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Abstract: This paper is focused on the in-plane linear elastic properties of regular 

hexagonal honeycombs with three different joint geometries: hexagonal joint, circular 

joint and triangular joint. A combination of theoretical and finite element (FE) 

methods was adopted to investigate their in-plane elastic moduli (Young’s modulus, 

shear modulus and Poisson’s ratio), and a good agreement between the two methods 

was obtained. The influences of the geometric parameters on the elastic moduli, such 

as 
*

S   and r l , were fully discussed. Interestingly, a special relationship can 

exist among the three joint types, that is, the circular joint can be considered as a 

minimum circumscribed circle of the hexagonal and triangular joints. Based on this, a 

comparison among the honeycombs with three different types of joints was conducted. 

Compared to the conventional regular hexagonal honeycomb, the Young’s modulus of 

the circular joint, hexagonal joint, and triangular joint honeycombs is enhanced by 

61%, 80% and 431%, respectively; while the shear modulus is improved by 101%, 

133% and 469%, respectively. Consequently, the triangular joint honeycomb was 

shown to be more successful in micro-structural layout compared with the other two 

types of honeycombs. This work could be a good guide for the design of novel 

cellular structures. 
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1. Introduction 

The ideas from nature have inspired mankind to make a series of novel designs 

on high-performance materials and systems (Gibson and Ashby, 1997; Zhang et al., 

2015). The conventional regular hexagonal honeycomb, which comes from the nest of 

the bees (Fig.1), has attracted considerable attention over the past few decades owing 

to its superior mechanical behaviors, such as high specific strength, specific stiffness 

and energy absorption. In practical applications, this kind of structure has often been 

used as core materials of sandwich panels. With the advancements in the use of 

sandwich panels, a better representation of the in-plane properties of the core 

materials was needed (Balawi and Abot, 2008). In this regard, a considerable number 

of efforts have been offered by the scientists. A beam model, that is fixed at one end 
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and guided at the other end, was firstly introduced by Abd El-Sayed et al. (1979) to 

predict the in-plane elastic moduli of the conventional regular hexagonal honeycomb. 

Similar to Abd El-Sayed et al. (Abd El-Sayed et al., 1979), Gibson and the co-authors 

(Gibson, 1981; Gibson et al., 1982; Gibson and Ashby, 1988) gave initial analytical 

expressions for the in-pane elastic moduli using the cell-wall bending model. Based 

on the cell-wall stretching and bending, Warren and Kraynik (1987) developed a new 

model to predict the in-plane elastic moduli. A refined cell wall’s bending model by 

adding a beam’s stretching and hinging motion was introduced by Masters and Evans 

(1996). Later on, improved models for the in-plane elastic moduli were proposed by 

Gibson and Ashby (1997) with fully considering shearing, stretching and bending of 

the cell walls. Recently, more accurate estimates of all nine elastic constants are 

obtained by modifying the analysis of Gibson and Ashby (1997) with consideration of 

the nodes at the intersection of the vertical and inclined members (Malek and Gibson, 

2015; Sorohan et al., 2018). In addition, the finite element (FE) method and some 

advanced computational techniques were adopted to calculate the in-plane elastic 

moduli of this honeycomb (Shi and Tong, 1995; Gonella and Ruzzene, 2008; Reis and 

Ganghoffer, 2012; Catapano and Montemurro, 2014), and meanwhile, the 

experimental studies offered a better understanding of the in-plane elastic behavior 

(Balawi and Abot, 2008; Karakoi and Freund, 2012). Many scholars also paid 

attention to the in-plane large deformation of this honeycomb and its in-plane 

geometrical nonlinear behavior was studied based on the elastic bending theory of 

beam in large deflection (Lan and Fu, 2009; Zhu and Mills, 2000; Qiu et al., 2016). 

Furthermore, the in-pane quasi static and dynamic crushing behaviors were well 

documented (Papka and Kyriakides, 1994; Ruan et al., 2003; Hu and Yu, 2010; Cricrì 

et al., 2013; Zhang et al., 2018).  

 

Fig.1. (a) Natural honeycomb; (b) regular hexagonal honeycomb. (Color online only) 

 

It is known that the macro mechanical properties of cellular structures depend on 

their microstructures. This stimulates people to think about how to improve the 

existing cellular structures by tailoring their micro layouts. Under this consideration, a 

large number of successful attempts have been made based on the conventional 

regular hexagonal honeycomb. For instance, a regular hexagonal honeycomb is 

modified into a re-entrant form to achieve a negative Poisson’s ratio (Gibson and 

Ashby, 1997). A hierarchical design strategy that replaces the solid cell walls of the 

conventional regular hexagonal honeycomb with specific substructures can greatly 



increase the in-plane stiffness (Sun et al., 2015). It was found by Zorzetto and Ruffoni 

(2017) that a re-entrant inclusion acting as a defect into the regular hexagonal 

honeycomb is sufficient to generate a substantial augmentation in stiffness. In 

addition, a lot of attention has also been paid to the influence of three-wall joint 

geometry in the conventional regular hexagonal honeycomb. The geometry of three 

cell walls connected at a vertex with Plateau borders was analyzed and employed to 

represent a repeating element for regular hexagonal honeycomb (Chuang and Huang, 

2002a). The effects of the Plateau borders on the macro elastic moduli, buckling and 

plastic collapse strength were analyzed (Chuang and Huang, 2002a; Chuang and 

Huang, 2002b). In recent years, a new type of hierarchical honeycomb was proposed 

by replacing every three-wall vertex of a regular hexagonal lattice with a smaller 

hexagon, as illustrated in Fig.2(a) (Ajdari et al., 2012). Chen et al. (2014) constructed 

a new honeycomb by replacing the three-wall joint of the regular hexagonal 

honeycomb with a hollow-cylindrical joint (i.e., circular joint, see Fig.2(b)), and 

developed a corresponding theory to study its mechanical properties, including 

Young’s modulus, Poisson’s ratio, fracture strength and stress intensity factor. 

Another homologous honeycomb was conceived by Pozniak et al. (2013) via 

replacing every three-wall vertex of a regular hexagonal lattice with a small triangle 

(Fig.2(c)).  

 

Fig.2. (a) Hexagonal joint honeycomb; (b) circular joint honeycomb; (c) triangular joint 

honeycomb; (d) a schematic comparison of the three joint types. (Color online only)  

 

The configurations listed in Fig.2 (a), (b) and (c) form the basis of this paper. 

Although discussion on the mechanical properties of these honeycombs has been 

reported in the literature, some additions are still needed. Until now, only the in-plane 

large deformation of the triangular joint honeycomb has been investigated by Pozniak 

et al. using the FE method (Pozniak et al., 2013). Theoretical models for the in-plane 

elastic moduli of the triangular joint honeycomb under small deformation are not 

found in the available literature. Ajdari and the co-workers (Ajdari et al., 2012) have 

given an analytical model to successfully predict the in-plane Young’s modulus and 

Poisson’s ratio of the hexagonal joint honeycomb. However, only bending 

deformation of cell walls was considered in this model as axial and shear 

deformations were ignored. This may make this model unsuitable for moderately 

stubby beam structures. Also, it is very interesting to note that, a special relationship 

can exist among the three mentioned joint types, as shown in Fig.2(d). The circular 



joint can be considered as a minimum circumscribed circle of the hexagonal and 

triangular joints. Naturally, a curious issue arises: which configuration is optimal in 

mechanical properties. Given above, the work in this paper is organized as follows. 

Firstly, we developed a theoretical model to predict the in-plane elastic moduli (i.e., 

Young’s modulus, Poisson’s ratio and shear modulus) of the three honeycombs with 

fully considering the axial and shear deformations of each cell wall in addition to the 

bending deformation. Secondly, FE analysis on the three types of honeycombs under 

small deformation was carried out by using ANSYS, and compared with the 

theoretical results. The effects of micro geometric parameters on the macro elastic 

moduli of these honeycombs were further discussed. Finally, a comparison among 

these honeycombs was also presented.  

 

2. Geometries of the honeycombs 

The honeycombs with three different joint geometries in this study are based on 

the conventional regular hexagonal honeycomb whose basic geometric parameters, 

including slant angle ( 30   ), cell wall thickness ( t ), and cell wall length ( l ), are 

illustrated in Fig.1. The basic geometric details of these honeycombs are consistent 

with those of the conventional regular hexagonal honeycomb, as shown in Fig.2 (a), 

(b) and (c). The radius for the circular joint is r . As mentioned before, the circular 

joint in this paper can be considered as a minimum circumscribed circle of the 

hexagonal and triangular joints. Hence, the length of the walls within the hexagonal 

joint in Fig.2(d) is: 

 12 23 34 45 56 61l l l l l l r      . (1) 

Similarly, the length of the walls within the triangular joint (Fig.2(d)) is: 

 13 35 51 3l l l r   . (2) 

The relative density for the conventional regular hexagonal honeycomb can be 

approximately expressed as: 
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while that for the circular joint, hexagonal joint and triangular joint honeycomb is: 
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respectively，where 
*  and s  denote the density of the honeycombs and the basic 

material, respectively.  

 

3. Equivalent elastic moduli 

3.1. Young’s moduli and Poisson’s ratios 

 

 
Fig.3. (a) Unit cell for the triangular joint honeycomb and (b) force analysis in a unit cell: unit cell 

under a x- directional uniaxial load P  or a y- directional uniaxial load Q . -i ix y  denotes the 

local coordinate system for each wall. (Color online only) 

 

In this section, the Young’s modulus and Poisson’s ratio of the triangular joint 

honeycomb will be theoretically investigated by using Castigliano’s method. 

According to the structural symmetry, a unit cell as outlined in Fig.3(a) was 

determined for analysis. In the unit cell, there is no moment acting at points C and E 

as they are the midpoint (symmetry point). The thickness of the cell walls AB, BC and 

BD is t  while that of the wall DE is 
2

t
. The lengths of the walls AB, BC, BD and 

DE are 
3

2
r , 

2

l
r , 3r  and 

2

l
r , respectively. The slant angles of the walls 

BC and BD are 30    and 60   , respectively.  

The analytical model for the structure under x- or y- directional loading is shown 

in Fig.3(b), in which AR  and DR  are the reaction horizontal forces while AM  and 

DM  are the reaction moments when the honeycomb undergoes a uniaxial load P  or 

Q . It should be pointed out that, for x- directional loading, the force P  is an actual 

load but the force Q  is not an actual load, it is rather a dummy force so 

Castigliano’s method can be used for y- directional strain. Similarly, the x- directional 

force P  is an imaginary load when loading along the y- direction.  

From Fig.3(b), the total strain energy stored in the unit cell ABCDE, 1U , is 



composed of four components, i.e., 

 1 AB BC BD DEU U U U U    , (7) 

where ABU , BCU , BDU  and DEU  are the strain energies stored in the cell walls AB, 

BC, BD and DE, respectively. We can obtain the strain energy stored in each wall on 

the basic of force analysis, as shown in Fig.3(b). For each wall, iN , iV  and iM  

denote the axial force, shear force and bending moment acting on it. The axial force, 

shear force and bending moment for the walls are listed below: 

AB:  1 1 AN x R ,  1 1 0V x  ,  1 1 AM x M  ; 

BD:  2 2 D cos sinN x R Q   ,  2 2 Dcos sinV x Q R   ,  

   2 2 D D 2Qcos sinM x M R x     ; 

BC:  3 3 cos sinN x P Q   ,  3 3 sin cosV x P Q   , 

    3 3 3sin cos 2M x P Q l r x      ; 

DE:  4 4N x Q ,  4 4 0V x  ,  4 4 0M x  .     

By simultaneously considering three types of strain energies associated to bending, 

tensile and shear loading, the strain energy for each wall can be calculated by using a 

unified formula: 
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where U  is the strain energy stored in the wall,  N x ,  V x  and  M x  

respectively denote the axial force, shear force and bending moment for the wall. sE  

and sG  are the instinct Young’s modulus and shear modulus of the basic material, 

respectively, and for isotropic material  2 1s s sG E      
( s  is the instinct 

Poisson’s ratio of the basic material). 6 5k   is the shear coefficient for a 

rectangular cross section. 
3 12I bt  is the second moment of area and A bt is the 

area of the cross section; b  denotes the out-of-plane depth of the honeycomb.  

Therefore, the strain energy stored in each wall is: 
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where   0 sin cos 2M P Q l r    . Due to the force balance conditions in ABD 

as shown in Fig.3(b), we have D 0 D A3 2 3 2M M R r M Qr     and D AR P R  . 

Considering the zero x- directional displacement and zero rotation of point A due to 

the structural symmetry, one can write 1 A 0U R    and 1 A 0U M   . Then we 

have, 
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From the two relations in Eq.(10), AR  and AM  can be calculated as a known 

function of P  and Q . By substituting the calculated AR  and AM  into Eqs.(9) 

and (7), the total strain energy stored in the unit cell ABCED, 1U , can thereby be 

expressed as a known function of P  and Q . When the honeycomb undergoes a x- 

directional uniaxial load, i.e. 0Q  , then the x- and y- directional displacements of 



point C due to force P  can be calculated as follows, respectively: 

 C

1 0x Q
U P


   ;  C

1 0y Q
U Q


   . Hence, the equivalent strains along the x- 

and y- directions are  C2 cosx x l    and  C2 siny y l l    , respectively.  

The x- directional equivalent stress x  can be expressed as:  sinx P l l b     . 

Finally, the Young’s modus ( xE ) and Poisson’s ratio (
xy ) can be calculated by 

x x xE    and 
xy y x    , respectively.   

Similarly, in the case of y- directional loading, i.e., 0P  . the x- and y- 

directional displacements of point C due to the force Q  can be respectively 

calculated as:  C

1 0x P
U P


   ;  C

1 0y P
U Q


   . The equivalent stress along 

the y direction is  cosy Q l b   and thus the corresponding Young’s modulus 

(
yE ) and Poisson’s ratio (

yx ) can be obtained.  

Concerning the hexagonal joint honeycomb, full deformation mechanisms of 

each cell wall will be accurately considered. The free body diagram of the unit cell of 

the hexagonal joint honeycomb is displayed in Fig.A.1, and the details are shown in 

Appendix A. For completeness, similar derivations for the Young’s modulus and 

Poisson’s ratio of the circular joint honeycomb are also presented in this paper, 

although Chen et al. (2014) have given a theoretical model. Its unit cell and the 

corresponding free body diagram are illustrated in Fig.B.1. The details are shown in 

Appendix B. It should be noted that, the current derivation for the Poisson’s ratio of 

the circular joint honeycomb is more straightforward than that developed by Chen et 

al. (Chen et al., 2014).  

It has been shown that periodic boundary conditions are ideally suited for 

predicting the mechanical properties of a periodic media (Xia et al., 2003; Ai and Gao, 

2018). In order to provide reference solutions and evaluate the theoretical models 

developed in this paper, we simulated the in-plane linear elastic responses of these 

honeycombs by using the FE method with periodic boundary conditions. The periodic 

boundary conditions for a cubic media subjected to a prescribed strain 
0

ij  are given 

by (Ai and Gao, 2018): 
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where k
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 and k
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 respectively denote the coordinates of the matched nodes k 
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 on the cubic media boundary along the j   direction. k
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respectively denote the displacement components of the nodes  k 
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 are, respectively, the rotation components of the nodes  k 
 and k 

.  

 

Fig.4. Representative block for the conventional regular hexagonal honeycomb. Points A to N 

denote the nodes at the boundaries of the discretized representative block. (Color online only) 

 

Firstly, we would take the conventional regular hexagonal honeycomb as an 

example to calculate its in-plane elastic moduli by using the FE method with periodic 

boundary conditions. Then, the obtained elastic moduli would be further compared 

with the experimental and analytical results obtained by Gibson and Ashby (1997) in 

order to verify the rationality of the FE models we used. The representative block for 

the conventional regular hexagonal honeycomb, as illustrated in Fig.4, was modeled 

by using ANSYS 16.0. Conventional regular hexagonal honeycombs with seven 

different levels of t l  were investigated. These t l  values were obtained by fixing 

20mml   while varying t  as 2.655mm, 2.932mm, 3.198mm, 3.463mm, 3.718mm, 

3.972mm and 4.214mm. The macro dimension of the representative block is 

69.282mm ( 0W ) × 60mm ( 0H ) ×1mm ( b ), as shown in Fig.4 (b  is the out-of-plane 

depth). All models were meshed using Beam 188 which is based on Timoshenko 

beam theory, and thus it is suitable for analyzing slender to moderately stubby beam 

structures. Aluminum alloy with its Young’s modulus 70GPasE   and Poisson’s 

ratio 0.3s   was used for the cell wall material. A free meshing scheme with the 

1mm mesh size was implemented to the FE models. According to Eq. (11), the 

periodic boundary conditions were applied by using the ‘Constraint Equation’ 

function in ANSYS. In the case of the discretized representative block in Fig.4, 

detailed boundary conditions for three different loading cases are listed as follows: 



(a) Periodic boundary conditions for uniaxial loading in the x- direction: 

 

C A D N E M F L G K H J

C A D N E M F L G K H J

A J B I C H

C A 0 D N 0 E M 0

0 0 0

F L 0 G

0

,   ,  ,  ,  ,  ,

,  ,  ,  ,  ,  ,

,  ,  ,

,  ,  ,

,  

y y y y y y y y y y y y

z z z z z z z z z z z z

z z z z z z

x x xx x x xx x x xx

x x xx x

u u u u u u u u u u u u

u u W u u W u u W

u u W u

           

     

  



     

     

  

     

   K 0 H J 0

0 0

A J B I C H

J J J J J J

,  ,

,

0 (to eliminate the rigid body motion) 

x xx x x xx

y y y y y y

z y x z y x

u W u u W

u u u u u u

u u u

 

  

  

    

     

  (12) 

(b) Periodic boundary conditions for uniaxial loading in the y- direction: 
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(c) Periodic boundary conditions for the in-plane shear loading: 
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  (14) 

In this study, the prescribed strain 
0

ij  were considered equal for all load cases, 

i.e., 
0 0 0 0.01xx yy xy     . In the case of x- directional uniaxial loading, the x- 

directional resultant force xF  can be obtained by using ‘Nodal Loads’ function in 

ANSYS with exporting the x- directional total forces of the nodes at the right 

boundary, i.e., nodes C, D, E, F, G and H in Fig.4. Similarly, the y- directional 

resultant force yF  can be obtained by exporting the y- directional total forces of the 

nodes A, B and C in Fig.4 for y- directional uniaxial loading case, while the shear 

force ( xT ) along the x- direction can be obtained by exporting the x- directional total 



forces of the nodes A, B and C. Therefore, the equivalent averaged stresses are 

defined as: 
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Then the equivalent elastic Young’s modulus and shear modulus are given as: 
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We have found in the FE results that nodes A, B and C have an equal y- directional 

displacement, yu , for x- directional uniaxial loading, while nodes C, D, E, F, G and 

H have an equal x- directional displacement, xu ,
 
for y- directional uniaxial loading. 

Consequently, the equivalent Poisson’s ratio for the honeycombs can be given as, 
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 
      (17) 

Fig.5 displays a comparison between the current calculated elastic moduli and 

those obtained in the available literature (Gibson, 1981; Gibson and Ashby, 1997). 

Obviously, the current FE results are quite close to both the experiments and 

analytical results, which helps to verify the FE models we used.  

 

Fig.5. In-plane elastic moduli of the conventional hexagonal honeycomb: Comparisons between 

analytical model predictions of Gibson and Ashby (1997), experimental data (Gibson, 1981) and 

current FE predictions. (Color online only) 

 



Next, the similar FE analyzing procedure would be adopted to study the 

hexagonal honeycombs with three different joint geometries. Here, honeycombs with 

five r l  values (r/l=0.2, 0.25, 0.3, 0.35 and 0.4) were studied and the basic 

geometric parameters for them are 20mml   and * 0.1s   . Representative 

blocks for the honeycombs with three different joint geometries, which used as FE 

models, are illustrated in Fig.6. Three different levels of mesh sizes (1mm, 0.5mm and 

0.25mm) were implemented in these honeycombs to conduct mesh sensitivity 

analyses. For the honeycombs with 0.4r l  , the normalized moduli obtained from 1 

mm mesh size are quite close to those obtained from the other two lower mesh sizes, 

as shown in Fig.7. It is to be expected that 1mm mesh size is suitable for all of the 

honeycombs.  

 

Fig.6. Representative blocks of the honeycombs used for FE models: (a) triangular joint 

honeycomb, (b) hexagonal joint honeycomb, (c) circular joint honeycomb. (Color online only)  

 

Fig.7. Mesh sensitivity analyses on the in-plane equivalent elastic moduli of the triangular joint, 

hexagonal joint and circular joint honeycombs while 
* 0.1s   , 20mml   and 8mmr  (i.e., 

r/l=0.4). (Color online only) 



The variations of the equivalent Young’s moduli and Poisson’s ratios of the three 

different joint honeycombs with r l  are shown in Figs.8 and 9, respectively. The 

equivalent Young’s moduli of these honeycombs are normalized by the equivalent 

Young’s modulus of the convention regular hexagonal honeycomb ( crE ) with the 

same relative density. Analytical expressions for the equivalent Young’s modulus of 

the convention regular hexagonal one, which was given by Gibson and Ashby (1997), 

are attached in Appendix C. From Figs.8 and 9, a quite good agreement between the 

present theoretical models and the FE simulations is obtained. For the hexagonal joint 

honeycomb, the present theoretical model is more accurate than the model given by 

Ajdari et al. (2012). This is because Ajdari et al. (2012) only considered the bending 

mechanism while the present theoretical model fully considered the axial and shear 

deformations of the walls in addition to bending. As the present theoretical models are 

able to describe the mechanical properties of the honeycombs accurately, the 

following discussion is only conducted based on these models. It can be also found 

from Figs.8 and 9 that the moduli in the x direction are very close to that in the y 

direction for all types of the honeycombs, i.e. 
x yE E  and 

xy yx  , which reveals 

a macroscopic isotropic characteristic of these honeycombs. This phenomenon is 

consistent with the conclusion reported in the literature that plane lattices with 

threefold symmetry will exhibit macroscopically isotropic in-plane elastic behavior 

(Christensen, 1987).   

 

 

Fig.8. Normalized Young’s modulus of the regular hexagonal honeycomb with three different 

joint geometries while 
* 0.1s  

 
and 20mml  : a comparison between the present theory, 

finite element simulations and the results from the literature (Ajdari et al., 2012). (Color online 

only) 



 

 
Fig.9. Poisson’s ratio of the regular hexagonal honeycomb with three different joint geometries 

while 
* 0.1s  

 
and 20mml  : a comparison between the present theory, finite element 

simulations and the results from the literature (Ajdari et al., 2012). (Color online only) 

 

In Fig.8, the normalized Young’s moduli of both the hexagonal joint and circular 

joint honeycombs first increase and then decrease with r l , while that of the 

triangular joint monotonously increases with r l . The normalized moduli of these 

honeycombs are close to 1 when r l tends to 0.1, indicating that the Young’s moduli 

of these honeycombs tend to that of the conventional regular one at low level of r . 

The largest value of the normalized modulus (
cr 1.61E E  ) of the circular joint 

honeycomb appears at 0.3r l   while that of the hexagonal joint honeycomb 

(
cr 1.80E E  ) appears at 0.325r l  . This means that the Young’s modulus of the 

circular joint and hexagonal joint honeycombs are enhanced by 61% and 80%, 

respectively, compared to the conventional regular one, while for the triangular joint 

honeycomb, its Young’s modulus is improved by 107% at 0.3r l   and even 431% 

at 0.4r l  .  

It is shown that the Young’s modulus of the circular joint honeycomb is the 

lowest while that of the triangular joint honeycomb is the highest among the three 

joint honeycombs. Obviously, the stiffness of the circular joint honeycomb is slightly 

lower than that of the hexagonal joint one for all r l . For the triangular joint 



honeycomb, its stiffness is not very different from that of the other two honeycombs 

when r l  varies from 0.1 to 0.25. However, after 0.25r l  , the stiffness gap 

between the triangular honeycomb and the other two honeycombs is getting bigger. 

This phenomenon can be explained by the fact that the joint itself has little effect on 

the stiffness of these honeycombs when r l  is small and the main contributor is the 

wall connecting each two joints. Taking Fig.2(b) as an example, when r l  is small, 

the deformations of the walls BC and DE are the major factor in response to an 

external stress while the joint ABD will have little effect. However, when r l  is 

getting big, the effect of the joint ABD will become significant. It is important to note 

that axial deformation is the dominated mechanism within a triangular joint while the 

circular and hexagonal joints are both bending controlled. Consequently, the stiffness 

of the triangular joint honeycomb is much higher than that of the circular and 

hexagonal joint ones when r l  becomes big. From this point of view, the triangular 

joint honeycomb is more successful in micro-structural layout compared with the 

other two honeycombs.  

 As shown in Fig.9, the Poisson’s ratio of the triangular joint honeycomb is 

higher than that of the other two honeycombs. At low level of r l , e.g. 0.1r l  , the 

Poisson’s ratios of these honeycombs are very close to 1. With r l  increasing,   of 

the triangular joint honeycomb monotonously decreases while that of the circular and 

hexagonal joint honeycombs first decrease to a valley and then increase. For the 

circular joint honeycomb, the minimum value of   ( 0.416   ) is observed at 

0.375r l  while the minimum value ( 0.360  ) for the hexagonal joint honeycomb 

appears at 0.4r l  .  

 

3.2. Shear moduli  

For isotropic cellular solids, their in-plane equivalent Yong’s modulus ( E ), 

Poisson’s ratio ( ) and shear modulus ( G ) approximately obeys the following 

relation Gibson and Ashby (1997): 

 
 2 1

E
G





. (18) 

As shown from both the theoretical and FE results in section 3.1, the honeycombs in 

this study are all macroscopically isotropic. As a result, the equivalent shear moduli of 

these honeycombs can be readily calculated using Eq.(18). For comparison, the FE 

method with periodic boundary conditions was also used to predict the in-plane shear 



modulus of the honeycombs with three different joint geometries. Detailed boundary 

conditions for in-plane shear loading are listed as Eq.(14). From Fig.7, 1mm mesh 

size was used for these simulations.  

 

Fig.10. FE and theoretical predictions of the in-plane shear modulus of the honeycombs versus 

r l  while * 0.1s    and 20mml  . (Color online only) 

 

Fig.10 shows the FE and theoretical predictions of in-plane shear moduli versus 

r l  while * 0.1s    and 20mml  . It is found in that the theoretical predictions 

from Eq.(18) are close to the FE simulations. The shear moduli of the three joint 

honeycombs are normalized by the shear stiffness of the conventional regular 

hexagonal honeycomb which is shown in Appendix C. The normalized values are 

quite close to 1 when r l  is small, i.e., 0.1r l  . This means that the shear moduli 

of these honeycombs are close to that of the conventional regular one at low r l . It is 

noted that the normalized modulus of the triangular joint honeycomb monotonously 

increases with r l  while those of both the hexagonal joint and circular joint 

honeycombs first increase to a peak and then decrease with r l . According to the 

theoretical predictions, the peak value for the hexagonal joint honeycomb appears at 

0.35r l   and equals 2.33. This means that the shear modulus of the hexagonal joint 

honeycomb is enhanced by 133% when 0.35r l  , compared to the conventional 

regular one. Similarly, the shear modulus of the circular joint honeycomb is improved 



by 101% when r l  is 0.325. For the triangular joint honeycomb, improvement of its 

shear modulus can reach 469%. 

 

3.3. Effect of 
*

s    

 

Fig.11. Variations of the equivalent moduli of the three honeycombs with relative density (
*

s  ) 

while 6mmr  , 20mml  : (a) Young’s moduli normalized by the Young’s modulus of the basic 

material, 
sE ; (b) shear moduli normalized by the Young’s modulus of the basic material, 

sE ; (c) 

Poisson’s ratios; (d) Young’s moduli normalized by the Young’s modulus of the conventional 

regular hexagonal honeycomb, crE ; (e) shear moduli normalized by the shear modulus of the 

conventional regular hexagonal honeycomb, crG .(Color online only) 

 

We have discussed the effect of r l on the in-plane Young’s moduli and shear 

moduli previously while * 0.1s   . In this section, we focus on the influence of 

the relative density, *

s  , on the equivalent moduli under a fixed r l . In this 

investigation, the basic geometric parameters 20mml  and 6mmr   were adopted. 

Increasing the relative density *

s  , the Young’s moduli and shear moduli of the 

three honeycombs, which are normalized by the Young’s modulus of the basic 

material ( sE ), monotonously increase, as shown in Fig.11 (a) and (b). On the contrary, 

the Poisson’s ratios monotonously decreases with *

s  (see Fig.11(c)). Fig.11(d) 



and (e) respectively show the variations of the Young’s moduli and shear moduli of 

the honeycombs, which are normalized by the moduli of the conventional regular 

honeycomb, with *

s  . One can find that both crE E  and crG G  monotonously 

decrease with *

s  . On can find from Fig.11 (a) to (e) that, the equivalent elastic 

moduli of the triangular joint honeycomb (i.e., normalized Young’s modulus, 

normalized shear modulus and Poisson’s ratio) are higher than those of the other two 

types of honeycombs under the same relative density, meanwhile, those moduli of the 

circular joint honeycomb are the lowest.      

 

4. Concluding remarks  

By using the theoretical and FE methods, three types of homologous hexagonal 

honeycombs, which are derived by replacing each three-wall vertex of a conventional 

regular hexagonal honeycomb with a small circle, a hexagon and a triangle, were 

investigated in this paper. We discussed the effects of 
*

s   and r l  on the elastic 

moduli of these honeycombs. A comparison among these honeycombs was also 

conducted. Some conclusions are drawn as follows: 

1) The normalized Young’s modulus (
crE E ) and shear modulus (

crG G ) of 

the hexagonal and circular joint honeycombs vary with r l  in a unimodal 

way while those of the triangular joint honeycomb monotonously increase 

with r l . Compared to the conventional regular hexagonal honeycomb, the 

Young’s modulus of the circular joint, hexagonal joint, and triangular joint 

honeycombs are enhanced by 61%, 80% and 431%, respectively; while the 

shear modulus are improved by 101%, 133% and 469%, respectively. As a 

result, the triangular joint honeycomb exhibits higher stiffness than the other 

two honeycombs.  

2) At low level of r l , the Poisson’s ratio values of these honeycombs are 

quite close to 1. With r l  increasing, the Poisson’s ratio of the triangular 

joint honeycomb monotonously decreases, while that of the other two 

honeycombs decreases to a valley and then increases. The minimum values 

of the Poisson’s ratio are 0.416 and 0.360 respectively for the circular and 

hexagonal joint honeycombs. 

3) The normalized Young’s modulus (
crE E ) , shear modulus (

crG G )  and 

Poisson’s ratio of these honeycombs monotonously decreases with 
*

s  , 



indicating that, compared to the conventional regular hexagonal honeycomb, 

the advantage in stiffness of these honeycombs is more prominent under the 

case of low
*

s  .    

This work is focused only on the elastic properties of regular hexagonal 

honeycomb with three different joints, and the dynamic responses of these structures 

will be presented in our next paper. 
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Appendix A. Theoretical model for the hexagonal joint honeycomb 

 

Fig.A.1. (a) Unit cell for the hexagonal joint honeycomb and (b) force analysis in a unit cell: unit 

cell under a x- directional uniaxial load P  or a y- directional uniaxial load Q . -i ix y  denotes the 

local coordinate system for each wall. (Color online only) 

 

From Fig.A.1, the total strain energy stored in the unit cell ABCDEF, 2U , is 

composed of five components, i.e., 

 2 AB ED BD BC EFU U U U U U     , (A1) 

where ABU , EDU , BDU , BCU and EFU  are the strain energies stored in the walls AB, 

ED, BD, BC and EF, respectively. The axial force, shear force and bending moment 

acting at each wall can be obtained from Fig.A.1(b). They are listed below:  

AB:    1 1 A cos 6N x R  ,    1 1 A sin 6V x R  ,    1 1 A A 1sin 6M x M R x   ; 

ED:      2 2 E cos 6 sin 6N x R Q   ,      2 2 Ecos 6 sin 6V x Q R   ,

     2 2 E E 2cos 6 sin 6M x M Q R x       ; 

BD:  3 3N x Q ,  3 3 EV x R ,    3 3 E 3fM x M R x   

(where      
2

2 2 E Ecos 6 sin 6f x r
M M x M Q R r 


       );  

BC:  4 4 cos sinN x P Q   ,  4 4 sin cosV x P Q   , 

    4 4 4sin cos 2M x P Q l r x      ; 

EF:  5 5N x Q ,  5 5 0V x  ,  5 5 0M x  .    

Then the strain energy stored in each wall is further calculated as: 
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  (A2) 

where  

  0 sin cos 2M P Q l r    ,  

     E A 0 Ecos 6 sin 6 2 sin 6M M M Qr Pr R r r           , 

E AR P R  . 

Considering the boundary conditions of the unit cell, i.e., 2 A =0U R   and 

2 A =0U M  , we have, 
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  (A3) 

From the two relations in Eq.(A3), we can express AR   and AM  as a known 

function of the forces P  and Q . Hence, the total strain energy 2U  can also be 



written as a known function of P  and Q . Finally, the equivalent Young’s modulus 

and Poisson’s ratio for the hexagonal joint honeycomb can be calculated by using the 

similar derivations as shown in section 3.1. 

 

Appendix B. Theoretical model for the circular joint honeycomb 

 

 

Fig.B.1. (a) Unit cell of the circular joint honeycomb and (b) force analysis in a unit cell: unit cell 

under a x- directional uniaxial load P  or a y- directional uniaxial load Q . (Color online only) 

 

As shown by Chen et al. (2014), the total strain energy, 3U , of the unit cell of 

the circular joint honeycomb is composed of four parts, the energies stored in the 

semicircle AB, semicircle BD, walls BC and DE. In this paper, we will not repeat the 

force analyses of each semicircle or wall as they were fully presented by Chen et al. 

(2014). By using those force analyses, we recalculate the strain energy for each part 

as:  
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where   0 sin cos 2M P Q l r    , D A 0 D= 3 2 2 2M M M Qr Pr R r      

and D A=R P R .  

Using the boundary conditions: 3 A =0U R   and 3 A =0U M  , we have, 
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Similarly, the total strain energy 3U  ( 3 AB BD BC DE=U U U U U   ) can be expressed 



as a known function of P  and Q , and thus the in-plane equivalent modulus can be 

finally obtained.  

 

 

Appendix C. Elastic moduli of the conventional regular hexagonal 

honeycomb 

With fully considering the axial and shear deformation as well as bending of the 

cell walls, the in-plane equivalent Young’s modulus, Poisson’s ratio and shear 

modulus of the conventional regular hexagonal honeycomb were given by Gibson and 

Ashby (1997): 

 

 

  

  

  

  

3cr

2

2

cr

2

3cr

2

4 1
;

3 1 5.4 1.5

1 1.4 1.5
;

1 5.4 1.5

1 1
.

3 1 3.30 1.75

s s

s

s

s s

E t

E l t l

t l

t l

G t

E l t l










 
  

   

 


 

 
  

   

  (C1) 

 

 

References 

Ajdari, A., Jahromi, B. H., Papadopoulos, J., Nayeb-Hashemi, H., Vaziri, A., 2012. 

Hierarchical honeycombs with tailorable properties. International Journal of Solids 

and Structures 49,1413-1419. 

 

Ai, L., Gao, X. L., 2018. Three-dimensional metamaterials with a negative Poisson’s 

ratio and a non-positive coefficient of thermal expansion. International Journal of 

Mechanical Sciences 135, 101-113. 

 

Balawi, S., Abot, J. L., 2008. The effect of honeycomb relative density on its effective 

in-plane elastic moduli: an experimental study. Compos. Struct. 84, 293-299. 

 

Christensen, R. M., 1987. Sufficient symmetry conditions for isotropy of the elastic 

moduli tensor. J. Appl. Mech. 54,772-777.  

  

Chuang, C. H., Huang, J. S., 2002a. Effects of solid distribution on the elastic 

buckling of honeycombs. International Journal of Mechanical Sciences 44,1429-1443. 

 

Chuang, C. H., Huang, J. S., 2002b. Elastic moduli and plastic collapse strength of 



hexagonal honeycombs with plateau borders. International Journal of Mechanical 

Sciences 44,1827-1844. 

 

Cricrì, G., Perrella, M., Calì, C., 2013. Honeycomb failure processes under in-plane 

loading. Composites: Part B 45,1079-1090. 

 

Catapano, A., Montemurro, M., 2014. A multi-scale approach for the optimum design 

of sandwich plates with honeycomb core. Part I: homogenisation of core properties. 

Compos. Struct. 118, 664-676. 

 

Chen, Q., Pugno, N., Zhao, K., Li, Z., 2014. Mechanical properties of a 

hollow-cylindrical-joint honeycomb. Composite Structures 109, 68-74.  

 

El-Sayed, F. K. A., Jones, R., Burgess, I. W., 1979. A theoretical approach to the 

deformation of honeycomb based composite materials. Composites 10(4),209-214. 

 

Gibson, L.J., 1981. The elastic and plastic behaviour of cellular materials. University 

of Cambridge. 

 

Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I., 1982. The mechanics of 

two-dimensional cellular materials. Proc. Roy. Soc. Lond. A 382, 25-42.  

 

Gibson, L.J., Ashby, M.F., 1988. Cellular Solids: Structure and Properties, first edit. 

ed. Pergamon Press, Oxford. 

 

Gibson, L. J., Ashby, M. F., 1997. Cellular Solids: Structure and Properties, second 

edit. Cambridge University Press, New York. 

 

Gonella, S., Ruzzene, M., 2008. Homogenization and equivalent in-plane properties 

of two-dimensional periodic lattices. International Journal of Solids & Structures, 

45(10), 2897-2915. 

 

Hu, L. L., Yu, T. X., 2010. Dynamic crushing strength of hexagonal honeycombs. 

International journal of impact engineering, 37(5), 467-474. 

 

Hu, L. L., Yu, T. X., 2013. Mechanical behavior of hexagonal honeycombs under 

low-velocity impact-theory and simulations. International Journal of Solids and 

Structures 50(20-21),3152-3165.  

 

Karakoi, A., Freund, J., 2012. Experimental studies on mechanical properties of 

cellular structures using nomex® honeycomb cores. Composite Structures, 94(6), 

2017-2024. 

 

Lan, L. H., Fu, M. H., 2009. Nonlinear constitutive relations of cellular materials. 



AIAA Journal 47(1), 264-270. 

 

Masters, I. G., Evans, K. E., 1996. Models for the elastic deformation of honeycombs. 

Compos. Struct. 35, 403-422. 

 

Malek, S., Gibson L., 2015. Effective elastic properties of periodic hexagonal 

honeycombs Mechanics of Materials 91, 226-240. 

 

Papka, S., D., Kyriakides, S., 1994. In-plane compressive response and crushing of 

honeycomb. Journal of the Mechanics and Physics of Solids 42(10), 1499-1532.  

 

Pozniak, A. A., Smardzewski, J., Wojciechowski, K. W., 2013. Computer simulations 

of auxetic foams in two dimensions. Smart Materials and Structures 22, 084009 

(11pp). 

 

Qiu, K., Wang, Z., Zhang, W., 2016. The effective elastic properties of flexible 

hexagonal honeycomb cores with consideration for geometric nonlinearity. Aerospace 

Science and Technology 58,258-266. 

 

Ruan, D., Lu, G., Wang, B,. Yu, T. X., 2003. In-plane dynamic crushing of 

honeycombs-a finiteelement study. International Journal of Impact Engineering 

28,161-182. 

 

Reis, F. D., Ganghoffer, J. F., 2012. Equivalent mechanical properties of auxetic 

lattices from discrete homogenization. Computational Materials Science, 51(1), 

314-321. 

 

Shi, G., Tong, P., 1995. The derivation of equivalent constitutive equations of 

honeycomb structures by a two scale method. Computational Mechanics 

15(5),395-407. 

 

Sun, Y., Wang, B., Pugno, N., Wang, B., Ding, Q., 2015. In-plane stiffness of the 

anisotropic multifunctional hierarchical honeycombs. Composite Structures 131, 

616-624. 

 

Sorohan, S., Constantinescu, D. M., Sandu, M., Sandu, A., G., 2018. On the 

homogenization of hexagonal honeycombs under axial and shear loading. Part I: 

Analytical formulation for free skin effect. Mechanics of Materials 119,74-91. 

 

Warren, W.E., Kraynik, A.M., 1987. Foam mechanics: the linear elastic response of 

two-dimensional spatially periodic cellular materials. Mech. Mater. 6, 27-37. 

 

Xia, Z, Zhang, Y, Ellyin, F., 2003. A unified periodical boundary conditions for 

representative volume elements of composites and applications. International Journal 



of Solids and Structures 40, 1907-1921.   

 

Zhu, H. X., Mills, N. J., 2000. The in-plane non-linear compression of regular 

honeycombs. International Journal of Solids and Structures 37(13),1931-1949. 

 

Zhang, Q., Yang, X., Li, P., Huang, G., Feng, S., Shen, C., Han, B., Zhang, X., Jin, F., 

Xu, F., Lu, T. J., 2015. Bioinspired engineering of honeycomb structure-Using nature 

to inspire human innovation. Progress in Materials Science 74, 332-400.  

 

Zorzetto, L., Ruffoni, D., 2017. Re-entrant inclusions in cellular solids: From defects 

to reinforcements. Composite Structures 176,195-204. 

 

Zhang, Y., Liua, T., Tizani, W., 2018. Experimental and numerical analysis of 

dynamic compressive response of Nomex honeycombs. Composites Part B 148,27-39. 

 




