
1 

 

Theoretical modelling on the deformation behaviour of auxetic tubular 

braid made from modified circular braiding technique 

Ning Jiang, Yu Chen and Hong Hu* 

Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 

People Republic of China  

*The corresponding author: hu.hong@polyu.edu.hk (Hong Hu) 

 

Abstract This paper presents a theoretical analysis of auxetic tubular braid (ATB) formed 

with three types of component yarns having different diameter and modulus. A simple 

theoretical model is developed for predicting the deformation behaviour of this structure 

under uniaxial extension. With its accuracy firstly validated by the experimental data, the 

developed model is further corrected based on the real condition and thus becomes capable to 

characterize the auxetic behaviour of the ATB. During the analysis, it was found that the stiff 

wrap yarn cannot be fully straightened in real condition and its helical angle decreasing rate 

is inconsistent during the stretching. The present work, which provides an effective tool for 

understanding the deformation behaviour, is meaningful for the braid’s improved design and 

applications.  
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c   Poisson’s ratio of core yarn        cD   Diameter of core yarn 
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w   Poisson’s ratio of stiff wrap yarn 1mjB   
Major axis of braiding yarn at position 1 

when stretched  

l   Longitudinal tensile strain of ATB 1mnB   
Minor axis of braiding yarn at position 1 

when stretched 

t   Lateral contractile strain of ATB 2mjB   
Major axis of braiding yarn at position 2 

when stretched  

cri   
Longitudinal tensile strain of ATB at the end of 

first stage 
2mnB   

Minor axis of braiding yarn at position 2 

when stretched 

c   Longitudinal tensile strain of core yarn 
wD   Diameter of stiff wrap yarn 

b   Longitudinal tensile strain of braiding yarn R   Helical radius of core yarn 

w   Longitudinal tensile strain of stiff wrap yarn r   Helical radius of stiff wrap yarn 

p 
Length of braiding yarn between two interlacement 

points 
cL   Actual length of core yarn  

m 

Distance between two interlacement points along 

the longitudinal direction 
bL   Actual length of braiding yarn  

n 
Distance between two interlacement points along 

the lateral direction 
wL   Actual length of stiff wrap yarn  

arcAL   Unit length of Arc A  wS   Helical length of stiff wrap yarn  

arcBL   Unit length of Arc B  w   Cyclic pitch of the stiff wrap yarn  

   Helical angle of core yarn    Cyclic pitch of the ATB structure  

   Helical angle of stiff wrap yarn Subscript 0 Indication of the initial state 

N   The number of braiding yarns of ATB   

 

1. Introduction 

Auxetics refers to the materials and structures that display negative Poisson’s ratio (NPR) 

[1]. Different from the common materials which tend to be thinner when stretched, auxetics 

will expand in the lateral direction upon stretching. This counterintuitive behaviour endows 

auxetics with a series of interesting properties, such as increased shear stiffness [2], enhanced 
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energy absorption [3], improved acoustic behaviour [4] and superior indentation resistance [4, 

5], compared to conventional positive Poisson’s ratio materials. Although the auxetics have 

been admitted to exist more than 100 years, a worldwide upsurge of research on these 

materials/structures only started from 1980s.  Using Monte Carlo method, Wojciechowski 

and the co-author reported the occurrence of NPR in a two-dimensional system of hard cyclic 

hexamers [6, 7].  In 1987, Lakes [8] firstly fabricated a polyurethane foam with an obvious 

Poisson's ratio value, which made people realize that the auxetics could be obtained in a 

manmade way. Since then, tremendous numbers of auxetics have been developed, fabricated 

and synthesised [9-16], including the honeycombs, foams, composites and other special types, 

examples being the double helical yarn [17], folded fabric [18] and wine-rack structure [19].  

In textile area, one of the most successful auxetic structures is the helical auxetic yarn 

(HAY) developed by Hook et al. in 2003 [17]. As shown in Figure 1, a HAY is constructed 

by a straight elastomeric core with a stiffer fibre helically wound around it. Upon tension, the 

stiff fibre which is in a helical form in the initial state would straighten and displace the core 

into a wave form. This shape deformation could then result in an expansion of HAY in the 

lateral direction if the diameter of the stiffer fibre is smaller than that of the elastomeric core 

[20]. According to the previous studies [21-23], the lateral shape deformation of HAY can 

lead to a maximum NPR over -10.0 when certain design configuration is selected. Based on 

theoretical analyses on HAY, four structural and material parameters, including the initial 

wrap angle of the stiff yarn, the Poisson’s ratio of the core yarn and stiff yarn, relative 

modulus and diameter between the core yarn and stiff yarn, are found to have influence on 

auxetic behaviour of HAY. Especially, the initial wrap angle has the most important effect on 

auxetic behaviour of HAY. It is believed that a lower initial wrap angle can lead to a larger 

maximum NPR [20, 21, 24-26]. On the other hand, there may also exist an critical angle for 

obtaining the largest NPR, below or above which the maximum NPR of HAY will be 
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impeded [22]. With respect to the Poisson’s ratio of core and stiff yarns, it is found that the 

auxetic effect of HAY is increased with the decrease in their Poisson’s ratio [24]. This is 

mainly because the decrease in Poisson’s ratio of component yarns can reduce the decrease in 

diameter of the component yarns when stretched, thus magnifying the lateral expansion effect 

(auxetic effect) of HAY. Meanwhile, an increase of the core/wrap diameter ratio can also 

enhance auxetic behaviour of HAY [22]. However, an elevated difference in component 

moduli would cause the wrap fibre embedding itself into the core fibre and thus reducing the 

auxetic effect of the whole HAY structure [23]. Therefore, careful determination of an 

optimum core/wrap moduli ratio where the ratio is high enough to yield an auxetic effect and 

low enough to prevent the core-indentation effect is critical in the real production of HAY. 

Although the HAY can achieve high auxetic behaviour, it is also found that it has its 

own structural limitations. One of them is the slippage of the stiff yarn on the surface of the 

core yarn under repeated extension [20]. As the uniform wrapping of stiff yarn is the main 

driving force leading to the auxetic behaviour, this slippage effect could impair the 

performance of HAY when used in practical applications [27, 28]. In order to overcome this 

shortcoming, a new type of auxetic yarn called auxetic tubular braid (ATB) was recently 

proposed by the authors [29]. In the newly proposed structure, a third component yarn 

namely braiding yarn is added. The incorporation of the braiding yarn forms a braided sheath 

between the stiff wrap yarn and the elastic core yarn so that stiff wrap yarn can be fixed 

without using glue. Since this fixation occurs at evenly distributed points in each repeating 

turn, the stiff yarn can be wrapped onto the core uniformly in the new structure design. Up to 

the present, auxetic behavior of the ATB has been experimentally studied [29] but no 

theoretical analysis has been conducted on ATB yet, making its deformation mechanism 

unclear. As a new braiding layer is added into the ATB, the geometrical models previously 

developed for the HAY [25, 26] are no longer suitable for calculating the Poisson’s ratio of 
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the ATB even though both two structures have a similar deformation behaviour under tension. 

In this regard, a theoretical analysis focused on deformation mechanism of ATB is conducted 

and presented in this paper in order to better understand this new structure. The new model is 

developed based on a geometrical analysis of the ATB structure and experimental work so 

that its Poisson’s ratio under uniaxial extension condition can be predicted. 

 

Figure 1. HAY structure at zero strain [17]. 

 

2. Geometry and deformation 

Figure 2a shows one complete cycle of the ATB structure. It can be seen that the stiff 

yarn in ATB structure is helically wrapped onto the core yarn and fixed by other numerous 

braiding yarns. Compare to the perfect helical shape of stiff wrap yarn in HAY structure, the 

shape of the stiff wrap yarn in ATB structure at zero strain is irregular because of the 

interlacement effect at fixing points. As a result, different deformation mechanism is 

presented in ATB structure compared to HAY under tension. In this study, we divide the 

overall shape deformation of the ATB structure into two stages (Figure 2b) and describe them 

as follows. 
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  (a)  (b) 

Figure 2. ATB structure: (a) geometry at zero strain and (b) the shape deformation under tension. 

2.1 First stage 

The first stage starts from the initial state and ends when the stiff wrap yarn becomes 

straight along the longitudinal axis of ATB structure. In this stage, the stiff wrap yarn 

changes from an irregular shape to a helical shape and finally become a straight line with the 

increase of tensile strain. During the same time, the shape of the base braid formed by the 

core yarn and braiding yarns changes from a straight line to a helical shape. This helical 

shape deformation of the base braid would result in an expansion of the whole structure in 

lateral direction as the braid has a larger diameter than the stiff yarn. Regarding the Poisson’s 

ratio value of ATB structure, it is positive firstly due to the cross-sectional contraction of 

three component yarns and then decrease to a negative value because of the helical shape 

deformation of the base braid. 

 

2.2 Second stage 

The second stage starts from the end of the first stage and finishes when the stiff wrap 

yarn breaks. In this stage, the stiff wrap yarn has become straight along the longitudinal axis 

of ATB structure and thus its helical radius is equal to zero. Further stretching would cause 

the stiff wrap yarn to have length elongation along the longitudinal axis of ATB structure. 

Meanwhile, the base braid is still in a helical shape but its helical radius starts to decrease 

with the increase of tensile strain because the stiff wrap yarn cannot displace the base braid 

laterally heretofore. Regarding the Poisson’s ratio of ATB structure, its negative value starts 

to decrease because there is no further lateral expansion of the whole structure and yet the 

cross section of component yarns continually decreases with the increase of the tensile strain. 
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2.3. Basic assumptions 

To facilitate the theoretical analysis on the structure deformation in above two stages, 

the following assumptions are made first. All symbols used during the analysis can be found 

in Nomenclature for easy check and reference. 

(1) The Poisson’s ratio of all component yarns is constant during the whole tensile 

process.  

(2) The cross-section shape of stiff wrap yarn and core yarn is circular in the initial state 

and keeps circular when stretched. This is because the stiff wrap yarn is difficult to be 

compressed under low loading while the core yarn receives an even pressure from the 

braiding yarns that circularly covers it.  

(3) The cross-section shape of braiding yarns is circular in the initial state but becomes 

ellipse when stretched. This is because the braiding yarns are easy to be compressed under 

low loading. Based on the experimental results, we assume the cross-section of the braiding 

yarns which are placed under the stiff wrap yarn is an ellipse with a fixed minor axis/major 

axis ratio of 0.81, while the cross-section of the braiding yarns which are placed under other 

braiding yarns are ellipses with a fixed minor axis/major axis ratio of 0.95 during the whole 

stretching process. The minor axis/major axis ratios of the two ellipses are assumed to have 

fixed values in order to simplify the analysis. 

(4) The fixing points of the stiff wrap yarn have fixed positions relative to the whole 

structure due to the large mutual constraint at fixing points. At the same time, it is assumed 

that all three component yarns are contacted closely to each other from the initial state to the 

failure of the stiff wrap yarn.  

(5) The deformation process of ATB can be divided into two stages as mentioned above. 

In the first stage, the length and the cross-section area of the stiff wrap yarn are assumed to be 

constant because the stiff wrap yarn are difficult to be extended under a low loading 
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condition and increased tensile strain will only reduce its helix radius. However, in the 

second stage, the cross-section area and length of the stiff wrap yarn are no longer constant 

because its higher tensile strain. 

(6) It is assumed that the straightening rate of the stiff wrap yarn is constant in the first 

stage because the whole analysis conducted here is based on a constant-rate extension 

condition. 

 

3. Analytical modelling 

3.1. Initial state 

Figure 3a and 3b respectively schematically shows the geometry of the ATB structure 

and its cross section in the initial state. As the major reason for the lateral expansion of the 

ATB structure is the helical shape change during the stretching, we would like to start the 

analysis from the helical radius of the core yarn and the helical radius of stiff wrap yarn. The 

helical radius of the braiding yarns is not analysed here because the braiding yarns can be 

regarded as part of the core yarn, i.e., they share a same helical radius.  

Let us start with the initial helical radius of core yarn, 0R . As shown in Figure 3a, the 

core yarn is a straight line in the initial state and its longitudinal axis is coincident with the 

longitudinal axis of the ATB structure. Therefore, we have 0R  in Eq. (1), 

 0 0R  . (1) 

Regarding the initial helical radius of stiff yarn, 0r , it can be given by Eq. (2) based on the 

Figure 3b and the assumption that all three component yarns have a circular shape in the 

initial state. 

 0 0 0
0

2

2

c b wD D D
r

 
  . (2) 
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With the above two helical radii, the effective diameter of ATB in the initial state, i.e., 0H , 

can be obtained as: 

 0 0 0 0

0

0 0 0 0 0

2 ,        ( > ),                      
= 

2 4 ,      ( < ).               

w w b

c b w b

r D D D
H

R D D D D




 
  (3) 

 

(a)      (b) 

Figure 3. ATB structure in the initial state: (a) one complete geometry cycle and (b) cross section. 

 

Eq. (3) indicates that 0H  needs to be determined differently according to the different 

diameter ratio between the stiff yarn and braiding yarns. When 0 0> w bD D , 0H   is obtained 

from interlacing points between the stiff wrap yarn and the braiding yarn, i.e., Position 1 in 

Figure 3a; when 0 0< w bD D , 0H  is obtained from the interlacing points between two braiding 

yarns, i.e., Position 2 in Figure 3a; when 0 0= w bD D , 0H obtained from those two positions are 

same. 

Apart from the above, there is another critical parameter existing in the initial state and 

it is the initial actual length of the stiff wrap yarn, 0wL . As shown in Figure 4, 0wL  is different 

from 0wS  ( 0wS is the perfect helical length of stiff wrap yarn at the initial state) because the 

path of stiff wrap yarn in ATB is not a perfect helix in the initial state. This difference 

between 0wL  and 0wS  could influence the straightening of the stiff wrap yarn and thus have an 
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effect on the deformation behaviour of ATB structure under tension. Therefore, a clear 

clarification and expression for 0wL  and 0wS  are required in our analytical model. 

 

Figure 4. The path of stiff wrap yarn along the ATB surface in the initial state (indicated by the red 

line).  

 

First, we would like to determine the geometry shape of 0wL . As shown in Figure 5a, the 

irregular shape of stiff yarn can be regarded as a curve formed by two types of arcs: Arc A 

and Arc B. As shown in Figure 5b, Arc A is resulted from interlacing the stiff yarn with other 

braiding yarns while Arc B is resulted from wrapping the stiff yarn helically onto the ATB 

structure. 

 

(a)     (b) 

Figure 5. Two types of arcs which form irregular path of the stiff wrap yarn in the initial state: (a) see 

from front-view and (b) see from side-view. 
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Since there exist certain geometry relationships in these two types of arcs, the length of 

stiff wrap yarn can be calculated. As shown in Figure 6a. Arc A is similar to the shape of 

warp yarns formed in a woven fabric and thus its unit length, arcAL , can be determined by 

using Peirce’s approximate formula for woven threads as: 

 
2 2 2

0 0

0

64 9

32

b
arcA

r N D
L

N r






  . (4) 

Meanwhile, Arc B can be regarded as a part of circle of which the radius is 0r , as shown in 

Figure 6b. Therefore, its unit length, arcBL , can be solved and
 
is given by Eq. (5): 

 02
=arcB

r
L

N


. (5) 

 

 (a)          (b) 

Figure 6. The geometry relationships existed in (a) Arc A and (b) Arc B.  

 

Since the unit length of the two arcs corresponds to dimension that is perpendicular to 

the longitudinal axis of ATB, 0wL  is equal to the sum of arcAL and arcBL divided by 0sin . In 

case of our ATB structure where an interlacement between the stiff wrap yarn and other 

braiding yarns occurs at every 90°, there are 8 arcAL  and  8 arcBN L in one complete ATB 

geometry cycle. Therefore: 
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  2 2 2

0 0
w0

0 0 0

8 8 8 9

sin 4 sin

arcA arcB b
L N L r ND

L
r



  

  
   . (6) 

Now in order to determine the parameter, 0wS , we use the triangular relation existing in the 

helical length of the stiff wrap yarn and its helical radius. Based on the relationship shown in 

Figure 7a, 0wS  and together the cyclic pitch of the stiff wrap yarn, 0w , is given by Eq. (7) and 

Eq. (8), respectively: 

 
0

0

0

2

sin
w

r
S




  , (7) 

and 

 
0

0

0

2

tan
w

r



 . (8) 

 

Figure 7. The triangular relationship between the helical length and helical radius of the stiff wrap 

yarn (a) the initial state; (b) the first stage (Section 3.2).  

3.2. The first stage 

Figure 8 shows the geometry of the ATB structure in the first stage. In this stage, the 

helical radii of stiff wrap yarn and core yarn, r  and R , are changing according to the tensile 

strain l . Let us determine r  firstly. 
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Figure 8. Geometry of the ATB structure in the first stage.  

Similar to the initial state, there exists a triangular relation between the helical length 

wS   and the helical radius of the stiff wrap yarn r  (Figure 7b). Based on that relationship, 

we have: 

 

2 2

2

w wS
r






 .  (9) 

Eq. (10) indicates wS  and w needs to be known in order to calculate r . Thus, we 

calculate wS  firstly. As it can be seen from Figure 9, wS  is not equal to wL  until the stiff 

yarn becomes straight along the longitudinal axis of the ATB structure, i.e., the end of the 

first stage. Based on that, we have wS  given in Eq. (10) with the assumption that the 

straightening rate of stiff wrap yarn is constant in the first stage: 

 
 

0
0

0 0

w
w l w

w w

L S
S S

L


 


  


. (10) 

 

 

Figure 9. The relationship between 𝑆𝑤 and 𝐿𝑤 in the first stage (𝜀𝑐𝑟𝑖  is the longitudinal tensile strain 

of ATB at the end of the first stage). 
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Meanwhile, w  can be easily obtained by Eq. (11): 

  0 1w w l    .  (11) 

As it is assumed that stiff wrap yarn has no longitudinal elongation in the first stage, wL  is 

equal to 0wL . Thus, we finally have r  by substituting Eqs. (7), (8), (10) and (11) into Eq. (9): 

 
 

2 22

0
0 2 2

0 0 0 0 0 0

118 1

tan 18 tan sin sin tan

lb
l

b

ND
r

ND
r




    

 
  

  
 . (12) 

Regarding R , it is calculated based on the geometry relations in Figure 8 by Eq. (13): 

 
 12

2

c mn wD B D
R r

 
  ,  (13) 

where 1mnB  (the minor axis of braiding yarn at Position 1) is used because the cross section 

of braiding yarn under the stiff yarn is in an ellipse shape under tension. From Eq. (13), it can 

be seen that cD , 1mnB  and wD  are three key parameters to determine R  and will be 

calculated in the following, respectively.  

 (i)  Determination of cD  

Since the ATB structure and the core yarn are in a straight form in the initial state, it can 

be known that the initial actual length of the core yarn cL  in a repeating cycle is equal to the 

initial cyclic pitch of the ATB structure 0 . Based on that and the triangle relationship 

presented in Figure 10, the longitudinal tensile strain of the core yarn   c  at strain of the ABC 

l is derived as: 

 
 

2 2

0

0

2
c

R  




 
 . (14) 
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Figure 10. The triangle relationship exists in the path of core yarn.  

 

Meanwhile, based on the assumption (4), it can be known that  0 0w   and further w  . 

Therefore, with Eqs. (11) and (14), we have,  

 
   

2 22

0

0

2 1
1

w l

c

w

R  




 
  . (15) 

Based on the Poisson’s law, cD  can be described by 

  0 1 cc c cD D   . (16) 

(ii)  Determination of 1mnB  

In order to calculate 1mnB , it is necessary to know the longitudinal tensile strain of 

braiding yarns, b . Under that circumstance, one interlacement unit between two braiding 

yarns is illustrated and presented in Figure 11. Using Peirce’s approximate formula for 

woven threads, the actual length of the braiding yarn bL  is: 

    
 

 

2

2

2 2 2 2 2

3
8 1

4

mn

b mj mn mj mn

B
L B B p B B

p

   
         

    

. (17) 
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Figure 11. The interlacement unit between two braiding yarns in ATB structure. 

Noted here 
2mjB  and 2mnB  are used instead of  

1mjB  and 1mnB  because braiding yarns 

have a same longitudinal tensile strain at both Position 1 and Position 2 and it is easy to 

calculate from Position 2. As  2 2mj mnB B  and  
2

2mnB  are much smaller than p , b  is 

given below: 

 
0 0

1 1b
b

b

L p

L p
     , (18) 

where p  and 0p is given as: 

 

2 2

2 2

0 0 0

p m n

p m n

  


 

,  (19) 

with  

 

 

0
0

01 c

m
N

m m









  

, (20) 

and  

 

0
0

2

2

c

c

D
n

N

D
n

N









 


. (21) 
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As 0 0w   , we have b  in Eq. (22) by substituting Eqs. (8), (14), (16) and (19) into Eq. (18): 

 
   

2 22 2 2 2 2

0 0 0 0

2 2 2

0 0 0

4 tan 4 1 4 1 tan
1

4 4 tan

l c c c

b

c

R r D

r D

    




   
 


,  (22) 

According to the assumption (3) and Eq. (22), 1mnB  is given in Eq. (23) by Poisson’s law: 

  1 00.81 1n b bm bB D    .  (23) 

(iii)  Determination of wD  

As it is assumed that the cross-section of stiff wrap yarn is constant in the first stage. We 

have,  

 0w wD D .  (24) 

At this point, the relation between the helical radius of core yarn, R , and longitudinal 

strain, l  , is built by substituting Eqs. (12), (16), (23) and (24) into Eq. (13). As the diameter 

of all component yarns and helical radius of stiff wrap yarn and core yarn are not constant in 

the first stage, the effective diameter of ATB structure, H , has also changed. Based on the 

similar relationship in Eq. (3), H  is described by Eq. (25): 

 
2

2 ,
= ax

2 4 .

w

c mn

r D
H M

R D B




 
  (25) 

with 

  2 00.95 1mn b b bB D    .  (26) 

Apparently, the effective diameter of ATB structure, H, can be expressed as a 

monodromic function of longitudinal strain, l , according to above derivations.  

 

3.3. The second stage 
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Figure 12. Geometry of the ATB structure in the second stage. 

 

Figure 12 shows one complete geometry cycle of the ATB structure in the second stage. 

In the second stage, the value of r  becomes zero because the stiff wrap yarn gets straight 

along the longitudinal axis of the ATB structure. Therefore, only R  is needed to be 

determined in this stage. Based on the geometry relationship in Figure 12, R  is given as: 

 
 12

2

c mn wD B D
R

 
 .  (27) 

As the changes in cD , 1mnB are continuous from the beginning of the first stage to the 

end of the second stage, the mathematical expressions for cD and 1mnB  presented in Eqs. (16) 

and (23) are still valid in the second stage. Meanwhile, wD  needs to be determined 

independently because the cross section of stiff wrap yarn is no longer constant in the second 

stage. 

Based on the assumptions that the stiff wrap yarn has no elongation in the first stage and 

becomes straight along the longitudinal axis of the structure at the end of first stage, it can be 

found that the actual length of stiff wrap yarn wL  has the following relationship with l   in 

the second stage: 

  0 1w lL    .  (28) 
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As  0 1w w wL L    and 0 0w  , we have the longitudinal tensile strain of the stiff wrap 

yarn, w , based on the Eqs. (6), (8) and (28): 

 
  2

0 0

2 2

0 0

8 1 cos
1

8 9

l

w

b

r

r ND

  





 


.  (29) 

Therefore, wD  is calculated based on the Poisson’s law: 

  0 1w w w wD D    .  (30) 

As the value of H measured from Position 2 is always larger than that measured from the 

Position 1 in this stage, the effective diameter of ATB structure in the second stage can be 

given as: 

 22 4c mnH R D B   .  (31) 

 

3.4. Critical strain, cri  , between the two stages.  

It is important to know the critical strain which separates the first stage and second stage,

cri . This can be determined by the fact that the stiff yarn has no elongation in the first stage 

and it becomes straight along the center line of the structure at the end of first stage as: 

 
0

0

1w
cri

w

L



  .  (32) 

By substituting Eqs. (6) and (8) into Eq. (32), the critical strain can be further calculated as: 

 
2 2 2

0 0

2 2

0 0

8 9
1

8 cos

b
cri

r ND

r




 


  .  (33) 

 

3.5. Determination of Poisson’s ratio 

Based on the above, the Poisson’s ratio of the ATB structure,  , as a function of the 

tensile strain, l , can be finally obtained: 
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0

0

1 1
 t

l l

H H

H
 

 


      . (34) 

Eq. (34) indicates that the relationship between   and l  can be obtained once the effective 

diameter in the initial state 0H  and the effective diameter in the stretched state H  are known. 

With that in mind, Figure 13 shows the calculation process of  in detail.  

 

Figure 13. The calculation procedure for the Poisson’s ratio of the ATB. 

 

4. Experiment verification and model correction 

The parameters measured on ATB samples and component yarns prior to testing are 

shown in Table 1. These initial parameters were used for the theoretical calculation of the 

Poisson’s ratio of ATB structure under tension.  

 

Table 1. The geometrical parameters in the initial state used for calculation. 

0 ( )    N 0cD  (mm) 0bD (mm) 0wD (mm) c   b   w   

32 1   16 2.5 0.32 0.19 0.47 0.47 0.33 

 

Tensile testing was performed on Instron 5944 tensile tester according to the ASTM 

D2653. The Poisson’s ratio of samples was measured by counting the pixel between sample 
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boundaries. The experimental Poisson’s ratio-strain curve used for the comparison (see 

Figure 14) is the average value of three sample results. 

Figure 14 shows, respectively, the Poisson’s ratio-strain curves that are calculated from 

theory and obtained from experiments. It can be seen that the trend of calculated curve is very 

close to the experimental one, especially when the tensile strain is smaller than 17%. This 

indicates the good agreement between the developed analytic model and real ATB structure 

deformation under tension. However, it can also be seen that there exists an evident 

difference between calculated curve and experimental one after the tensile strain exceeds 

17%. We believe this difference is mainly resulted from the existence of diameter and 

modulus of core yarn and braiding yarn, which could resist the straightening of stiff wrap 

yarn. Because of that resistance effect, the helical wrap angle of stiff wrap yarn,  , cannot 

reach the zero value in real practice. As it is assumed that stiff wrap yarn can be fully 

straightened to a zero degree in our analytical model, the calculated maximum NPR value is 

significantly higher than experimental one. 
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Figure 14. Comparison between Poisson’s ratio of ATB structure calculated from theory and obtained 

from the experiment.  

 

In order to confirm our hypothesis on the cause of difference between calculated results 

and experiment, the change of  during tensile testing is analysed. As shown in Figure 15, it 

can be found that the value of   is around 5.1  when the stiff wrap yarn eventually fails at a 

35% strain during the tensile testing. This angle can be considered as critical angle. It 

indicates that the stiff wrap yarn in ATB structure cannot be fully straightened (at least under 

the condition of our used three component yarn). Based on that, the assumption in analytical 

model that stiff wrap yarn can be fully straightened to a zero degree is not very realistic and 

thus can result in the difference between calculated results and experiment at higher tensile 

strain. On the other hand, it can also be seen that the decrease rate of  is not constant during 

the stretching. Before 17% tensile strain,   is almost linearly decreasing with the increase of 



23 

 

the tensile strain. After 17% tensile strain, the decrease rate of   is significantly reduced and 

there presents a second-degree polynomial relationship between   and l  after 17% tensile 

strain, as presented below： 

 2191.31 132.69 27.99l l     .  (35) 

This inconstant decrease rate of   in real practice is also responsible for the huge 

difference between calculated results and experiment because   in analytical model is 

sharply decreased to 0  after 17% tensile strain (Figure 15). 

 

Figure 15. The relationship between 𝑟 and l  calculated from theory and obtained from the 

experiment.  

 

Under this circumstance, we believe it is necessary to adjust the analytical model with 

reference to the real condition. Therefore, we recall the stiff yarn can be fully straightened 
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and assume that θ in analytical model also has a second-degree polynomial relationship with

l as presented below： 

  2191.3 132.69 27.99 17.1 10.4l l      .  (36) 

Noted here (17.1-10.4) is the value difference between calculated θ and experimental θ at the 

18% tensile strain (see Figure 15). With Eq. (36) and Figure 9, the calculation of r after 17% 

tensile strain now is given by Eq. (37) instead of Eq. (12). 

  0 1 tanw lr     .  (37) 

Figure 16 then presents the results from experiment, analytical model with and 

without modification. It can be seen that the difference between the calculated results and 

experiment is significantly reduced after modification. The relationship between θ and l  

which calculated from the modified theory is compared to that obtained from experiment, as 

shown in Figure 17, and a general good agreement is observed. Given above, the modified 

theoretical model can successfully characterize the deformation behavior of the new ATB 

structure.  
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Figure 16. Comparison of Poisson’s ratio of ATB structure obtained from the experiment and 

calculated from analytical model with and without modification. 

 

Figure 17. The relationship between θ and l  calculated from modified analytical 

model and obtained from experiment. 

As mentioned above, the analytical model is quite close to the experiment (Figure 16) 

before the critical strain point ( =17%l ) but dramatically deviates from the experiment after 

=17%l . The reason for the difference in the interval of 17%l 
 
lies in the assumption 

adopted during the analytical analysis (the stiff yarn is fully straightened) does not match 

with reality.  Obviously, the analytical model is of acceptable accuracy for any structure with 

given material and geometric parameters before the critical strain point. While for the case of 

17%l  , we presented an adjustment on the analytical model to make it more 

comprehensive. This adjustment is conducted based on the fitting of experimental data (see 

Eq.(36)). As a result, the adjustment is related to the choice of ATB materials and geometry, 

which means that different ATB materials and geometry will result in different polynomial 

coefficients in Eq.(36). However, the theoretical model does not lose its scientific value and it 
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can still be used as a guideline for structure design and the prediction of the deformation 

behaviour of ATB made with the same materials.  As shown in Fig.18, effect of the initial 

wrap angle of the stiff yarn on the Poisson’s ratio could be predicted using the developed 

model.  It should be noted that ATB structures with different levels of the initial wrap angle 

are expected to fail at the same critical angle value because the critical angle value is relevant 

to the choice of materials and number of braiding yarns rather than the initial wrap angle. The 

data in Fig.18 were calculated according to the critical angle value of =5.1   instead of 

=0  (i.e. the stiff yarn was fully straightened) based on the experimental results obtained 

before.  It can be found that a lower initial wrap angle gives a higher maximum NPR value 

and causes the ATB to be auxetic at an earlier level of strain. Clearly, the initial wrap angle is 

a quite influential design parameter in altering the auxeticity of the ATB structure. 

 

Fig. 18. Poisson’s ratio vs. initial helical angle of stiff wrap yarn for the ATB structures made 

with the same materials. 

 

5. Conclusions 

A theoretical analysis on the deformation behaviour of the ATB structure was carried 

out in this study. The calculated results from the model developed were compared with the 
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experimental ones in order to valid its accuracy. Using developed model, the deformation 

behaviour and auxetic effect of ATB can be studied. According to the theoretical analysis, the 

following conclusions are drawn. 

(1) The model developed in this study can correctly predict the variation trend of the 

auxetic behavior of the ATB structure, which first increases and then decreases with the 

increase of the axial strain. This prediction provides a better understanding of the 

deformation behavior of the ATB under axial extension. 

(2) In real condition, the stiff yarn cannot be fully straightened before it breaks and its 

helical angle decreasing rate is inconsistent during the stretching. 

 (3) The difference in the Poisson’s ratio values between the experiment and the 

theoretical calculations at large tensile strains mainly comes from the unrealistic assumption 

that the stiff wrap yarn can be fully straightened before it breaks. In order to get a better 

prediction, an adjustment based on the experiment is necessary for the stage of deformation at 

high tensile strains. On the other hand, a finite element analysis on Poisson’s ratio behaviour 

of ATB under tension needs to be conducted in the future study because the mechanical 

reactions between yarn components cannot be taken into consideration in a pure geometry 

analytical analysis. 
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