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Abstract 

In many geotechnical systems, such as reinforced slopes and embankments, soil-structure 

interfaces are often unsaturated. Shear behaviour of unsaturated interfaces is strongly dependent 

on their matric suctions, as revealed by the results of extensive laboratory tests. So far, 

constitutive models for unsaturated interfaces are very limited in the literature. This paper 

reports a new bounding surface model for saturated and unsaturated interfaces. New 

formulations were developed to incorporate suction effects on the flow rule and plastic modulus. 

To examine the capability of the proposed model, it was applied to simulate suction- and stress-

controlled direct shear tests on unsaturated soil-cement, soil-steel and soil-geotextile interfaces. 

Measured and computed results are well matched, demonstrating that the proposed model can 

well capture key features of the shear behaviour of unsaturated interfaces, including suction-

dependent dilatancy, stress-strain relation, and peak and critical state shear strengths. 

Key words: soil-structure interface; unsaturated; suction; dilatancy; critical state 
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1. Introduction 

Shear behaviour of soil-structure interfaces (e.g., shear strength and dilatancy) greatly 

affects the performance of many geotechnical systems, such as shallow foundations, retaining 

walls, buried pipelines, landfill covers, concrete-faced rockfill dams, reinforced soil slopes and 

embankments. Interfaces in these systems are often unsaturated and their matric suctions vary 

with weather condition. Some researchers investigated the shear behaviour of unsaturated 

interfaces through suction- and stress-controlled direct shear tests [2,19,21]. They found that, 

as matric suction increased, the peak and critical state shear strengths increased. The increment 

of the former was consistently larger than that of the latter, because the dilatancy of 

soils/interfaces was significantly enhanced by the increase of matric suction [8]. To predict the 

performance of related geotechnical systems accurately, it is necessary to develop constitutive 

models suitable for both saturated and unsaturated interfaces.  

So far, many constitutive models have been developed for saturated/dry interfaces on the 

basis of different theoretical frameworks, including classical elastoplasticity [17,28], damage 

mechanics [22], generalized plasticity [33,34], disturbed state concept [12,13], hyperbolic 

formulation [9], hypoplasticity [45] and viscoplasticity [42]. Most of these modelling 

approaches were reviewed by Zhang et al. [53] in detail. Readers who are interested in the 

constitutive modelling of saturated/dry interfaces may refer to these previous studies. The 

current work focuses on unsaturated interfaces, which have not been given as much attention 

as saturated/dry interfaces.  

Hamid et al. [19] proposed a constitutive model for unsaturated interfaces using the 
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disturbed state concept, which was originally adopted by Desai et al. [13] in the modelling of 

saturated interfaces. The model of Hamid et al. [19] was based on two independent stress state 

variables (i.e., net stress and matric suction). Most of their parameters for modelling mechanical 

behaviour were functions of matric suction. As a result, extensive tests were required to calibrate 

their model parameters. Lashkari et al. [29] reported a constitutive model for unsaturated 

interfaces, which was extended from a constitutive model for saturated/dry interfaces [28]. This 

model adopted the effective (average skeleton) stress and modified matric suction as the 

constitutive stress variables, similar to the unsaturated soil model of Wheeler et al. [52]. In 

addition, the bonding variable proposed by Gallipoli et al. [16] was used as a complementary 

stress variable to relocate the critical state line (CSL) with the change in matric suction. The 

model was well verified by the results of 38 tests on seven types of saturated, dry and 

unsaturated interfaces. Another contribution was made by Lashkari et al. [30]. They compared 

different methods of generalizing a benchmark model [28] for saturated/dry interfaces to 

consider unsaturated conditions. Particular attention was given to different formulations for the 

effective stress [24,37] and the CSLs in the unsaturated condition [16,23]. Moreover, three 

different state indices [1,27,48] were compared. They quantitatively analyzed six different 

combinations of constitutive equations for the effective stress, CSLs and state indices. In all of 

these six cases, the measured and computed results are fairly consistent.  

In this study, a new constitutive model suitable for both saturated and unsaturated interfaces 

was developed. Some new formulations were used for describing various aspects of unsaturated 

interfaces, such as the dilatancy, critical state and plastic modulus. Different from existing 
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models for unsaturated interfaces, the new model was developed within the bounding surface 

framework. Compared to the classical elastoplastic framework, it shows some advantages such 

as the smooth transition between elastic and elastoplastic behaviour, and the capability of 

modelling cyclic behaviour. Additionally, the proposed model was verified by reported suction-

controlled direct shear tests on unsaturated soil-cement, soil-steel and soil-geotextile interfaces.  

2. Mathematical formulations  

2.1. Constitutive stress variables 

With the development of unsaturated soil mechanics, various constitutive stress variables 

have been proposed based on theoretical and experimental studies. Borja [3] presented a 

thermodynamically consistent expression for effective stress, in which the Biot coefficient is 

equal to 1.0, under the assumption of incompressible solid. Later on, Borja [4] extended the 

theory to the regime of compressible solids. In the new formulation, the Biot coefficient is equal 

to (1 - K/Ks), where K and Ks are the bulk moduli of soil matrix and solid phase, respectively. 

The new formulation works for not only soils, but also other porous materials such as rocks and 

concretes. For soils, the value of K/Ks is usually very small and hence the Biot coefficient can 

be fixed at 1. Borja et al. [5] further incorporated the influence of double porosity by considering 

the local degrees of saturation and pore fractions. In the current model, the effects of K/Ks and 

two porosity scales are not considered for simplicity. The following thermodynamically 

consistent expression is adopted [3]: 
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where 𝜎𝑛
∗ is the effective normal stress at the interface (a positive value means compression);  

is the shear stress at the interface; 𝜎𝑛𝑒𝑡 is the net normal stress at the interface; Sr is the degree 

of saturation; ua and uw are the pore air and water pressures at the interface, respectively. Matric 

suction s is defined as (𝑢𝑎 − 𝑢𝑤) and it is referred as suction in the following paragraphs for 

simplicity.  

In the unsaturated condition, meniscus water lens are able to increase the normal force at 

inter-particle contacts without altering the corresponding tangential force, resulting in 

stabilizing effects on the soils/interfaces [52]. Thus, the apparent preconsolidation pressure of 

unsaturated soils becomes a function of suction. To model such additional suction effects, the 

bonding variable  proposed by Gallipoli et al. [16] is used as a complementary constitutive 

variable: 

( )( )rSsf −= 1   (2) 

where f (s) is a function used to describe the inter-particle normal force (ΔN) imposed by a water 

meniscus between two identical spherical particles, defined as ΔN at a suction of s normalized 

by ΔN at zero suction. According to the work of Fisher [14] and Zhou et al. [55], f (s) can be 

readily obtained as follows:  

 (3) 

where Ts is the surface tension coefficient at the air-water interface; R is the radius of spherical 

particles. This equation suggests that apart from s (suction), R and Ts also affects f (s). The 

particle size distribution of a soil is generally non-uniform. The median diameter D50 is used to 
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calculate R for simplicity. This simplification should have relatively little impact on the model 

predictions, because the variation of (1-Sr) is generally much more important than the variation 

of f (s) in determining the value of  in equation (2), as illustrated by Wheeler et al. [52]. In 

addition, the value of Ts does not vary much for the air-water interface, showing only minor 

variation with temperature. In the temperature range of 20 to 30C, at which the tests for model 

verification were carried out, the variation of Ts is less than 2% [38]. 

When soil becomes fully saturated (Sr = 1), 𝜎𝑛
∗ reduces to the effective stress formulation 

of Terzaghi [46] and  is equal to zero. Therefore, the current model allows for a smooth 

transition between unsaturated and saturated conditions, which is one of the major challenges 

in the modelling of saturated and unsaturated soils/interfaces [35,54]. It can be used for both 

saturated and unsaturated interfaces with a single set of parameters.  

2.2. Critical state line and state parameter 

In a state-dependent constitutive model, the critical state line (CSL) is an important 

reference state. In the saturated condition, the CSL is a curve in the 
* 

n --e space. Its projections 

in the 
* 

n - and e-ln
* 

n  planes are usually modelled as straight lines: 

*

nscs M  =   (4) 

)ln(
*

atm

n
sscs

p
e


−=   (5) 

where cs is the critical state shear strength in the saturated condition; Ms is the critical state 

stress ratio in the saturated condition; ecs is the critical state void ratio in the saturated condition; 

s and s are the intercept and slope of the saturated CSL, respectively. 

In the unsaturated condition, the shear strengths of soils and interfaces are both suction-



 

8 

dependent. The CSL is thus not unique in the plane of mean net stress and deviator stress. Nuth 

et al. [41] analyzed the test data of several soils. They found that in the plane of mean effective 

stress and deviator stress, the CSLs at various suctions converged remarkably towards the 

saturated CSL. This finding implies a unique CSL in the plane of mean effective stress and 

deviator stress, and it has been also echoed by some other researchers based on test data of 

unsaturated soils and interfaces [30,36]. Thus, the CSLs at various suctions are modelled using 

a unified formulation: 

*

nc M =   (6) 

where c is the critical state shear strength; M is the critical state stress ratio independent of 

suction (i.e., M = Ms). Equation (6) works for both saturated and unsaturated conditions. 

On the other hand, the critical state void ratio at a given 
* 

n  generally becomes larger as soil 

desaturates. This is because in the unsaturated condition, meniscus water lens are able to 

stabilize the soil skeleton, as discussed above [52]. By adopting the bonding variable , the 

unsaturated CSL is linked to the saturated one through the following semi-empirical equation 

[16]:  

( ) 1exp1 −+= ba
e

e

cs

c
  (7) 

where ec and ecs are the void ratios in unsaturated and saturated conditions at the same 
* 

n , 

respectively; a and b are model parameters. Based on equations (5) and (7), it is derived that 

[16]: 
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where () and () are the intercept and slope of the CSL, respectively. Both are dependent 

on the bonding variable [16]: 

( ) ( )  
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



−+=
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

ba

ba

s

s

 (9) 

When soil is wetted to saturated conditions,  becomes 0 and the values of () and () 

are equal to those in the saturated condition. As a result, equations (8) and (9) are applicable for 

both saturated and unsaturated conditions. 

In addition, Figure 1 shows the definition of a state parameter () proposed by Been et al. 

[1]. It is the difference between the current void ratio (e) and ec with the same values of 𝜎𝑛
∗ and 

𝜉: 

cee −=   (10) 

The values of  are positive and negative for interface states on the wet and dry sides of the 

CSL, respectively.  

2.3. Water retention behaviour 

The model of Van Genuchten [47] is used to simulate the water retention behaviour of 

unsaturated soils:  

1

2)(1
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+=   (11) 

where m1, m2 and m3 are soil parameters. Parameters m1 and m2 govern the desorption/ 

adsorption rate and parameters m3 is closely related to air-entry value. Equation (11) does not 

incorporate the influence of void ratio and hydraulic hysteresis for simplicity, considering that 
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the coupling between hydraulic hysteresis and mechanical behaviour of unsaturated interfaces 

has not been well studied experimentally. This equation can be further modified, when more 

experimental evidence is available.  

2.4. Elasto-plasticity 

The increments of normal and shear strains at the interface are defined as follows: 
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  (12) 

where un is the normal deformation at the interface (a positive value means contraction); ut is 

the tangent displacement at the interface (i.e., the relative displacement between soil and 

structure); t is the thickness of the interface; dn is the total increment of normal strain; and dt 

is the total increment of shear strain. Variations of the two variables are predicted using the 

bounding surface plasticity framework, as shown later. 

At each loading/unloading process, the incremental/decremental strains consist of elastic 

and plastic components: 
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  (13) 

where d
e 

n  and d
p 

n  are the elastic and plastic increments of normal strain, respectively; d
e 

t  and 

d
p 

t  are the elastic and plastic increments of shear strain, respectively. For each strain variable, 

its elastic and plastic components are determined using a decoupled approach. 

The elastic strains are calculated as follows: 
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where Dn and Dt are the elastic normal and tangent moduli for the interface, respectively.  

The plastic strains are expressed as:  
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  (15) 

where t is the loading index associated with shearing. It is determined by using the condition 

of consistency and the hardening law. Parameter dt is the dilatancy defined as the ratio of plastic 

normal strain to plastic shear strain during the shearing process, and it is obtained from the flow 

rule. Note that equation (15) is based on two assumptions: (1) the plastic normal and shear 

strains under constant stress ratio compression are assumed to be zero; (2) the plastic normal 

and shear strains upon drying/wetting is indirectly considered by the shearing mechanism, 

which is associated with a change in /
* 

n  and/or a change in the bonding variable . The above 

assumptions keep the model simple and minimize the number of soil parameters, while it is still 

able to well capture key features of the shear behaviour of an unsaturated interface, as shown 

later.  

2.5. Elastic moduli 

According to equation (14), two stiffness parameters (Dn, and Dt) are required to compute 

the incremental elastic strains. Similar to the model of Liu et al. [33] for saturated interfaces, 

the stiffness parameters Dn and Dt are calculated using the following formulations [26]: 
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RDD tn =   (17) 

where Dt0 is a parameter depending on the inherent property of an interface; R is the ratio of 

elastic normal modulus to elastic shear modulus. According to some previous studies on 

unsaturated soils, the elastic moduli are significantly affected by suction [39,40]. Equations (16) 

and (17) assume that suction is able to affect the elastic moduli of an interface by increasing the 

effective normal stress.  

2.6. Bounding and yield surfaces  

As summarized and illustrated by Dafalias [10], the main feature of bounding surface 

models is the dependency of plastic modulus on the distance between actual and “imaged” stress 

states. In addition to this main feature, each bounding surface model has some special features 

regarding the definition and description of bounding surface. The current model adopts the 

approach of Wang et al. [50]. Two bounding surfaces are defined in the 𝜎𝑛
∗ − 𝜏 plane, as shown 

in Figure 2. The first one is the maximum prestress memory bounding surface, described as 

*

nmt MF  −=   (18) 

where Mm is the maximum stress ratio of the interface in the stress history. During primary 

shearing, the bounding surface Ft rotates about point O with the size controlled by Mm. During 

other loading/unloading paths, the bounding surface Ft does not change if the stress state has 

not reached the bounding surface.  

The other one is the so-called failure bounding surface, which is mathematically defined as  
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*

nbt MF  −=   (19) 

)exp( bb nMM −=   (20) 

where Mb is the attainable peak stress ratio (failure stress ratio) [11]; nb is a positive model 

parameter. The value of 𝑀𝑏 depends on the current value of state parameter . When  is 

positive and negative, 𝑀𝑏  is below and above M, respectively. Different from the first 

bounding surface, the location of this bounding surface is affected by the loading/unloading 

inside it, because cyclic loading/unloading would induce a change in .   

The above two bounding surfaces are both used in the determination of loading index. The 

condition of consistency is imposed on the bounding surface Ft during primary shearing, as 

shown later. Note that this modelling approach has been used in many constitutive models for 

soils (e.g., [18,31,49]). The monotonic and cyclic shear behaviour of soils can be well captured 

by these previous models, suggesting that this modelling approach is efficient.  

In addition, a yield surface is defined in the 𝜎𝑛
∗ − 𝜏  plane using the following equation 

[11,15]: 

mf
n

t −−= 



*   (21) 

where  is a stress ratio depending on the stress history; m is a soil parameter. Equation (21) 

defines a “wedge”, which is the elastic threshold of an interface subjected to shearing. The size 

and location of this wedge are governed by m and , respectively. Following Dafalias et al. [11], 

a constant value of 0.01 is used for m in this study, meaning that the size of the elastic zone 

does not change. This simplification barely has any notable effect on the model prediction, 
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particularly in the range of large strains where stress state is on this yield surface. In addition, 

the evolution of this yield surface is described by the kinematic hardening law. When the stress 

state is on the wedge and shearing continues (i.e., d > 0 and d < 0 at the upper and lower 

wedge lines, respectively, where dη is the change of stress ratio), soil behaviour is elastoplastic. 

Meanwhile,  changes to ensure that stress state remains on the yield surface (i.e., condition of 

consistency). Hence, d should be equal to d under the assumption of constant m [11]. For 

other cases, the interface behaviour is elastic and  maintains constant.  

2.7. Mapping rule  

Mapping rule is a very important component in bounding surface models. It is used to 

project the actual stress state onto the bounding surface to obtain an “imaged” stress state. The 

distance between the actual and “imaged” stress states affects different aspects of soil behaviour, 

such as the plastic modulus. The current model adopts a mapping rule originally proposed by 

Li [31] for saturated soils. The reverse stress ratio 𝜂𝑟, corresponding to the stress ratio at which 

there was the last change in the direction of shearing (i.e., the sign of d changed), serves as 

the projection center. The variable Mm is the “imaged” stress ratio. Based on this mapping rule 

(see Figure 2), two Euclidian “distances” (t andt) are defined: 

r −=t   (22) 

rmM  −=t   (23) 

where  is the current stress ratio /
* 

n ; The ratio of these two Euclidian “distances” (𝜌𝑡 𝜌̅𝑡⁄ ) is 

often used to model the influence of stress history on the dilatancy and plastic modulus [11]. 

The value of 𝜌𝑡 𝜌̅𝑡⁄  is very small immediately after changing the direction of shearing. Upon 
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subsequent shearing in the same direction, the value of 𝜌𝑡 𝜌̅𝑡⁄  continuously increases until 1, 

when η becomes equal to Mm.  

In addition, it should be pointed out that according to this mapping rule, small fluctuations 

of stress during shear reversal would require an update of 𝜂𝑟  and therefore induce numerical 

errors. To avoid this problem, 𝜂𝑟  is not immediately updated upon stress reversal. The update 

is made only when soil stress state reaches the yield surface, where 𝜌𝑡 𝜌̅𝑡⁄   is non-zero. 

Consequently, numerical errors induced by small fluctuations of stress inside yield surfaces 

could be effectively eliminated in the proposed model. This is one of the advantages to 

incorporate the yield surface even though a constant and small m is used. 

2.8. State-dependent dilatancy 

The dilatancy (or flow rule), which corresponds to the variable dt in equation (15), is a very 

important aspect of the interface behaviour and boundary value problems. For instance, in pile 

engineering, the interface dilatancy would affect the normal stress acting on the pile and hence 

affect shaft resistance of the pile. The dilatancy of an interface can be modelled in a similar 

approach to that used for soil dilatancy, as illustrated by Liu et al. [33].  

So far, many formulations have been reported for describing the dilatancy of saturated and 

unsaturated soils. Li et al. [32] developed the theory of state-dependent dilatancy, which was 

then extended by Chiu et al. [8] from saturated to unsaturated conditions. During primary 

shearing (𝜌̅𝑡 𝜌𝑡⁄ = 1), the dilatancy is expressed as 

)(0 −= dt M
M

d
d   (24) 

)exp( dd nMM =   (25) 
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where 𝑑0 is a soil parameter; nd is a soil parameter which generally takes a positive value; Md 

is the stress ratio at which phase transformation occurs during primary shearing (i.e., on the 

bounding surface with 𝜌̅𝑡 𝜌𝑡⁄  = 1). If the void ratio decreases (i.e., a larger density), equations 

(10) and (25) predict a smaller  and a lower Md. Consequently, phase transformation takes 

place at an earlier stage of shearing.  

Following Li [31], for stress path other than primary shearing, equation (24) is modified by 

incorporating the term √𝜌̅𝑡 𝜌𝑡⁄ :  

)(0 



−=

t

t
dt M

M

d
d   (26) 

Equation (26) suggests that at any particular value of , the value of dt is greater (more 

contractive) for stress states inside the bounding surface ( 𝜌̅𝑡 𝜌𝑡 > 1⁄  ) than during primary 

shearing on the bounding surface (𝜌̅𝑡 𝜌𝑡 = 1⁄ ). The incorporation of 𝜌̅𝑡 𝜌𝑡⁄  can better capture 

soil behaviour under cyclic shear [31]. 

2.9. Hardening law  

The loading index t in equation (15) is determined using the condition of consistency and 

hardening law. As explained in the section 2.6, the condition of consistency is imposed on the 

bounding surface Ft during primary shearing. Similar to the work of Chiu et al. [8], Mm is 

considered as the hardening parameter, and the hardening of the bounding surface Ft only 

depends on the plastic volumetric strain due to primary shearing. Under this assumption, during 

primary shearing, when yielding is occurring with the stress state on the bounding surface Ft, 

the condition of consistency suggests that  
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Similar to state-dependent models for soils [8,32,55], a plastic modulus (𝐾𝑡
𝑝
) is introduced 

and defined as follows:   
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By substituting equation (28) to (27), it follows that, for primary shearing, on the Ft 

bounding surface 
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This equation can be used to determine the loading index t in equation (15). It is clear that 

for a given stress increment, the value of t is controlled by the plastic modulus. During primary 

shearing, a state-dependent plastic modulus is adopted here: 

( )mb

m

tp

t MM
M

hD
K −=   (30) 

where h is a positive model parameter. Note that equations (29) through (30) has been derived 

solely for primary shearing paths, on the bounding surface. For elastoplastic paths inside the 

bounding surface, the bounding surface plasticity theory is used. These three equations can also 

be used for t, if appropriate adjustment is made for the definition of the plastic modulus 𝐾𝑡
𝑝
. 
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Equation (31) suggests that the value of 𝐾𝑡
𝑝
 is greater for stress states inside the bounding 

surface (𝜌̅𝑡 𝜌𝑡 > 1⁄ ) than during primary shearing on the bounding surface (𝜌̅𝑡 𝜌𝑡 = 1⁄ ). This is 
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consistent with experimental results that given the same stress increment, the plastic strain is 

smaller for stress states inside the bounding surface. Moreover, it should be noted that √𝜌̅𝑡 𝜌𝑡⁄  

and 𝜌̅𝑡 𝜌𝑡⁄  are used in equations (26) and (31), respectively. This can ensure that the predicted 

value of d𝜀𝑛
𝑝  is zero when 𝜌̅𝑡 𝜌𝑡⁄   approaches infinity (i.e., predicting essentially elastic 

behaviour immediately updating 𝜂𝑟). This is because as 𝜌̅𝑡 𝜌𝑡⁄  approaches infinity, although 

dt predicted by equation (26) tends to approach infinity, it approaches infinity more slowly than 

the value of 𝐾𝑡
𝑝
 given by equation (31). In addition, the plastic strain increment is zero for a 

stress increment remaining inside the yield surfaces, even if the value of 𝐾𝑡
𝑝
 given by equation 

(31) is not infinite. 

3. Calibration of model parameters 

The proposed model has 15 parameters and they are summarized in Table I. Nine of them 

(Dt0, R, M, s, s, nd, d0, nb, and h) are required for the saturated and dry conditions, while 

another five parameters (m1, m2, m3, a and b) are used to incorporate unsaturation effects. The 

last one t is a parameter of interface characteristics. All of these parameters can be calibrated 

based on suction- and stress-controlled interface tests, as explained in the following paragraphs: 

(a). Three parameters are required for the water retention behaviour: m1, m2 and m3 (see 

equation (11)). These three parameters can be determined by fitting the measured WRC. At least 

one water retention test should be carried out.  

(b). The interface thickness t is assumed to be 5 mm in all simulations. Its value does not 

affect the model prediction much as long as the same value is also used in the calibration of 

model parameters [33].  
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(c). According to equations (16) and (17), there are two elastic parameters: Dt0 and R. 

Parameter Dt0 can be calibrated from the measured relationship between shear strain and shear 

stress at the interface. At the early stage of shearing, the ratio of /patm is small and the plastic 

strain is almost zero. Hence, equations (14) and (16) suggest that  

*0
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n

atm

t

t
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e

e

d

d
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+
=   (32) 

Similarly, equations (14) and equation (17) suggest that Dn and hence R can be determined 

through normal compression test: 

n

n

n
d

d
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

 *

=   (33) 

t

n

D

D
R =   (34) 

It can be seen from equations (32) to (34) that at least two interface tests at either saturated 

or unsaturated conditions are required to calibrate the elastic parameters, including one shear 

test and one normal compression test.  

(d). The proposed model requires five parameters to define the CSL of an unsaturated 

interface (i.e., M, s, s, a, and b), as shown in equations (6) and (9). The first three parameters 

are obtained from the CSL in the saturated condition, and the calibration of them requires at 

least two shear tests. M is calibrated from experimental results in the 
* 

n - plane, while s and 

s are determined from the slope and intercept in the e-ln
* 

n  plane. Parameters a and b are 

determined by fitting the CSLs in the unsaturated condition using equations (8) and (9), and at 

least two unsaturated shear tests are needed.  
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(e). Two parameters (nd and d0) (see equations (25) and (26)) are used to define the dilatancy. 

According to equation (26), when the interface response changes from contraction to dilation 

under primary shearing (i.e., t /t = 1),  is equal to Md. Therefore, equation (25) suggests that  









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M
nd




ln

1
  (35) 

The values of  and  corresponding to a point of phase transformation can be obtained 

from a shear test and then parameter nd can be calculated using equation (35). After determining 

nd, the other dilatancy parameter d0 can be determined by fitting the measured relationship 

between dilatancy and stress ratio during primary shearing: 

))exp((
0

 −
=

d

t

nM

dM
d   (36) 

It can be seen from equations (35) and (36) that one primary shear test in either saturated or 

unsaturated conditions are required to calibrate the two dilatancy parameters.  

(f). The plastic modulus requires two parameters (nb and h in equations (20) and (30)). Based 

on these equations, when the shear stress reaches the peak value (i.e., d/dt=0 and Mb = ), 

parameter nb can be determined as follows: 





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
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M
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


ln

1
  (37) 

The other hardening parameter h can be also determined through primary shear tests in 

constant-
* 

n condition. Under the assumption that the elastic shear strain is negligible, it is 

obtained that  

p

t

t

K
d

d
=
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  (38) 
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Substituting equations (20) and (30) into equation (38), with primary shearing 

corresponding to 𝜌𝑡 𝜌̅𝑡⁄ = 1 and 𝑀𝑚 = 𝜂, yields: 

 1)exp( −−
=





bt

t

nMD

dd
h  (39) 

Parameter h can be obtained by fitting measured stress-strain relationship using equation 

(39). Equations (37) and (39) suggest that one primary shear test is required to calibrate the two 

parameters for plastic modulus. This test should be carried out in the saturated and drained 

condition, so that 
* 

n  can be easily maintained constant. 

4. Model verification  

The proposed model is applied to simulate suction- and stress-controlled direct shear tests 

on various unsaturated interfaces, including a soil-steel interface [19], a soil-geotextile interface 

[25] and a soil-cement interface [21]. In addition, to evaluate the model performance for cyclic 

shear behaviour, a cyclic shear test on a saturated sand-steel interface [43] is also simulated. For 

each type of interface, the model parameters are calibrated using the above method and 

summarized in Table I. 

4.1. Shear behaviour of an unsaturated soil-steel interface 

Hamid et al. [19] developed a suction- and stress-controlled direct shear box for studying 

the shear behaviour of unsaturated soil-structure interfaces. The suction was controlled using 

the axis-translation technique [20]. They tested a soil-steel interface. The soil (Minco silt) was 

sampled from central Oklahoma with a median diameter D50 of 0.05 mm. The steel plate is 102 

mm in diameter and the maximum peak to valley roughness height Rmax is 0.38 mm. Three 
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different net normal stresses (105, 140 and 210 kPa) and suctions (20, 50 and 100 kPa) were 

considered.  

Figure 3 shows the measured and computed shear behaviour at a suction of 100 kPa and 

different net normal stresses of 105, 140 and 210 kPa. For the computed results, values of model 

parameters are given in Table 1. In all stress conditions, the computed and measured results are 

well matched. This implies that the model is able to well capture the influence of net stress on 

the interface shear behaviour. On the other hand, this series of tests were also simulated by some 

previous researchers [19,29,30]. The predictions of three different models are also shown in 

Figure 3 and the corresponding parameter values are summarized in Table II. These three 

models use different constitutive stress variables from the current model: Hamid et al. [19] used 

net stress and suction; Lashkari et al. [29] used the effective (average skeleton) stress, modified 

matric suction, and the bonding variable of Gallipoli et al. [16] as a complementary variable; 

the model II in Lashkari et al. [30] adopted the effective stress formulation of Khalili et al. [24] 

and another complementary variable (i.e., the bonding variable of Hu et al. [23]). For each 

model, the measured and computed results are fairly consistent. This analysis suggests that the 

performances of these models are all satisfactory. Compared with the previous models, less 

parameters are required in the current model.   

Figure 4 compares the measured and computed results at a net normal stress of 105 kPa and 

different suctions of 20, 50 and 100 kPa. It can be seen from the experimental results that when 

suction increases from 20 to 100 kPa, the peak shear strength increases by about 50%, while 

the increase in the critical state shear strength is much smaller (about 10-15%). The different 
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suction effects on the peak and critical state shear strengths are mainly because the dilatancy is 

more significant at a higher suction, as confirmed by the measured relations between tangent 

and normal displacements. Furthermore, the observed suction effects on the dilatancy can be 

well explained using the proposed model. When suction increases, the critical state line in the 

𝑒 − 𝑙𝑛𝜎𝑛
∗ plane shifts upwards (i.e., exhibiting a larger void ratio at the same 

* 

n ), as shown in 

equation (9). As a result, the state parameter of the interface in a given stress and void ratio 

condition becomes lower. The interface is therefore more dilative (see equations (25) and (26)) 

and shows a larger peak shear strength (see equations (20) and (30)).  

4.2. Shear behaviour of an unsaturated soil-geotextile interface 

Figure 5 and Figure 6 show the shear behaviour of an unsaturated soil-geotextile interface. 

The experimental results were reported by Khoury et al. [25]. The test soil is non-plastic and 

has a grain size distribution similar to that of fine sandy silt, with a D50 of 0.071 mm. For the 

geotextile (102 mm in diameter), the maximum peak to valley roughness height Rmax is 0.3 mm. 

Three different net normal stresses (50, 100 and 300 kPa) and suctions (20, 50 and 100 kPa) 

were applied in their tests. Using model parameter values given in Table 1, the computed and 

measured results are well matched in all stress and suction conditions, demonstrating the good 

capability of the proposed model in simulating the shear behaviour of the unsaturated soil-

geotextile interface.  

It should be noted that, at a net stress of 100 kPa, the shear strength of the soil-geotextile 

interface decreases as suction increases from 50 kPa to 100 kPa (see Figure 5(a)). This 

observation is different from the behaviour of the soil-steel interface presented in Figure 4. 
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These two trends are all captured by the proposed model in a unified approach. According to 

the proposed model, the discrepancy is mainly because the shear behaviour of unsaturated soils 

and interfaces is affected by not only suction but also degree of saturation [7]. The effective 

normal stress can either increase or decrease when suction increases (see equation (1)), 

depending on the desorption rate of the WRC. Therefore, it is important to incorporate both 

suction and degree of saturation in an unsaturated interface model.  

4.3. Shear behaviour of an unsaturated soil-cement interface 

Hossain et al. [21] investigated the shear behaviour of an unsaturated soil-cement interface 

using a suction- and stress-controlled direct shear apparatus. The test soil is completely 

decomposed granite (silty sand) sampled from Hong Kong, with a D50 of 0.08 mm. For a square 

cement surface (100 mm by 100 mm), the maximum peak to valley roughness height Rmax is 

0.8 mm. A suction range of 0 to 100 kPa and a stress range of 50 to 300 kPa were adopted in 

their studies.  

Figure 7 compares the measured and computed shear behaviour at a net normal stress of 

100 kPa and different suctions of 0, 50 and 100 kPa, with model parameter values listed in Table 

1. Key features of the shear behaviour, such as the increase of dilatancy and peak shear strength 

with increasing suction, are all well predicted by the new model. This is mainly attributed to the 

proper consideration of suction effects, as discussed above.  

Figure 8 shows the measured and computed shear behaviour at saturated condition. Three 

levels of effective normal stress are considered: 50, 100 and 300 kPa. The measured results 

show that as the effective normal stress increases, the interface becomes stronger and more 
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contractive. This influence of effective normal stress is well captured, mainly attributed to the 

proper formulations for the critical state shear strength and dilatancy (equation (26)).  

4.4. Cyclic shear behaviour of a saturated sand-steel interface 

Shahrour et al. [43] investigated the behaviour of a saturated sand-steel interface under 

monotonic and cyclic shearing. Monotonic shear tests were carried out in different conditions 

of effective normal stress (100, 200 and 300 kPa) and relative compaction (15% and 95%). 

Cyclic shear tests were carried out at effective normal stress of 100 kPa and relative compaction 

of 95%. Houston sand with a D50 of 0.7 mm was used in the tests, but the value of Rmax for the 

steel surface was not reported. As shown in Figure 9, the measured and computed results show 

great consistency under both monotonic and cyclic shearing. In future studies, the proposed 

model should be further verified using test data from cyclic shear tests on unsaturated interfaces, 

which is currently not available in the literature.  

The above comparisons demonstrate that the proposed model is able to well capture the 

behaviour of saturated and unsaturated interfaces. For numerical modelling of boundary value 

problems, this interface model will be implemented in a finite element code in a further study. 

In addition, the model of Zhou et al. [55] can be used in this code to model soils, which employs 

equivalent constitutive stress variables and an equivalent modelling approach as the current 

interface model. The numerical implementation of advanced models for unsaturated soils and 

interfaces is by no means a simple and trivial task, requiring robust computational algorithms. 

For instance, some researchers noted the non-convexity of the loading-collapse (LC) yield 

surface [44,51] along the suction axis. The lack of convexity could result in two problems: (a) 
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the elastic prediction could overshoot the plastic region on the non-convex side and therefore 

underestimate the plastic strain; (b) the algorithm could result in a non-unique plastic return 

mapping because there is more than one normal direction to the yield surface on the non-convex 

side [3]. The first problem can be readily solved by using a small load increment. More 

importantly, Borja [3] circumvented the second problems by treating suction as a strain-like 

variable and determining plastic return map in constant-s condition. The formulations of Borja 

[3] has been seamlessly implemented by Borja et al. [6] using the return mapping algorithm. 

These constitutive formulations and algorithms would be helpful in future numerical 

implementations. 

5. Summary and conclusions 

A new bounding surface model has been developed for describing the elastoplastic 

behaviour of saturated and unsaturated interfaces. In this paper, the constitutive formulations, 

calibration of model parameters, as well as model verification are presented and discussed in 

detail.  

To verify the proposed model, it is applied to simulate suction- and stress-controlled direct 

shear tests on unsaturated soil-cement, soil-steel and soil-geotextile interfaces. Computed and 

measured results are fairly consistent. The models show good predictions of key features of the 

shear behaviour of saturated and unsaturated interfaces, including (1) the shear strengths at the 

critical and peak states are affected by suction; (2) the interface becomes more dilative as 

suction increases. In addition, as a preliminary attempt, the proposed model is used to model 

the cyclic shear behaviour of a saturated sand-steel interface. The measured and computed 
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results are fairly consistent. 
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Figure 1. Definition of the state parameter  in equation (10) 
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Figure 2. Schematic of two bounding surfaces and one yield surface  
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Figure 3. Comparisons between measured [19] and computed behaviour of a soil-steel interface 

at a suction of 100 kPa and various net stresses: (a)-(b): the current model; (c)-(d) model of 

Hamid et al. [19]; (e)-(f) model of Lashkari et al. [29]; (g)-(h) model Ⅱ of Lashkari et al. [30]  
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(a) 

 

(b) 

Figure 4. Comparisons between measured (M) [19] and computed (C) shear behaviour of an 

soil- steel interface at net normal stress of 105 kPa and various suctions 
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(a) 

 

(b) 

Figure 5. Comparisons between measured [25] and computed shear behaviour of a soil-

geotextile interface at net normal stress of 100 kPa and various suctions    
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(a) 

 

(b) 

Figure 6. Comparisons between measured [25] and computed shear behaviour of a soil- 

geotextile interface at a suction of 100 kPa and various normal stresses 
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(a) 

 

(b) 

Figure 7. Comparisons between measured [21] and computed shear behaviour of a soil-cement 

interface at net normal stress of 100 kPa and various suctions    
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(a) 

 

(b) 

Figure 8. Comparisons between measured [21] and computed shear behaviour of a soil- cement 

interface at zero suction and various effective normal stresses 
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(a)            (b) 

 

(c)           (d) 

 

(e)          (f) 

 

Figure 9. Monotonic and cyclic shear behaviour of a sand-steel interface tested by Shahrour et 

al. [43] at saturated condition: (a)-(b) Dr = 95%; (c)-(d) effective normal stress of 100 kPa; (e)-

(f) cyclic shear behaviour 
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Table I. Summary of model parameters and their values for various soil-structure interfaces 

Soil parameters 

Soil-steel 

interface 

[19] 

Soil-

geotextile 

interface 

[25] 

Soil-cement 

interface 

[21] 

Sand-steel 

interface 

[43] 

Water 

retention 

behaviour 

m1 1 0.5 1 NIL* 

m2 1 2.5 0.8 NIL* 

m3 (kPa) 400 20 200 NIL* 

Interface 

thickness 
t (mm) 5 5 5 5 

Elastic 

property 

Dt0 (kPa) 250 700 200 800 

R 2 3 4 1 

Critical state 

line 

M 0.5 0.6 0.75 0.68 

s 0.625 0.75 0.52 0.8 

s 0.03 0.04 0.05 0.07 

a 2 0.05 1.5 NIL* 

b 0.5 0.1 1.5 NIL* 

Flow rule 

d0 0.5 0.5 0.2 0.32 

nd
 1 5 3 0.8 

Hardening 

law 

h 0.8 0.5 0.2 1 

nb 8 6 1 1 

Note: * These parameters are not necessary in simulating saturated interfaces.  
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Table II. Parameter values used by models for a soil-steel interface tested by Hamid et al. [19]  

Model 
Model of Hamid et al. 

[19] 

Model of Lashkari et al. 

[29] 

Model Ⅱ of Lashkari et 

al. [30] 

Parameters 

and their 

values 

𝐾𝑟
𝑒 = 300 𝑘𝑃𝑎 

𝐾𝑛
𝑒 = 310 𝑘𝑃𝑎 

𝑀 = 0.54 

𝑒0 = 0.125 

𝜆 = 0.145 

𝑛𝑏 = 3 

𝑛𝑑 = 1.2 

𝐴0 = 0.65 

𝐴1 = 0.65 

ℎ0 = 0.4 

𝑎 = 25 

𝑏 = 4.3 

𝑆𝑟0 = 0.2 

𝛼𝑤 = 0.104 

𝑛𝑣 = 1.275 

Ω = 1.6 

𝐾𝑛 = 1000 𝑘𝑃𝑎 

𝐾𝑠 = 150 𝑘𝑃𝑎 

𝑛 = 4 

𝑎 = 17.4 

𝑏 = 2.85 

𝜉𝐷1 = 0.0318 𝑚𝑚 

𝜉𝐷2 = 0.0951 𝑚𝑚 

𝜇𝑝1  = 0.2796 

𝜇𝑝2  = 0.0635 

𝜇01  = 0.3479 

𝜇02  = 0.049 

𝜅1  = 0.4728 

𝜅2  = −0.0316 

𝜆(𝑠)  = 0.399 

𝜆1  = −5.2285 

𝜆2  = 29.4865 

 

𝐾𝑟
𝑒 = 281 𝑘𝑃𝑎 

𝐾𝑛
𝑒 = 292 𝑘𝑃𝑎 

𝑀 = 0.62 

Γ0 = 0.346 

𝜆0 = 0.081 

𝑎 = 145 

𝑏 = 1.336 

𝐴0 = 0.65 

𝐴1 = 0.40 

ℎ0 = 0.32 

𝑛 = 2.5 

𝑚 = 0.8 

𝑆𝑟0 = 0.2 

θ = 1.6 

𝛼𝑤 = 0.1045 

𝑛𝑣 = 1.275 

𝑠𝑎𝑒 = 13 𝑘𝑃𝑎 

 




