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Abstract An auxetic braided structure was developed in our previous work for 

overcoming the slippage problem encountered in the double-helix yarn. However, the 

influences of the micro-geometric parameters on the macroscopic behavior, which are 

significant for the structure’s design and application, have not been addressed yet. By 

using a standard tubular braiding technology, several samples of the auxetic braided 

structure were first fabricated in this work and the design concept and manufacture 

process were described in detail. Then, systematic parameters studies were completed 

through experimentally validated finite element models. The study showed that the 

braided structure could achieve a robust auxetic behavior and its Poisson’s ratio and 

stiffness were strongly dependent on their initial micro-geometric parameters, 

especially initial braiding angle and diameter of component yarns. A maximum negative 

Poisson’s ratio of -9.49 could be achieved by lowering the angle value to 15o. Higher 

negative Poisson’s ratio effect could obtained with grosser stiff yarn and finer elastic 

yarns. However, the existence of the elastic wraps would diminish the auxeticity of the 

braided structure, which should be taken into consideration in design and application.  

 

Keywords Negative Poisson’s ratio; Tubular braided structure; Mechanical properties; 

Parameter studies.   

 

1. Introduction  

In general, there are two main approaches for material property enhancement. One 

is changing the chemical compositions, prime example being the composites (e.g. the 

fiber reinforced composites [1] and the bionanocomposites [2, 3]). The other is tailoring 

the material distribution or arrangement. Some specific micro- arrangements in 

materials allow us to achieve unusual and, sometimes, even unprecedented properties, 

such as auxetic (negative Poisson’s ratio, NPR), negative stiffness, negative refraction 

index and negative thermal expansion.  

In contrast to most of conventional materials with positive Poisson’s ratio (PPR), 

auxetic materials display a counterintuitive phenomenon, that is, they laterally expand 
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rather than contract when stretched. Over the past three decades, auxetic materials have 

received considerable attentions owing to the NPR-induced superior mechanical or 

physical performances, such as dome shape on out-of-plane flexure, improved shear 

stiffness, indentation resistance, fracture toughness and energy absorption capability [4]. 

Auxetic materials have been reported early and admitted to exist widely in nature, 

examples being single crystals of arsenic [5] and cadmium [6], α-cristobalite [7], and 

many cubic elemental metals. In addition, auxetic behavior in some biological tissues, 

like cat skin [8], cow teat skin [9] and cancellous bone [10] was also found. However, 

it was until the pioneering work by Lakes [11] that people realized that the auxetic 

materials could be obtained in a man-made way. Since then, a large amount of auxetic 

materials or structures have been developed, synthesized or fabricated from the 

macroscopic to the molecular levels [11-14].  

It is well known that the auxetic effect originates from the micro-topologies and 

the way they deform under loading, which are the foundation that can be utilized to 

classify auxetic materials. Three well established basic structures for auxetics have been 

identified: re-entrant, chiral and rotating rigid structures [15]. The auxetic behavior in 

all of these systems is fully apparent at small deformation while there are some special 

materials or structures which exhibit auxetic behavior over a wide range of applied 

strain but show positive Poisson’s ratio at small strain. The structures which generate 

auxetic effect via elastic instability [16-21] are the pretty typical examples in this 

context. Beyond that, the double-helix yarn (DHY) structure firstly developed by Hook 

[22] shows the same characteristic. As displayed in Fig.1, the DHY is a multifilament 

structure consisting of a relatively thicker and lower stiff core filament and a narrower 

and stiff wrap around it. Both the core and stiff warp are non-auxetic. When the 

structure is subjected to a tensile load, both the stiff and core filaments are elongated, 

and thus the structure will contract laterally in the region of small strain. With the strain 

increasing, the stiff wrap would laterally displace the elastomeric core, causing an 

overall lateral expansion and thus a NPR.  

Work published by previous authors up to now has systematically exploited 

several key parameters which can affect the behavior of the DHY [24-29], such as 
starting wrap angle, diameter ratio of wrap to core, yarns’ inherent Young’s modulus 

and Poisson’s ratio. The DHY was shown to be capable of achieving a very high NPR 

value and it was also be used to produce desirable composites [30-32] which could be 

very promising in sports, medical and defense applications. Yet despite all that, some 

drawbacks when using the DHY exist; one of them is the slippage of the stiff yarn on 

the surface of the core yarn which would impair its performance. In addition, the uneven 

surface of DHY would raise trouble during textile production [33]. For offering a 

solution to these issues, an ingenious design was proposed by Zhang [33] to enclose an 

external sheath onto the DHY. The sheath can help bind the two components together 



3 
 

as well as act as a protective coating, but it would significantly reduce the maximum 

NPR value [33, 34]. Also, using a modified circular braiding technique, an improved 

helical auxetic yarn structure was proposed by the authors [34] via adding an additional 

braided sheath between the stiff yarn and the core in order to better fix the stiff one. 

However, a relatively complex manufacturing process is needed for the improved 

helical auxetic yarn although it can weaken the slippage.  

   Another new type of auxetic braided structure which can be produced by using 

standard circular braiding technique was proposed by the authors [35]. Before, the 

authors had investigated the difference in auxetic behavior between the new braid and 

DHY by experiments. The previous work has demonstrated that the new design is 

possible to achieve NPR effect and the stiff yarn in it is well fixed by the other elastic 

yarns and thus the slippage problem is overcome. However, detailed parameters studies, 

which are really meaningful for its improved design and application, have not been 

involved yet. This paper is a significant addition to our previous work. We described 

the design concept and manufacture process of the braided structure in detail and 

conducted an in-depth investigation, both experimentally and numerically, on it. Next, 

the experimentally validated finite element (FE) models were adopted to explore the 

effects of the inherent modulus and initial micro-geometric parameters on the 

macroscopic mechanical behavior of the braided structure.  

 

Fig. 1. Double-helix yarn (DHY) structure [22, 23]. (Color online only) 

 

2. Structure and methods 

2.1. Geometry of the braided structure 

The braided structure firstly proposed in our previous work [35] consists of one 

core and two sets of helical yarns interlacing in opposite directions, as schematically 

illustrated in Fig.2. The braided structure includes three components: stiff wrap yarn, 

low-stiffness elastic wrap yarns and low-stiffness elastic core. Different from the DHY 

where the stiff yarn is directly wound onto the core, the stiff yarn in this braided 

structure is now interlaced with other elastic wrap yarns and helically covers the core 

together with elastic wrap yarns. The same auxetic behavior as the DHY is expected in 

this braided structure owing to the sharp stiffness gap between the stiff yarn and the 

core yarn. One prominent characteristic in this interlacement layout is that it would 

effectively strengthen the interactive constraints between the stiff yarn and the core yarn 
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so as to overcome the slippage problem in DHY without an additional coated sheath. 

Structurally, the elastic yarns can effectively help to bind the stiff yarn with the core 

yarn, but may also limit the lateral displacement of the core yarn to some extent. In this 

regard, the elastic wrap yarns must not be stiff. Another distinct advantage lies in more 

flexibility in design compared to the DHY. For instance, desirable performances can be 

readily achieved by tailoring four key geometrical parameters: initial braiding angle 

( ), diameter of the stiff yarn ( sD ), diameter of the elastic yarn ( eD ) and diameter of 

the core yarn ( cD  ). Beyond that, the mechanical parameters, namely the inherent 

Young’s modulus and Poisson’s ratio of each component, will also enhance the 

structure designability. What is more, from the point of view of manufacture, with 

respect to the sheath-enclosed helical auxetic yarn [33] and the improved helical auxetic 

yarn [34], the braided structure can be easily produced via a standard tubular braiding 

process, which may be a great help for its improved design and application.  

 

Fig. 2. Geometry of the braided structure firstly proposed in our previous work [35]. (Color online 

only) 

 

2.2. Methods 

2.2.1 Experiment  

The criterion for choosing the yarn components was determined according to the 

design philosophy introduced in section 2.1. The crucial point on the yarns’ selection 

lies in the stiffness rather than the chemical composition. As a result, we used some 

perfectly ordinary, low cost and store-bought yarns in this paper, instead of synthesizing 

or fabricating some special ones. The appearance of each yarn component we used is 

displayed in Fig.3. In the core yarn, a rubber core is covered with a layer of polyester 

while the stiff and elastic yarns are the common dacron and the spandex, respectively. 

Basic details for the three yarn components are listed in Tab.1. The nominal 

(engineering) stress-strain curve for each component, as shown in Fig.4, is the mean 
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value calculated from three specimens under uniaxial tensile test. The Young’s modulus 

for each component was calculated using the initial linear elastic region of the nominal 

stress-strain curve while the Poisson’s ratio is the mean value we measured from the 

uniaxial tensile tests. 

 
Fig.3. Appearances of the yarn components used to produce the braided structure. (Color online 

only) 

 

Tab.1. Details of the component yarns used. 

Component 
Yarn 

constituent 

Diameter 

(mm) 

Poisson’s 

ratio  

Young’s modulus 

(MPa) 

Stiff yarn Polyester s 0.19 0.01D    0.33 2366 

Elastic yarn Polyester & Rubber e 0.32 0.01D    0.47 19.88 

Core yarn Polyester & Rubber c 2.50 0.14D    0.29 10.14 

 

 

Fig.4. Illustration of true and nominal stress-strain curves for each component and the corresponding 

multilinear or bilinear material model for finite element analysis (FEA): (a) stiff yarn; (b) elastic yarn; 

(c) core yarn. (Color online only) 

As it is easier to manufacture in terms of sample scale, three samples (Fig.5(b)) 

with a maintained braiding angle ( =28  ) were fabricated for comparison by using the 

circular braiding machine with 16 yarn carriers (Fig.5(a)). During the preparation 

process, the core was placed in the center hole of the machine as mandrel and then the 

stiff yarn was mounted on one selected carrier while elastic yarns filled up the rest 
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fifteen carries. The carries would be grouped into two equally-sized groups after 

rotating the machine with one group moving in the clockwise direction and the other 

group moving in the counterclockwise direction, thus forming a tubular braided 

structure [35].  

 

Fig.5. (a) Manufacturing process of the braided structure; (b) photographs of the samples 

produced; (c) setup of a braid sample on a testing machine. (Color online only) 

 

As displayed in Fig.5(c), tensile tests were performed by using an Instron 5944 

tester (Instron Worldwide Headquarters, Norwood, Massachusetts, USA) with a 

loading cell of 50 N. The sample gauge length for all samples was set as 150 mm. The 

samples were stretched under a loading speed of 15 -1mm min until a failure occurred. 

While the tensile force ( LF  ) and the longitudinal strain ( L  ) of each sample were 

recorded automatically via the Instron testing system, the transversal deformations were 

captured by using a high-resolution CMOS camera (Canon EOS 800D, Tokyo, Japan). 

A photograph of the tested specimen was taken at every 1% loading strain during tensile 

test. In order to better measure the transverse deformation, the captured photographs 

were further processed by using the software IMAGEJ [32]. 

Fig.6(a) displays the captured photographs of a sample at several selected loading 

strains while the corresponding threshold images obtained from IMAGEJ are 

demonstrated in Fig.6(b). It can be seen that upon stretching, the braid gradually transits 

from a straight state to a curved shape of quasi-periodic distributed peak-trough. The 

maximum effective width of the braid along the transverse direction, H , is the pixel 

value from peak to trough in the threshold images (see Fig.6(b)), and for accuracy, this 

value was determined by averaging three adjacent peak-trough distances located in the 

central position of the braided structure, i.e.,  



7 
 

 

3

i

i 1

1
H H

3 

    (1) 
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where 0H denotes the initial transverse width of the structure. In addition, the tensile 

stress for the braid could be calculated by using the recorded tensile force LF . For the 

simplicity of calculation, the cross sectional area of the braid, A , was estimated as, 
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And then, the tensile stress for all specimens was calculated as, 
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Fig.6. Digital Image Processing for structure images obtained. (Color online only) 

 

2.2.2. Finite element analysis (FEA) 

The true stress and strain for each component, as displayed in Fig.4, were obtained 

by using a simple conversion below. 
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where t   and t   are the true stress and strain, and n   and n   are the nominal 

stress and strain, respectively. The basic materials for the stiff, elastic and core yarns 
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were modeled using the simple multilinear or bilinear model (the multilinear model was 

adopted for the stiff and elastic yarns while the bilinear model for the core yarn) with 

isotropic hardening, thereby neglecting the possible effect of anisotropy, rate 

dependency and kinematic hardening. Young’ modulus, Poisson’s ratio for different 

components were taken from Tab.1. The density for the stiff, elastic and core yarns was 

given as 1.39
-3g cm , 1.10

-3g cm  and 1.10
-3g cm , respectively. 

Braided structures’ computational design in this study was modeled using the 

SOLIDWORKS 3D CAD software. Firstly, the helical paths of the wrap components 

around the core were built using a versatile geometrical model proposed by Tuba 

Alpyildiz [36]. Then, the three-dimensional entity model of the wrap components was 

developed through the “swept” feature in SOLIDWORKS. Once the model was 

generated, it would be finally imported into ANSYS/Workbench for analysis and the 

respective material and its properties would be assigned to each component. It has been 

shown by McAfee and the co-workers [27] that a successful FE results can be obtained 

from two-cycle model of DHY and then two-cycle model of the braided structure was 

thereby chosen in the present work for low computation. 

Considering the large deformation of the braided structure and the relatively 

complex contact among the components, Explicit Dynamics (LS-DYNA Export) 

module in ANSYS/Workbench was adopted for simulation rather than the Static 

Structural module. As we know, the implicit iteration in the classical ANSYS or the 

Static Structural module in Workbench is difficult to guarantee its convergence in the 

nonlinear deformation situations while the explicit integration in Explicit Dynamics can 

easily get good results within a reasonable integral time step. The Explicit Dynamics 

has been proven to be valuable in quasi-static cases [37-40]. However, the problem with 

the way is that low loading velocity would consume huge computation time while error 

may increase with the increase of loading velocity. This is an important issue we must 

seriously consider and the sensitivity of the loading rate will be presented in the 

following.  

 To accurately portray the motion between the wraps and core component, a 

contact type of “Frictional” was set in present FE models. It is well known that the 

friction coefficient is hard to be determined because it relates to many aspects, including 

the surface roughness and the contact force. In general, the friction coefficient of fibers 

ranges from 0.1 to 0.8 and the static friction coefficient, su , is slightly larger than the 

kinetic friction coefficient, ku . We will also present the sensitivity of friction in the 

later section. 

The “sweep” scheme, which is applicable for the body with regular geometric 
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configuration, was carried out to mesh the models (see Fig.7(a)) as all yarn components 

were built with ideal circular section. The meshing size should be adjusted according 

to the component diameter and to make sure that the yarn surface is smooth enough 

after being meshed. To this end, the element sizes of 0.055 mm, 0.085 mm and 0.35 

mm were selected for 0.19 mm thickness stiff yarn, 0.32 mm thickness elastic yarns 

and 2.50 mm thickness core yarn, respectively. The boundary conditions are also shown 

in Fig.7(a). It can be seen that the left surface is fixed in x, y and z directions while the 

right surface is constrained in x, y direction but subjected to a displacement of U

along the z direction. If the node displacements in the x and y directions were not 

constrained at both left and right surfaces, the wraps and core would be separated from 

each other as long as a load is applied. Fig.7(b) displays the deformed braided structure 

in FE simulation and two pairs of y- directional maximum and minimum values in the 

Y-Z plane were observed. The y-directional maximum and minimum values at any 

moment, which could be easily exported by LS-PrePost (an advanced pre and post-

processor that is delivered free with LS-DYNA), were recorded for calculating the 

lateral width of the deformed braided structure and thereby the Poisson’s ratio. We 

could more expediently and accurately capture the y- directional maximum and 

minimum values by selecting the pick-up points from the X-Y plane, as shown in 

Fig.7(b).  

 

Fig.7. (a) Mesh scheme and boundary conditions in two-cycle model of the new braided structure; 

(b) measurement of effective diameter from maximum and minimum lateral nodal displacements 

by using LS-PrePost. (Color online only) 

 

3. Results and discussions 

3.1. Validations of FEA 
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The comparisons of Poisson’s ratio and tensile stress between experimental data 

and FE results with variation values of tensile strain are presented in Fig.8. The initial 

braiding angle, diameters and intrinsic modulus of each component in the FE models 

were consistent with those in experimental samples. Poisson’s ratio and tensile stress 

calculated from four levels of loading velocities were compared.  

 

Fig.8. Comparison between FEA and experiment: (a) Poisson’s ratio versus strain; (b) nominal 

tensile stress versus strain. (Color online only) 

 

The loading rate sensitivity analysis has been summarized by Nasim and Etemadi 

[40] to be one of efficient ways to recognize the quasi-static loading situation and 

confirm the accuracy. Tab.2 illustrates the needed computation time (estimated by LS-

DYNA solver) corresponding to the four levels of loading velocities under the same 

applied displacement ( U ) and mesh sizes. It is found that different loading velocities 

can achieve almost the same Poisson’s ratio-strain curves (Fig.8(a)) while the nominal 

stress-strain curve calculated from the loading velocity of v 1.50m/s   slightly 

deviates from the curves obtained from the other three lower velocities (Fig.8(b)). It is 

demonstrated that the loading velocity is converged down to 1.25m/s  . More 

importantly, the needed computation time under 1.25m/s is about two times less than 

that under 0.5m/s .  

Tab.2. Computation time under different loading velocities. 

Velocity (m/s) 0.5 1.0 1.25 1.50 

Computation Time (hours) 179.97 99.08 78.65 66.45 

 

Considering the strong constraints among the yarns in the braided structure, the 

friction coefficient in the present FE models was set with a static friction coefficient 

( s  ) of 0.8 and a kinetic friction coefficient ( k  ) of 0.75, respectively. Sensitivity 

analysis of the friction is displayed in Fig.9. It can be seen that the Poisson’s ratio and 

tensile stress are nearly independent of non-zero friction coefficients, which is 
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consistent with the result obtained by Zeng et al. [41]. Given the above, the following 

FE analyses are conducted by using the unified setups with v 1.25m/s , =0.8s  and 

=0.75k . 

 

Fig.9. Effect of friction coefficients on: (a) Poisson’s ratio; (b) tensile stress (v 1.25m/ s) . (Color 

online only) 

 

As shown in Fig.8(a), the FE simulations are close to the experiment data and thus 

can give a good approximation of the behavior of the braided structure. Actually, a 

competition exists between the geometrical and material effects of the component yarns 

in the structure upon stretching. At the start, the applied strain causes the core yarn to 

contract and the wrap yarns to tighten themselves around the peripheral of the core and 

hence an obvious decrease in the lateral width of the braided structure. Consequently, a 

sharp increase to a positive peak in the Poisson’s ratio at low strain is observed in the 

braided structure. With the increase of the applied strain, the extruding between the stiff 

yarn and the core yarn becomes more and more remarkable. The core yarn will thereby 

be forced into a helical form, causing an increase in the width of the braid. The material 

effect gradually loses its dominance and the Poisson contraction of the component yarns 

is thereby increasingly offset by the geometrical deformation. As a result, the magnitude 

of the positive Poisson’s ratio starts to decrease after the positive peak, and zero even 

negative value of Poisson’s ratio is finally achieved. The point of zero Poisson’s ratio, 

also called critical auxetic point, is observed at around 0.06 strain in Fig.8(a). After the 

critical point, Poisson’s ratio decreases with the strain to a maximum negative value. 

The mean value of the maximum NPR obtained from experiment is -1.08 while that 

from FEA is -0.74. With further increasing the strain, the Poisson contraction of the 

component yarns and the straightening of the stiff yarn will result in a total width 

shrinking of the braid and thus a reduction in auxeticity can be seen in the FE models 

after the maximum NPR is reached.  
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The tensile stress-strain curves obtained from the experiment and FEA, as 

indicated in Fig.8(b), are highly non-linear. The effective stress was calculated 

according to Eq.(4). We can find that the curve from the experimental data can be 

divided into four regimes: linear elastic, yield, strain hardening and fracture. It should 

be noted that the breaking point in Fig.8(b) refers to the stiff yarn rather than the whole 

braided structure, as fracture firstly occurs in the stiff one. An approximate linear 

relation between the tensile stress and strain is observed within the yield stage. Similar 

approximate linear characteristic can also be found in the curves obtained from FEA. 

The experimental and numerical effective Young’s moduli (mean value), which were 

calculated by using the initial linear elastic region of the nominal stress-strain curves in 

Fig.8(b), is 6.46MPa and 5.16MPa, respectively. A general good agreement observed 

between the experimental and FEA results in Fig.8(b) helps to verify the validity of the 

FE models we adopted. It can also be found that the effective Young’s modulus of the 

braid is close to that of the core yarn. This is because the tensile stress of the braid is 

initially dominated by the core yarn, but as the stiff yarn straightens, its influence on 

the stress of the braid becomes significant. The influence originating from the elastic 

wraps is relatively small as it is pretty softer compared to the stiff yarn.  

The stiff yarn shown in Fig.4 has a greater modulus and ultimate tensile strength 

than the elastic and core yarns while the elastic and core yarns are able to withstand 

longitudinal strain more than three times greater than the stiff yarn before failure. 

Combining different yarns together can take the advantages of each component, thus 

endowing the new products with special functions. For example, breaking point was 

observed in the new braid until =0.335L   while an early failure at =0.191L   is 

found in the stiff yarn (see Fig.8(b) and Fig.4(a)).  

Fig.10 displays the relation of the wrap angle *  of the stiff yarn with the 

longitudinal strain. The wrap angle at =0L  is equal to the initial braiding angle ( ) 

which is 28 . The angle values at different moments were obtained from the captured 

photographs during tests. We measured three positions located in the central portion in 

each sample for accuracy. Average value and error bar of the wrap angle were calculated 

from the three samples. In the case of FEA, LS-PrePost was used for recording the 

transient wrap angle of the stiff yarn. Both the experimental and numerical results show 

that the angle decreases with the increase of the longitudinal strain. We introduced a 

simple multilinear model to characterize the curves in Fig.10. As it can be seen in the 

experimental result, there are two inflection points before breaking. A similar trend is 

observed in the FE result as well. The most notable point is that the decreasing rate in 

both the experiment and FEA is significantly reduced after *   reached the first 

inflection point and then another fall is observed after crossing the second inflection 
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point. This indicates that it is becoming more difficult for the stiff yarn to force the core 

yarn to displace laterally. It would be impossible to fully straighten the stiff yarn as we 

can find the breaking point occurs at * 6.03   rather than * =0  according to the 

experimental result. 

 

Fig.10. Variation of the wrap angle of stiff yarn with longitudinal strain. (Color online only) 

 

3.2. Parameters studies 

Parameters studies can help to seek for the optimal performances of the braided 

structure, which is significant for its practical applications. The experimentally 

validated FE model was used for these studies, to further investigate the influences of 

the yarn component inherent Poisson’ ratio and diameter as well as initial braiding angle 

on the mechanical behavior. Of particular interest to us are the effects from the elastic 

wraps.  

 

3.2.1. Influence of yarn component diameter   

Stiffness ratio of the yarn components, which are closely related with the diameter, 

is one of the key influences on structure performance. The initial braiding angle for all 

FE models in this study was kept at 28  and the inherent mechanical properties for 

each component are taken from Tab.1 and Fig.4. We studied two cases here for 

respectively exploiting the influences from the core/stiff and the core/elastic diameter 

ratios. The first case was conducted by fixing the diameters of the core and elastic yarns 

with values of 2.50mm and 0.32mm, respectively, and then tailoring the diameter of the 

stiff yarn to be 0.19mm, 0.24mm and 0.32mm. Similarly, three diameter levels of 

0.19mm, 0.24mm and 0.32mm were endowed to the elastic wraps in the second case 

while the diameters of the core and stiff yarns were kept as 2.5mm and 0.19mm, 
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respectively.  

 

Fig.11. (a) Influence of the stiff yarn diameter,
sD , on the braid’s Poisson’s ratio and (b) nominal 

stress; (c) influence of the elastic yarn diameter,
eD , on the braid’s Poisson’s ratio and (d) nominal 

stress. (Color online only) 

 

Fig.11 displays the variations of the Poisson’s ratio and the nominal tensile stress 

of the braided structure as a function of strain for different diameters of stiff and elastic 

yarns, respectively. It is demonstrated in Fig.11(a) that a larger stiff yarn diameter gives 

a higher maximum NPR value and causes the braid to be auxetic at an earlier rate of 

strain, as the Poisson’s ratio of the braid with a 0.32mm stiff yarn becomes negative at 

strain of around 0.031 and reaches a maximum negative value of -1.52. The braids with 

0.24mm and 0.19mm stiff yarns, by contrast, become auxetic at strain of around 0.042 

and 0.065 and achieve a maximum NPR value of -1.12 and -0.75, respectively. Fig.11(b) 

exhibits that braids have the nearly similar stress values at low strain, but the difference 

increases with the increase of strain. Apparently, under a large strain, a larger stiff yarn 

diameter causes a higher nominal tensile stress. This phenomenon can be clarified by a 

mechanism which has been stated in section 3.1, that is, the tensile stress is dominated 

by the core at low applied strain and then gradually affected by the stiff yarn with the 

strain increasing. The stiff yarn with larger diameter makes more contributions to the 

braid’s properties, that is, the braid with thicker stiff yarn will also result in an earlier 
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strain hardening besides improving the stress.  

As displayed in Fig.11(c), the zero-crossing of the Poisson’s ratio in the braid with 

0.24mm elastic yarn is observed to happen at around 0.037L 
 
while the braid with 

0.19mm elastic yarn becomes auxetic at around 0.010L  ; and the maximum NPR 

values in two cases are -1.02 and -1.32, respectively. Different from the effect of the 

stiff yarn’s diameter, the elastic wrap yarns will prevent the core from displacing 

laterally and becoming helical, and thus increasing the elastic yarns’ diameter causes a 

later auxeticity and a lower NPR value. Considering an extreme case, the braided 

structure is degenerated to a DHY when the diameter of the elastic yarns becomes zero. 

It should be expected that DHY will be more auxetic than the braided structure with the 

same given stiff and core yarns. Therefore, elastic yarns with large diameter should be 

voided in the new design for superior auxetic behavior. In addition, the nominal tensile 

stress is also reduced with eD  increasing, as illustrated in Fig.11(d). There is no doubt 

that increasing the diameter of the elastic yarns will help to improve their stiffness but 

may not be going to actually benefit the braid’s tensile strength much because of the 

decisive role of the stiff yarn. According to Eq.(3), the effective stress of the braid is 

directly dependent upon the cross-sectional area A and therefor the diameter of the 

elastic yarn. With a little increase in the tensile strength LF  in Eq.(4), increasing the 

cross-sectional area will result in an dramatic decreases in effective stress, L .  

 

3.2.2. Influence of initial braiding angle 

Fig.12 compares the identical models with three different initial braiding angles:

15 , 28  and 40 . All braids were constructed from the same yarn components 

with the inherent mechanical properties and diameters as shown in Tab.1 and Fig.4. It 

can be found from Fig.12(a) to (c) that, the braid with =15   becomes auxetic at 

around =0.0046L  while the critical auxetic point for the braids with =28   and 

=40    is =0.03L  and =0.14L  , respectively. Also, a maximum NPR value of -

9.49 is observed in the 15  braid at =L 0. 012; the maximum NPR values of -1.52 

and -0.43 for 28  and 40  braids are observed at around =0.16L  and =L 0. 38 , 

respectively. This is because the stiff yarn straightens and becomes strained earlier 

with lower initial braiding angle. The extruding between the stiff yarn and core yarn 

will thereby arise at low applied strain, resulting in the activation of auxetic behavior 
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at a lower rate of strain and a higher maximum NPR value.  

 

Fig. 12. Influence of the initial braiding angle, , on: (a)-(c) Poisson’s ratio and (d) nominal stress. 

(Color online only) 

 

For the nominal stress, it can be found from Fig.12(d) that braid with =15   

shows slightly higher nominal stress compared to those with =28  and =40   at 

low applied strain while a dramatic difference is observed as the strain increases. 

Increasing the initial braiding angle is seen to result in a lower nominal stress. The 

reason is that the stiff yarn will not take effect on the braid stress until it becomes 

tightened and the wrap yarn with larger initial braiding angle tightens itself more 

slowly than that with lower angle. It is amazing that high stiffness and high NPR value 

can be achieved simultaneously in the braid which may be impossible in the auxetic 

honeycombs [42]. Clearly, the initial braiding angle is a quite influential design 

parameter in altering the auxeticity and stiffness of the braided structure.   

 

3.2.3. Influence of the inherent Poisson’s ratio  
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Fig.13. (a) Influence of the inherent Poisson’s ratio of elastic yarn,
e , on braid’s Poisson’s ratio 

and (b) nominal stress; (c) influence of the inherent Poisson’s ratio of core yarn,
c , on braid’s 

Poisson’s ratio and (d) nominal stress. (Color online only)  

 

Fig.13 illustrates the influence of the inherent Poisson’s ration of both the elastic 

and core components on the Poisson’s ratio and nominal stress of the braids. All braids 

used in this topic were endowed with a series of consistent parameters: initial braiding 

angle ( 28  ), inherent Poisson’s ratio in stiff component ( 0.33s   ), elastic yarn 

diameter ( 0.32mm ), stiff yarn diameter ( 0.32mm ) and core yarn diameter ( 2.50mm ). 

The results show that increasing e   
of the elastic components, slightly delays the 

critical auxetic point and diminishes the maximum NPR value (Fig.13(a)). This 

phenomenon is due to the fact that larger e  
leads to a greater Poisson contraction, 

making the total lateral width of the braid shrink more greatly. Similar mechanism can 

be used for explaining the deformation behavior depicted in Fig.13(c), that is, earlier 

auxeticity and higher NPR is achieved in the braid with more compressible core. We 

can also find that from Fig.13(b) and (d) that the nominal tensile stress of the braid 

seems to be nearly independent on the Poisson’s ratio of both the core and elastic yarns.  

 

3.3. Potential applications 

file:///C:/Users/Lemon/AppData/Local/youdao/dict/Application/7.5.1.0/resultui/dict/
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Upon stretching, the stiff wrap in the braided structure tends to straighten, thereby 

causing the core to displace laterally in a helical manner (see Fig.14(b)). Such special 

behavior can be adopted to increase the opening of pores in a fabric under tension if 

two adjacent auxetic braided yarns are out of phase arranged [32] (see Fig.14(c)). 

Application examples include the blast-proof curtain and smart bandage. In a blast-

proof curtain, the size of pores can be manipulated to let explosion shock waves pass 

through but preventing the flying debris to penetrate. This can reduce the tension 

applied to the curtain and ensure it doesn’t rip under explosion shock [43]. In a smart 

bandage impregnated with drugs, swelling of wounds would put the bandage under 

tension, resulting in an automatic release of drugs due to opening up of pores. 

Compared to the DHY, the braided structure not only mitigates the slippage problem 

but also shows high flexibility in design. Therefore, the braided structure can be a good 

alternative for the DHY in the above mentioned applications. In addition, the braided 

structure also has promising application for clothes that require enhanced shape fit and 

comfort. 

 

Fig.14. (a) Initial state; (b) auxetic behavior under tension and (c) pores open under tension. 

(Color online only) 

 

4. Conclusions  

A tubular braided structure, which was invented for overcoming the slippage 

problem in the DHY structure, forms the basis of this paper. Three samples were 

fabricated on a standard tubular braiding machine and subjected to a uniaxial tensile 

test. FE models were developed using ANSYS/Workbench and validated with the 

experiments. Based on the experimentally validated FE modes, influences of 

parameters were systematically studies. It was found that the initial braiding angle 

dominates the auxetic behavior of the braid. A maximum NPR of -9.49 could be 

achieved by lowering the angle value to 15o. In addition, the initial braiding angle also 

has a big effect on the effective tensile stress of the braid; the lower the angle value, the 
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higher the stress. Little difference in effective stress could be observed for the braids 

made with different diameters of stiff and elastic yarns at initial applied strains, but it 

progressively became obvious with strain increasing. The grosser stiff yarn could result 

in a higher NPR value and higher effective stress, while for the elastic yarns their 

influence was opposite. The elastic yarns made a huge contribution to avoid the slippage 

problem of the stiff wrap yarn and provided more design possibility to achieve a desired 

Poisson’s ratio and stiffness. However, the existence of the elastic wraps would 

diminish the auxeticity of the braided structure, which should be taken into 

consideration in design and application.  
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