detrimental to the business. An estimated 2% decrease in productivity due to Sick Building 

Syndrome (SBS) in US would impose an annual nationwide cost of $60 billion (Fisk 2000). In 
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another recent cross–sectional study conducted in Japan, based on human capital approach, the 

monetary value due to absenteeism and presenteeism was $520 and $3055 per person per year 

(Nagata et al. 2018). 

Less emphasis has been put onto IEQ in living space, despite that people generally 

spend more time at home than in work (BLS 2019). IEQ research at home mostly focuses on 

energy performance and building sustainability, for example Chen et al. (2016), Aydin and 

Mihlayanlar (2017). Besides conducting field studies, some researchers attempted to develop 

IEQ models that relate objective environmental conditions with subjective occupant’s 

satisfaction. Several studies use collective physical and subjective measurement data to 

develop multivariate logistic regression models for assessing IEQ acceptance in public 

buildings (Mui and Chan 2005; Cao et al. 2012) and residential building (Lai et al. 2009). 

However, IEQ regression model is found to be unable to give accurate prediction if the 

occupants have their own perception and/ or adaption towards the environment (Tsang et al. 

2019; Mui et al. 2018). The selection of regression model also significantly affects the 

prediction results (Majcen et al. 2013).  

In view of the limitations, an open probabilistic acceptance model using frequency 

distribution function is recently developed to handle diverse range of descriptive IEQ 

parameters in addition to the four major numerical factors forming the argument of 

environmental quality (i.e. thermal comfort, indoor air quality (IAQ), visual and aural comfort). 

It makes model updating easier and is more robust in reflecting occupant’s environmental 

perception (Wong et al. 2018). Nevertheless, the characteristics of data used strongly affect the 

accuracy, relevance and applicability of any model (Heinzerling et al. 2013). If the model is 

created from a database with small sample size, bias may exist, therefore creating a 

performance gap between the predicted IEQ acceptance and the actual one, which shall be 

minimized by calibration. 



Humphreys (2005) pointed out that due to cross–parameter effects and prioritization of 

IEQ parameters, it is impossible to develop an internationally valid index to evaluate IEQ. 

Wong et al. (2014) addressed the problem of discrepancies between model and survey outcome 

and recognized that as a “fundamental problem of judgmental decision making based on the 

best information available”. They therefore proposed a Bayesian approach to contemporize 

field survey data and thermal comfort model. This approach enables the updating of existing 

model based on best information available (Vick 2002). 

Hong Kong as one of the most populated places in the world, has been facing a 

challenge of meeting the housing demand due to population expansion and limited land supply. 

Recently some very small living spaces with median floor area of 10m2 have emerged in the 

housing market as an affordable alternative choice of accommodation for the underprivileged 

(Transport and Housing Bureau 2013; Lai et al. 2016). “Nano flats” with less than 20m2 are 

also becoming popular in the private housing market as the housing price continuously rising 

(Legislative Council Secretariat 2018). It can be foreseen that the development of housing in 

Hong Kong is tending to be smaller and smaller as the demand is ever expanding (Wong 2018), 

our understanding on IEQ responses to residential environments needs be expanded and 

updated. IEQ modelling shall be able to accommodate the fast changing housing situation with 

minimum research effort. Following the idea, in this study, we propose and demonstrate a 

Bayesian IEQ acceptance model framework based on a developed open acceptance model 

(Wong et al. 2018) and available survey data (Tsang et al. 2019; Mui et al. 2018).  

1.1 Research questions and Objectives 

The research questions are: Are occupant’s responses towards IEQ in very small flat 

units significantly different from those in average residential buildings? If so, how the different 

responses improve the existing understandings of occupant's responses towards IEQ in 

residential buildings? 



This paper first explains the complexity of IEQ and the need for having a subjective–

objective IEQ model. The development of Bayesian IEQ acceptance model is then introduced. 

IEQ responses collected by this research team from very small flats units in Hong Kong that 

have been published previously (Tsang et al. 2019; Mui et al. 2018) are presented, which, 

together with the probability of acceptance of each environmental case predicted by an existing 

IEQ model, are used to demonstrate the Bayesian updating procedure. The characteristics of 

Bayesian model proposed in this study and the future development of IEQ modelling are 

discussed in the end. The novelty of this study is to quantify the parameter of Bayesian rules 

for this special case of discrete measurement that the variance can be related to target sample 

size and difference between prior and measured acceptance of a case. The results shall provide 

an analytical solution to building owners/operators regarding the choice of IEQ parameters in 

environmental design and management. 

 

2. Literature review: Understanding the complexity of IEQ modelling 

2.1 Factors affecting IEQ satisfaction 

Many factors can influence one’s perception towards IEQ. Environmental–related constituents 

include thermal comfort, IAQ, visual comfort, aural comfort, layout, etc. (Kang et al. 2017; Al 

Horr et al. 2016a, 2016b). Occupant’s socioeconomic status and gender also have impact on 

comfort level, for example Indraganti and Rao (2010) found that people with lower income had 

higher tolerance to temperature than higher income group, Hansen et al. (2019) found that 

women and older people considered IEQ at home to be more important than their counterparts. 

Differences in IEQ satisfaction in workplace were also found to be dependent on occupants’ 

demographics (Bae et al. 2019).  



Researchers have taken two different approaches to investigate IEQ. Single–factor 

studies mainly aim at investigating the effect of a particular aspect and establishing the 

acceptable environmental condition range, with thermal comfort and indoor air quality (IAQ) 

as more popular ones (Andargiea et al. 2019; ASHRAE 2019, 2017; ISO 2005). Multi–factor 

approach instead assesses more than one IEQ aspects concurrently, either independently as 

separated factors, i.e. assuming the factors are unrelated, or inter–relatedly as if the factors have 

influences on each other (Andargiea et al. 2019; CEN 2019; ISO 2012). 

A number of studies have found that indoor environmental factors have significant 

interactions and effects on each other. In a controlled experiment designed to investigate the 

impact of temperature and humidity on perceived IAQ, it was found that levels of indoor air 

enthalpy (lower than 50kJ/kg) had significant (p–value<0.05) negative effects on acceptability 

of air quality, suggesting a strong correlation of enthalpy and acceptability of air (Fang et al. 

1999). In case of high air enthalpy, perceived air quality appeared to be worse (Lan et al. 2011). 

This result was also confirmed by a study in Swedish hospitals which found that higher thermal 

comfort sensation was associated with better perception of air quality (Fransson et al. 2007). 

In a controlled field survey, Huang et al. (2012) identified that when one IEQ parameter 

reached the highest satisfaction level, occupants tended to have higher tolerance to another 

parameter. For example, when temperature was at the optimal level, subjects found a higher 

noise level acceptable. To conclude, under the same IEQ, different factors may offset each 

other. Due to the complexity of interaction between IEQ parameters, most of the existing IEQ 

models only focus on a limited number of four physical factors, namely thermal comfort, IAQ, 

visual and aural environment (Heinzerling et al. 2013).  

In addition to cross–parameter effects, a prioritization of IEQ factors is observed to be 

space and occupant specific (Sakhare and Ralegaonkar 2014). Field studies investigating the 

impacts of IEQ on occupant’s satisfaction have found that thermal comfort is usually the most 



important among other IEQ factors, and visual environment is the least concerned (Cao et al. 

2012; Frontczak et al. 2012; Huang et al. 2012). Occupants sometimes would have a specific 

IEQ preference for building with different usage, for instant a quite aural condition was more 

important than other aspects in learning environment (Lee et al. 2012). Alternatively, even for 

building with the same usage, relative importance of IEQ factors would also be different 

deemed by occupants with different demographics. For example, Lai and Yik (2009) concluded 

that noise was more important than IAQ for lower income group residing in public housing, 

but the situation was reverse in private housing where the high income group lives in. 

From the above, we can see that IEQ is an intricate, inter–related and subjective matter 

that cannot be entirely explained by physical equations alone. Subjective IEQ responses 

collected by survey are therefore important input for predicting occupant’s IEQ satisfaction. 

2.2 IEQ model 

IEQ research in relation to occupants looks for the deterministic causal connections 

between environmental quantities and occupant’s comfort. This approach views these 

relationships purely physical which can be expressed in a mathematical equation or model 

(Baggs and Chemero 2018; Wellems et al. 2020). Therefore, IEQ models that relate one or 

multiple objective IEQ parameters to occupant’s overall IEQ comfort response were developed 

to explain this relationship. Heinzerling et al. (2013) categorized IEQ models into two basic 

types: subjective–objective and objective–criteria. The former one gives single–variable, linear 

or multivariate regression equations to predict overall IEQ satisfaction (an index) that defines 

the level of IEQ of an environment, the latter compares objective measurements with a fixed 

set of comfort IEQ criteria that are derived from previous subjective–objective studies. 

While most buildings are designed and operated according to comfort objective–

criteria, it has been found that even if comfort requirements were met, occupants still felt 

unsatisfied (Burge 2004). Heinzerling et al. (2013) summarized in their review on IEQ 



assessment models that none of the existing models accounted for inter–category relationship 

between IEQ parameters which could be space–specific. The assessment classes of objective–

criteria IEQ models also lack justification and are not always aligned with occupant’s actual 

satisfaction. It can be seen that the causal relationship sometimes cannot explain people’s 

conscious experience to an environment that is ever changing (Stanton 1983). As a result, IEQ 

research cannot fully adopt a reductive physicalism in exploring the environmental quantities–

occupant’s comfort relationship. Conducting subjective questionnaire can therefore address the 

phenomenal characteristics of mental state, for example perception, feelings and emotions. Yet, 

we cannot rely solely on field questionnaires to evaluate building IEQ performance due to its 

subjective nature and the lack of universal judgement (Asaid et al. 2017). Heinzerling et al. 

(2013) also pointed out that occupant’s satisfaction is the major concern of building operators, 

but using only subjective survey for assessing IEQ may not be able to capture IEQ–related 

energy issues. As a result, there is a need to have accurate subjective–objective IEQ model for 

predicting IEQ satisfaction.  

3. Materials and Methods 

In the following section, field data collected and published previously, which are used for the 

demonstration of model updating is first introduced. The open acceptance model for IEQ 

developed previously (Wong et al. 2018), shown below in Eq. (1)–(6), is then described. The 

open acceptance model was based on frequency distribution function of occupant’s responses 

towards IEQ parameters, and the overall IEQ acceptance is defined by the logistic function of 

the probability of acceptance of individual parameter. The fundamental of Bayesian rules, 

described in Eq. (7) and (8), are explained. Finally, the Bayesian framework proposed in this 

study, introduced in Eq. (9)–(13), is incorporated into open acceptance model by updating the 

probability of acceptance of the environmental cases using newly available data.  



3.1 Database for model updating 

Objective and subjective IEQ data were collected in very small flat units through on–

site field measurement and interviews from October to December 2016 previously by this 

team in very small flat units. These data have been published in Tsang et al. (2019) and Mui 

et al. (2018).  

Basic IEQ parameters including indoor air temperature (Ta), radiant temperature (Tr), 

air velocity (Va), relative humidity (RH), were measured by Lutron Heat Index WBGT Meter 

(WBGT–2009) and Lutron Hot Wire Anemometer (AM–4204HA), carbon dioxide (CO2) by 

TSI Q–Trak IAQ Monitor (TSI–8551), horizontal illuminance level by Lutron Digital Lux 

Meter (LX–1108) and equivalent noise level by Lutron Digital Sound Level Meter (SL–4001) 

for evaluating the thermal, air quality, visual and aural environment. These environmental 

parameters allow us to objectively evaluate the indoor environmental conditions of very small 

flats units and compare the environment with average residential buildings.    

Subjective IEQ responses were collected through individual interviews with occupants. 

Their thermal sensation and acceptance to air quality were evaluated by ASHRAE seven–point 

thermal sensation scale and a five–point scale (very good, good, neutral, bad and very bad). 

Aural and visual environments were assessed by a maximum of 100 score. Besides, to 

determine the overall IEQ acceptance, occupants were asked a total of five direct polar 

acceptable/ unacceptable questions regarding the above–mentioned four IEQ aspects and the 

overall IEQ. These particular information are necessary to evaluate occupant’s subjective 

responses toward the perceived environmental conditions. Comparison of subjective responses 

by occupants from very small flats unit and average residential buildings will be made to 

identify the difference in their subjective–objective IEQ relationship. These results are later 

used as input for Bayesian updating described in the next section. 



3.2 Proposed Bayesian IEQ acceptance model 

This work proposes a Bayesian updating framework for IEQ model in order to update 

the subjective–objective relationship of the model to improve the accuracy and model 

applicability. In this particular example of updating IEQ acceptance model for residential 

building in Hong Kong, open acceptance model for IEQ developed by Wong et al. (2018) is 

adopted. This probabilistic acceptance model assesses the overall IEQ performance using 

frequency distribution function of occupant’s responses towards IEQ parameters. This model 

is selected due to its robustness and the flexibility about the range/ type of IEQ factors and the 

addition of new observed data for model updating.  

3.2.1 Open acceptance model for IEQ 

The collective overall IEQ acceptance Φ is given in Eq. (1) by the overall individual’s 

acceptance to the exposed environmental conditions of the respective environmental 

parameters δi = δi (xi), where i is the number of the environmental parameters resulted in a total 

of j = 1, 2, …, i2−1, i2 environmental case. The occurrence of case j can be expressed by Eq. 

(2), while ρj = ρ1, ρ2, …, 𝜌𝜌𝑖𝑖2  is the acceptance with respect to the environmental conditions ϕj. 
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The acceptance function δ(x) of an environmental parameter x∈[a, b] is expressed in 

Eq. (3). 
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The probability density function of normalized occupant votes sux~  for the 

environmental acceptance θsu is given by Eq. (4), where θs and θu, shown in Eq. (5), are 

percentage votes for acceptance and unacceptance with sample sizes ns and nu, ys and yu in Eq. 

(6) are the cumulative frequency distributions for the mass density functions of parameters sx~  

and ux~ , 
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sx~ ~ sx~ (µs, σs), ux~ ~ ux~  (µu, σu) are the collective occupant responses to the 

environment obtained from site survey studies and can be approximated by parametric 

distribution functions, where µ and σ are the means and standards deviation of parameters xs 

and xu. 

3.2.2 Development of Bayesian updating framework 

Bayes’ theorem, which relates the conditional and marginal probabilities of stochastic 

events A and B (where B has a non–vanishing probability), asserts that the probability of an 



event A given by event B depends not only on the relation between events A and B but also on 

the marginal probability of occurrence of each event. This theory can be applied to a sample 

size not large enough for decision–making purposes, yet relevant enough for statistical 

analysis. Its general formulation and various applications are available in the literature (Vick 

2002).  

The proposed approach predicts collective acceptance to an environmental condition 

using the readily available information (event A) and the new measurements from an indoor 

environment (event B) (Wong et al. 2014). Given a measurement acceptance value ρ (event B) 

is significantly different from a prior belief of the acceptance ρ0 (event A) that |ρ0 − ρ| > ε, 

where ε is a cut–off value of the acceptable error.  

Assuming the measured acceptance value ρ of an environment at attributes j can be 

approximated by a normal distribution, ρj,m~ N(µ,σ2), the posterior estimate of the acceptance 

ρj,1~N(µ1,σ12) is expressed by the following Bayesian rules in Eq. (7) and (8) (Lee 2004), where 

ρj,0~ N(µ0,σ02) is the prior estimate of the acceptance towards environmental attributes j, p is 

the probability, µ and σ2 are the mean and variance of a normal distribution function, µ, µ0, 

and µ1 are the best estimates of the measured, prior and posterior acceptance value respectively, 

 p(ρj,1|ρj,m) = p(ρj,0) p(ρj,m|ρj,0)   (7) 

 σ12 = (σ0−2 + σ−2)−1; µ1 = µ0 σ0−2 / (σ0−2 + σ−2) + µ σ−2 / (σ0−2 + σ−2)  (8)  

In these rules, the weightings are proportional to their respective variances, and the 

posterior mean is a weighted average of the prior mean and the measured value given in Eq. 

(9). This posterior mean can be characterized by the ratio of standard deviations and expressed 

as a parameter β. 

 β 2 = σ2 / σ02   (9) 



Suppose repeatedly measurements give the measurement acceptance ρ and denote X = 

σ0−2 / (σ0−2 + σ−2) = β 2 / (1 + β 2) and Y = µ σ−2 / (σ0−2 + σ−2) = µ / (1 + β 2), posterior estimates 

µ1, µ2, …, µn are given below in Eq. (10). 

µ1 = µ0 X + Y, 

µ2 = µ0 X 2 + XY + Y, 

⋮ 

µn = µ0 X n + Y (X n−1 + X n−2 + … + X + 1) = µ0 X n + Y (1 − X n) / (1 − X)  (10) 

It is noted for Eq. (10) µn  µ when n  ∞. Taking n is a finite number of the repeated 

observations such that the N–th estimate shows no significant difference from measured 

acceptance, i.e. |µn − µ| ≤ ε, and β 2 can be determined by Eq. (11)–(13), 

 µ0 X n + Y (1 − X n) / (1 − X) = µ + ε   (11) 
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 β 2 = cr
1/N / (1 − cr

1/N); cr = ε (µ0 − µ)−1   (13) 

  

The constant cr is the ratio of acceptable error to the difference between the prior 

acceptance µ0 and the measured acceptance µ, while N is the target number of estimate which 

is large enough for superseding the prior belief. 

In order to present this Bayesian approach for IEQ model updating, target sample sizes 

N of 5 (choice A) and 10 (choice B), and an acceptable error ε of 0.01 are chosen as example 



managerial decisions. The flow of Bayesian approach is presented in Figure 1 for easy 

understanding. 

 

4. Results and Discussions 

4.1 IEQ data from very small flat units 

Table 1 exhibits the measurement results of selected IEQ parameters in very small flat 

units (Tsang et al. 2019; Mui et al. 2018) with comparison to another IEQ study conducted in 

average residential buildings (Lai et al. 2009). For thermal environment, as though no 

significant differences were recorded between all temperatures in average residential buildings 

and very small flat units, the overall predicted mean vote (PMV) in very small flat units was 

significantly higher due to higher metabolic rate. This may indicate that small unit occupants 

have adapted to a warmer environment as a “factual reality”. No significant differences were 

found between satisfied (and unsatisfied) groups in the two studies, suggesting that human 

thermal sensation on thermal satisfaction (and dissatisfaction) are somewhat compatible. It is 

noteworthy that air velocity (Va) (overall and both satisfied and unsatisfied group) in small 

units was much lower than that in average residential buildings, however its contribution to 

thermal comfort determined by the operative temperature (To) is not significant. Overall 

speaking, the thermal environments between average residential buildings and very small units 

were objectively the same.  

Subjective thermal sensation vote (TSV) revealed a narrower thermal acceptability 

range of occupants from small units than PMV model, given by a slope of 2.79 shown in Eq. 

(14). They also preferred a slightly cool environment than thermal neutral with a PMV = –0.12 

at TSV = 0. Occupants from average residential buildings also gave similar responses with a 

slope of 2.2 and a PMV=–0.15 at TSV = 0. The results suggested that occupants of very small 



units were more sensitive and more easily dissatisfied with hot environment than residents in 

average residential buildings, although the thermal conditions were found to be comparable. 

 TSV = 2.79PMV + 0.12; 0 ≤ TSV ≤ 3   (14) 

Investigation of thermal acceptance showed that as though small unit residents were 

more sensitive to warmth with a preference to slightly cool environment, some of them still 

accepted a thermal environment with PMV ≥ 2, compare to a zero acceptance at PMV = 1.5 

for occupants from average residential buildings. It suggested that small unit residents might 

have developed some degree of tolerance or psychological resistance to heat with a wider range 

of acceptable thermal condition. A greater sensitivity to operative temperature was also 

discovered for small unit residents with as low as 9% acceptance at 32°C, while 74% of 

occupants from average residential buildings accepted the thermal environment at that 

temperature.  

For IAQ, visual and aural aspect, small unit occupants in general preferred low CO2 

level, high horizontal illuminance level and low equivalent noise level. However, variabilities 

of acceptance against these parameters were very small within the measurable range, meaning 

that the acceptance towards these aspects were not depending much on the changing 

environmental conditions, but rather influenced mainly by their own perceptions to the 

environment. On the other hand, occupants from average residential buildings were sensitive 

to changing CO2 level, horizontal illuminance level and equivalent noise level. Zero acceptance 

can be observed within the measurable boundary for these three aspects. It suggested that unlike 

the occupants from average residential buildings who considered thermal and aural 

environments as more important contributors to IEQ, small unit residents were more concerned 

about the thermal environment, while the remaining aspects were less important to them.      



In summary, basic IEQ parameters in very small flat units were found compatible to 

the residential buildings, but occupant’s subjective responses to the environmental conditions 

were different. Bayesian approach is therefore appropriate to be adopted for IEQ model 

updating. 

 

4.2 Bayesian updating procedure 

To demonstrate the Bayesian updating procedure for IEQ model, two prior beliefs are 

adopted. First, a uniform prior ρj,0 which environment contributors weigh equally in the overall 

IEQ acceptance (i.e. thermal comfort, IAQ, visual and aural condition affect occupant’s IEQ 

acceptance in equal manner) is assumed to represent a situation when we do not have any 

previous IEQ understandings of a new environment. The predicted probability of acceptance 

of 16 environmental cases generated by logistic regression model for average residential 

buildings by Lai et al. (2009) are also adopted. This prior belief represents an example where 

some degree of understandings of a certain environment are known, and newly acquired 

information are available to improve the accuracy of existing model. 

Table 2 shows the prior IEQ acceptance under different cases of environmental 

conditions (total number of cases j = 24 = 16 cases). IEQ contributors with binary notation 0 = 

unsatisfied and 1 = satisfied for thermal comfort, IAQ, visual and aural acceptance are 

presented. In average residential buildings, most of the occupants voted for case j = 16, which 

indicated that they were mostly satisfied with the environment conditions. It is assumed that 

people have more control over the living environments and therefore they adjusted to those that 

fit them. It is also noteworthy that only 11 out of 16 cases were recorded with vote, and only 4 

cases with n ≥ 5. In regression analysis, survey data with small sample size are not included, 

making the model less sensitive to poor conditions. On the other hand, for residents of very 

small flat units, substantial of them voted for case j = 1 to 4, indicating that the majority of 



them were not satisfied with the environmental conditions. Only 2 out of 16 cases did not record 

any vote, showing that the occupant’s opinions towards the environmental conditions were 

more diverse.  

Bayesian approach has the power to evaluate the statistical significance of field 

measurement data based on its sample size and relate it to existing model with a choice of target 

sample size N and acceptable error ε (Wong et al. 2014). Different target sample size N would 

result in different posterior probability ρj,1. Calculation steps of two selected cases are 

demonstrated in Appendix 1 for reference. 

Table 3 exhibits the posterior acceptance (ρj,1) with (a) uniform prior and (b) probability 

of acceptance by regression model under managerial decisions choice A (N = 5, ε = 0.01) and 

choice B (N = 10, ε = 0.01). Figure 2 is the graphical presentation of the Bayesian estimation. 

It is noteworthy that in some cases no sample were recorded (i.e. n = 0, annotated with ‘σ’), 

prior acceptance becomes the sole and the best information available for prediction, therefore 

the posterior acceptance is the same as prior acceptance (i.e. ρj,0 = ρj,1).  

When the sample size is small comparing to target sample size, e.g. case j = 5, 7, 8 and 

14 of choice B, by Bayesian approach, survey data has small influence on the prior acceptance, 

resulting a posterior acceptance that is closer to prior than measured acceptance. On the other 

hand, for cases with larger sample sizes, e.g. case j = 15 of choice A and case j = 4 of choice 

B, influence of survey data on prior belief is larger and therefore posterior estimation is closer 

to measured acceptance. For cases which sample size is larger or equal to target sample size 

(annotated with ‘#’), i.e. n ≥ N, e.g. case j = 1, 2, 4 and 16 of choice A and case j = 16 of choice 

B, the posterior estimate is equal to measured acceptance plus acceptable error (i.e. µ1 = µ ± ε, 

where ρj,1~N(µ1,σ12)). From the above, it can be seen that the target sample size significantly 

affects the resulting posterior estimation by Bayesian approach. 



Some cases with measured acceptance equal to the prior belief (annotated with ‘*’), e.g. 

case j = 15 and 16 of uniform prior, case j = 12 and 16 of regression model, posterior acceptance 

is the same as the measured and the prior because the predicted and actual data agree with each 

other (i.e. if ρj,0 = ρj,m, then ρj,0 = ρj,m = ρj,1). When the difference between measured acceptance 

and prior acceptance is equal or smaller than acceptable error (annotated with ‘τ’), i.e. |µn − µ| 

≤ ε but ≠ 0, e.g. case j = 5, 7, 13, and 14 of regression model, no significant difference between 

measured data and prior belief is considered, therefore posterior estimate is equal to prior 

belief. It is also recognizable that the selection of acceptable error greatly influences the 

estimation. For a large error, accuracy of the model is lower because a large difference between 

survey data and prior belief is accepted as measurement error, and therefore failing to update 

the prior with actual occupant’s response. 

4.3 Future work 

Bayesian approach benefits IEQ modeling by allowing easy updating with newly 

acquired data, which handles the limitations of existing IEQ models. In addition, this approach 

is not limit to continuous IEQ parameters, discrete parameters that can be used to anticipate 

IEQ acceptance can also be processed by Bayesian approach if field data is available.  

We agree with Willems et al. (2020) that considering occupant’s perception towards an 

environment as a causal, reducible relationship may be easier for setting up guidelines and 

comfort requirements, but it may not truly reflect the actual experience. It is supported by 

studies that showed people being dissatisfied with an environment that met with comfort 

requirements suggested by the guidelines. The fundamental problem is that the criteria are 

derived from previous subjective–objective studies, and the relationship between subjective 

vote and objective physical measurement may change with different group of occupants. The 

perception toward environmental conditions and the above–mentioned relationship can change 

over time and with lived experience even with the same group of people. As a result, IEQ 



modelling shall be constantly updated with newly available subjective data. This Bayesian IEQ 

acceptance model can therefore be a useful tools for improving the IEQ model accuracy before 

any holistic prediction model that can resolve the epistemic nature of occupant’s perception is 

developed.  

 

5. Conclusion 

Assessing IEQ cannot solely rely on objective tools or subjective survey. An accurate 

subjective–objective IEQ model is therefore crucial for building engineers to predict 

occupant’s satisfaction. Field study in very small flat units revealed that occupant’s IEQ 

response to a similar environment can be different due to their own perception and/ or adaption. 

In view of the fast changing housing situation in Hong Kong, it is essential to update our 

understanding on residential IEQ and to expend the applicability of residential IEQ model. In 

this study, Bayesian IEQ acceptance model is proposed based on an existing open acceptance 

model. Expressions for overall IEQ acceptance given by discrete binary responses of IEQ 

parameters that are ready solved by Bayesian rules are devised analytically. This method 

provides a systematic approach to related additional survey data to current belief. With selected 

target sample size and acceptable error, statistical significances of data are considered and 

incorporated into Bayesian analysis. Bayesian updating of previous residential IEQ model is 

demonstrated by using subjective IEQ responses from very small flat units as inputs. It shows 

that the posterior acceptance is close to prior belief when the sample size is small. With large 

sample size, the posterior is instead close to the measured acceptance. For sample size that 

meets with the target sample number, posterior is equal to measured acceptance plus acceptable 

error. Updating of IEQ prediction model can therefore be achieved even with a small quantity 

of field data from a similar environment. This study presents a significant step forward from a 



numerical solution in limited cases to a general analytical solution for IEQ with the Bayesian 

rules applied. The findings suggest that the Bayesian IEQ acceptance model can be a useful 

tool for indoor environmental design with a selection of target sample size and acceptable error 

based on managerial decision.  
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Nomenclature 
Environmental parameters 
Ta Indoor air temperature 
Tr Radiant temperature 
RH Relative humidity 
Va Air velocity 
Bayesian IEQ acceptance model 
δi Acceptance to environmental parameter 
Φ Overall IEQ acceptance 
xi Level of environmental parameter 
i Number of environmental parameter 
j Environmental conditions correspond to environmental parameter i 
ρj Acceptance to environmental condition j 
ϕj Occurrence of environmental condition j 
Occurrence of environmental conditions 
[a, b] Range of level of environmental parameter 
θsu Environmental acceptance 
θs Acceptance 
θu Unacceptance 
xsu Occupant votes 

sux  Probability density function of normalized occupant votes 
*
sux  Level of environmental parameter when acceptance and unacceptance are 

equal 
ns Acceptance sample size 
nu Unacceptance sample size 

sx~  Collective acceptance occupant responses to the environment 
ux~  Collective unacceptance occupant responses to the environment 

ys Cumulative frequency distributions for the mass density functions of 
parameters sx~  

yu Cumulative frequency distributions for the mass density functions of 
parameters ux~  

µs/ µu  Mean of xs/ xu 
σs/ σu Standard deviation of xs/ xu 
Bayesian acceptance of environmental conditions 
A, B Events 
ρj,0 Prior acceptance 
ρj,m Measured acceptance 
ρj,1 Posterior acceptance  
ε Acceptable error 
j Environmental attributes 
μ Mean of measured acceptance 
σ2

 Variance 
p Probability 
Bayesian updating framework 
β Ratio of standard deviations (σ/σ0) 
N Target sample size 
n Measured sample size 
cr Ratio of ε to difference between prior and measured acceptance 

 



Table 1. Measurement results of IEQ parameters 

Parameter 
Residential 
buildings 

(Lai et al. 2009) 

Very small flat 
units (Tsang et al. 
2019; Mui et al. 

2018) 

p-value, 
t-test 

Per capita area (m2) 13.1  5.7 (3.4) <0.0001 
Predicted mean vote PMV  

Unsatisfied 
 Satisfied 

0.27 (0.88)  
 0.65 (0.95) 
 0.24 (0.86) 

0.56 (0.82)** 
 0.94 (0.43) 
 0.32 (0.92) 

<0.05 
 0.43 
 0.65 

Air temperature Ta (°C) 
Unsatisfied 

Satisfied 

27.3 (2.2)  
 28.1 (2.3) 
 27.3 (2.2) 

27.4 (2.2)** 
 28.3 (1.2) 
 26.9 (2.5) 

0.81 
 0.86 
 0.43 

Radiant temperature Tr (°C) 
Unsatisfied 

Satisfied 

27.5 (2.0)  
 28.1 (2.4) 
 27.4 (1.9) 

27.3 (1.8)** 
 28.2 (1.2) 
 26.8 (2.0) 

0.63 
 0.94 
 0.12 

Air velocity Va (ms-1) 
Unsatisfied 

Satisfied 

0.37 (0.2)  
 0.49 (0.3) 
 0.36 (0.2) 

0.2 (0.19)  
 0.18 (0.2) 

0.21 (0.2) 

<0.05 
 <0.05 
 <0.05 

Operative temperature To (°C) 
Unsatisfied 

Satisfied 

27.4 (2.0)  
 28.1 (2.4) 
 27.3 (2.0) 

27.3 (2.0)** 
 28.2 (1.2) 
 26.9 (2.2) 

0.93 
 0.91 
 0.25 

Relative humidity RH (%)  
 Unsatisfied 

 Satisfied 

83.9 (10.5)  
 84.1 (10.3) 
 83.9 (10.4) 

73.5 (12.3)  
 76.1 (10.3) 

71.8 (13.2) 

<0.05 
   0.09 
 <0.05 

Metabolic rate Me (Met)  
 Unsatisfied 

 Satisfied 

1.06 (0.11)  
 1.11 (0.13) 
 1.05 (0.10) 

1.13 (0.10)  
 1.15 (0.09) 

1.12 (0.10) 

<0.05 
   0.45 
 <0.05 

Clothing value Icl (clo)   
 Unsatisfied 

 Satisfied 

0.48 (0.11)  
 0.48 (0.11) 
 0.48 (0.11) 

0.40 (0.11)  
 0.39 (0.10) 

0.41 (0.12) 

<0.05 
 <0.05 
 <0.05 

Carbon dioxide ζ2 (ppm)  
 Unsatisfied 

 Satisfied 

675 (328)  
 497 (345) 
 689 (327) 

1046 (500)  
 1240 (609) 

925 (369) 

<0.05 
 <0.05 
 <0.05 

Horizontal illuminance level ζ3 (lux) 
 Unsatisfied 

 Satisfied 

187 (273)  
 307 (435) 
 178 (252) 

191 (127)  
 156 (112) 

 213 (131) 

0.88 
 0.36 
 0.29 

Equivalent noise level ζ4 (dBA) 
 Unsatisfied 

 Satisfied 

67.3 (6.2)  
 70.6 (7.9) 
 67.1 (6.0) 

62.6 (4.8)  
 62.4 (5.0) 

62.8 (4.7) 

<0.05 
 <0.05 
 <0.05 

Remarks: Standard deviation in brackets; t-test between satisfied and unsatisfied groups 

for each indoor environmental parameter, where **: p-value ≤ 0.05 

  



Table 2. The prior IEQ acceptance (ρj, 0) in case j = 1, 2, 3, …, 16 in (a): an IEQ model 

with uniform prior acceptance such that each of the four IEQ contributor contributes 

equally to the overall IEQ acceptance; (b): a multivariate logistic regression model for 

IEQ in average residential buildings by Lai et al. (2009); and the measured environmental 

acceptance ρj, m in very small flat units.  

 IEQ Contributor Uniform 
Prior 

Regression 
model 

Very small flat 
units 

j Thermal IAQ Visual Aural ρj,0 n ρj,0 n ρj,m 
1 0 0 0 0 0 1 2×10-15 6 0.167 
2 0 0 0 1 0.25 0 8×10-6 5 0.2 
3 0 0 1 0 0.25 1 3×10-10 3 0.333 
4 0 0 1 1 0.5 2 0.5 8 0.875 
5 0 1 0 0 0.25 0 1×10-14 1 0 
6 0 1 0 1 0.5 1 4×10-5 0 – 
7 0 1 1 0 0.5 2 2×10-9 1 0 
8 0 1 1 1 0.75 6 0.83 1 1 
9 1 0 0 0 0.25 1 9×10-6 0 – 
10 1 0 0 1 0.5 0 0.9999 2 0 
11 1 0 1 0 0.5 0 0.55 2 1 
12 1 0 1 1 0.75 2 1 2 1 
13 1 1 0 0 0.5 0 5×10-5 3 0 
14 1 1 0 1 0.75 7 0.9999 1 1 
15 1 1 1 0 0.75 7 0.86 4 0.75 
16 1 1 1 1 1 95 1 13 1 

Total – 125 – 52 – 

 

  



Table 3. Posterior acceptance with (a) uniform prior and (b) regression model under 

managerial decisions choice A (target sample size N = 5, acceptable error ε = 0.01) and 

choice B (N = 10, ε = 0.01). Column “ρj, 1” shows the posterior acceptance updated by 

Bayesian approach based on prior estimate (ρj, 0) and measured acceptance (ρj, m) 

collected. 

Case 
Very small flat 

units Uniform Prior Regression model 

   Posterior (ρj,1)  Posterior (ρj,1) 

j n Measured 
(ρj,m) 

Prior 
(ρj,0) A B Prior 

(ρj,0) A B 

1 6 0.167 0 0.167# 0.136 2×10-15 0.167# 0.136 
2 5 0.2 0.25 0.2# 0.222 8×10-6 0.2# 0.155 
3 3 0.333 0.25 0.310 0.289 3×10-10 0.292 0.217 
4 8 0.875 0.5 0.875# 0.854 0.5 0.875# 0.854 
5 1 0 0.25 0.132 0.181 1×10-14τ 1×10-14 1×10-14 

6 σ 0 – 0.5 0.5 0.5 4×10-5 4×10-5 4×10-5 
7 1 0 0.5 0.229 0.339 2×10-9τ 2×10-9 2×10-9 
8 1 1 0.75 0.869 0.819 0.83 0.904 0.872 

9 σ 0 – 0.25 0.25 0.25 9×10-6 9×10-6 9×10-6 
10 2 0 0.5 0.105 0.229 0.9999 0.158 0.398 
11 2 1 0.5 0.895 0.771 0.55 0.902 0.790 
12 2 1 0.75 0.931 0.869 1* 1 1 
13 3 0 0.5 0.048 0.155 5×10-5τ 5×10-5 5×10-5 
14 1 1 0.75 0.869 0.819 0.9999τ 0.9999 0.9999 
15 4 0.75 0.75* 0.75 0.75 0.86 0.766 0.792 
16 13 1 1* 1# 1# 1* 1# 1# 

Measured acceptance of cases with no sample (i.e. n = 0) is marked as “–”. These cases 

are annotated with ‘σ’. ‘τ’ indicates difference between prior acceptance and measured 

acceptance is smaller than the acceptable error; ‘*’ indicates the prior acceptance is the 

same as measured acceptance; ‘#’ indicates that the sample size meets with the target 

sample size and therefore the posterior acceptance is equal to the measured acceptance. 

 



Appendix: Example calculation steps 

Sample 1 – Case 1, with uniform prior 

Given: Target sample size N = 10 

 Acceptable error ε = 0.01  

Sample size n = 6 

Prior acceptance ρ1,0/ μ0 = 0 

 Measured acceptance ρ1,m/ μ = 0.167 

   

By  Eq. (14) 

cr = ε (µ0 − µ)−1 = 0.01 × (0.167 – 0)-1 = 0.060 

β 2 = cr
1/N / (1 − cr

1/N) = 0.05991/10 / (1 – 0.05991/10) = 3.076 

By  X = σ0−
2 / (σ0−

2 + σ−2) = β 2 / (1 + β 2) = 3.076 / (1 + 3.076) = 0.755 

Y = µ σ−2 / (σ0−
2 + σ−2) = µ / (1 + β 2) = 0.167 / (1 + 3.076) = 0.041 

By Eq. (11) 

µ6 = µ0 X n + Y (1 − X n) / (1 − X) = 0 × 0.7556 + 0.041 × (1 – 0.7556) / (1 – 0.755) 

= 0.136 

 

Sample 2 – Case 10, with residential model as prior 

Given: Target sample size N = 5 

 Acceptable error ε = 0.01  

Sample size n = 2 

Prior acceptance ρ1,0/ μ0 = 0.9999 

 Measured acceptance ρ1,m/ μ = 0 

   

By  Eq. (14) 



cr = ε (µ0 − µ)−1 = 0.01 × (0.9999 – 0)-1 = 0.010 

β 2 = cr
1/N / (1 − cr

1/N) = 0.01001/5 / (1 – 0.01001/5) = 0.661 

By  X = σ0−
2 / (σ0−

2 + σ−2) = β 2 / (1 + β 2) = 0.661 / (1 + 0.661) = 0.398 

Y = µ σ−2 / (σ0−
2 + σ−2) = µ / (1 + β 2) = 0 / (1 + 0.661) = 0 

By Eq. (11) 

µ6 = µ0 X n + Y (1 − X n) / (1 − X) = 0.9999 × 0.3982 + 0 × (1 – 0.3982) / (1 – 0.398) 

= 0.158 

 



Figure 1. Schematic diagram of Bayesian approach on IEQ acceptance model. 
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Figure 2. Graphical presentation of the Bayesian estimation. 

(a) IEQ model with uniform prior acceptance 

 
(b) Multivariate logistic regression model for IEQ in average residential buildings by Lai et 

al. (2009) 
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