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ABSTRACT 

The fire event in a tunnel creates a rapid spread of heat and smoke flows in a long and confined 

space, which not only endangers human life but also challenges the fire-evacuation and firefighting 

strategies. A quick and accurate identification for the location and size of the original fire source is of 

great scientific and practical value in guiding fire rescue and fighting the tunnel fire. Nevertheless, it 

is a big challenge to acquire fire-source information in an actual tunnel fire event. In this study, the 

framework of artificial intelligence (AI) and big data is applied to predict the fire source in a 

numerical model of the tunnel. A big tunnel fire database of numerical simulations, with varying fire 

locations, fire sizes, and ventilation conditions, is constructed. Temporally varied temperatures 

measured by multiple sensor devices are used to train a long-short term memory (LSTM) recurrent 

neural network (RNN). Results demonstrate that the location and size of the tunnel fire and the 

ventilation wind speed can be predicted by the trained model with an accuracy of 90%. Sensitivity 

analysis is also carried out to optimize the database configuration and spatial-temporal arrangement of 

sensors in order to achieve a fast and reliable fire prediction. This work addresses the possibility of 

AI-based detection and prediction of fire source and hazard, thus, providing scientifically based 

guidance for smart-firefighting technologies and paving the way for future emergency-response 

tactics in a smart city. 
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AI artificial intelligence HRR heat release rate (MW) 

ANN artificial neural networks LSTM long short-term memory  

CFD computational fluid dynamics MSE mean squared error 

CNN convolutional neural network RNN recurrent neural network 

CVV critical ventilation velocity SVM support vector machine 

FDS fire dynamics simulator   
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1. Introduction 

Road tunnels are popular in modern cities and intercity transportation due to their efficiency in 

transport networks and recent advances in construction technologies. Although statistics show that the 

frequency of serious fire catastrophe in a specific tunnel is vanishingly small [1], the growing number 

of underground tunnels inevitably increases the risk of tunnel fire incidents, and any fire incident in 

such a confined and critical infrastructure has the potential to be catastrophic [2]. For instance, the 

Mont Blanc Tunnel fire in 1999 caused 39 fatalities, and the arson fire in a metro station in Daegu, 

South Korea, in 2003 caused 198 deaths and 146 injuries [3]. Tunnel fires may also cause severe 

damage to infrastructure and require enormous sums of money for repair and reconstruction including 

disruption of the local transportation network [4, 5]. Rapid emission of hot smoke and toxic gases 

during a tunnel fire makes timely and accurate identification of the fire characteristics of critical 

importance in guiding firefighting and rescue operations and mitigating infrastructure damage and 

other losses [5, 6]. 

Various types of fire-detection techniques have been adopted in practice for tunnel fire protection 

systems. For example, smoke particles produced during fires can be detected by light extinction 

sensors, although their reliability is questionable under poor air quality and visibility in tunnels [7]. 

Video-image-processing systems have witnessed a boom in recent years and have shown the 

outstanding capability for early fire detection of flame and smoke in tunnels [8–10]. However, low 

illumination caused by vehicle emissions limits the efficacy of such systems in tunnel fire detection. 

Furthermore, sophisticated algorithms need to be developed to exclude the interference of sunlight 

and vehicle lights on the video-image-processing systems to avoid false alarms [11]. Another widely 

used system is the line-type heat detector [12], which is capable of identifying the exact location of 

fires but has a high installation and maintenance cost [13]. Although fire locations in a tunnel could 

also be identified using a massive array of sensors, full-scale tunnel-fire experiments have shown a 

great deal of reduction in detection accuracy under longitudinal airflow [14]. Moreover, the 

identification of heat release rates (HRRs) is of great importance since the burning of different 

vehicles has different HRRs. Ventilation, as the most common tunnel fire safety operation, also has a 

major effect on the development of fire and the airflow of smoke and toxic gases. In summary, current 

fire detection systems are not smart enough to determine the fire characteristics [15], such as location, 

size, and ventilation conditions, which limit response options during a tunnel fire emergency [16]. 

To achieve real-time prediction of the development of compartment fires, the FireGrid framework 

[17] was proposed previously to collect real-time sensor data and predict the evolution of 

compartment fires based on a zone model. Benefitting from the evolutions of artificial intelligence 

(AI) and big data, data-driven methods especially artificial neural networks (ANNs), have been 

increasingly applied in fire safety engineering. To detect general fire incidents, Choi and Choi [18] 

proposed a system including a flame detector with a visual light camera. Fire detection was handled 

by solving a nonlinear classification problem with a support vector machine (SVM) classifier, but it 

has a high false-alarm rate. To solve this problem, deep convolutional neural networks (CNNs) have 

been developed [19, 20]. Without detailed engineering feature extraction, CNNs were claimed to 

automatically increase the fire-detection accuracy via deep learning. Deep CNNs also showed its 

capability in detecting large-scale wildland fire with geoinformatics data [21]. However, these 

methods are mainly based on camera images, and their feasibility under poor visibility needs further 

evaluation.  

Alternatively, sensors that can avoid the visibility problem could enable fast processing and real-

time forecasting [17]. For example, data acquired from multiple types of fire sensors, such as smog 
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sensor, CO sensor, and heat sensor, were used to train a 3-layer neural network for fire detection [22–

24]. Temperature, humidity, and gases collected from sensors were also used to train a simple 2-layer 

feed-forward fully connected neural network [25]. As another application of ANN, studies on gas 

source identification can provide valuable references for fire safety engineering. Li et al. [26] 

proposed a 3-layer feed-forward neural network  to determine the source location of contaminants. 

Kim et al. [27] used gas sensor data obtained from Computational Fluid Dynamics (CFD) models to 

train a recurrent neural network (RNN) long short-term memory (LSTM) model to predict the 

location of chemical leakage source. Qian et al. [28] predicted the diffusion rule of toxic gases using 

an LSTM model. The excellent performance of the LSTM model compared with the physical-based 

Gaussian diffusion model and the SVM model was also demonstrated. It could be possible to apply 

similar LSTM models on tunnel fire safety; however, none of the existing ANN models have been 

applied to tunnel fires. 

This paper presents the identification of fire characteristics, including fire location, fire size, and 

ventilation conditions, in a tunnel infrastructure using an LSTM model. Sensor temperature 

information obtained from CFD models is used for the training of this model. Fire location, heat 

release rate of the fire and ventilation conditions in the tunnel is then identified. 

2. Method framework 

2.1. Background of deep-learning algorithm  

RNN is specially designed for the prediction or classification of temporal data. Figure 1(a) shows 

the typical structure of RNN models. The loop structure can be unfolded into a chain of cells. It 

should be noted that the RNN cells are the same cell at various states, rather than different cells. The 

order-dependent data are put into the structure and reserved, and then the information hidden inside 

the sequence of data can be interpreted as the output of the structure. Though has been used in many 

areas such as speech recognition [29], the major limitation of RNN is the difficulty in treating with 

long pieces of sequence [30]. 

 

Fig. 1. Data processing in (a) typical RNN; and (b) a typical LSTM cell. 
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To handle this problem, Hochreiter [31] proposed a new type of RNN, i.e., LSTM, by introducing 

a specific internal structure. Figure 1(b) shows the analogy diagram of an LSTM cell comprising of 

three gates. When data are imported into the cell, the forget gate, input gate, and output gate together 

decide whether to block or pass it on, how to treat it, and how to output it, respectively [32]. The 

information inside the cell will be updated by forgetting and inputting gates. Therefore, after 

importing a piece of data sequentially, useful information can be remembered and translated for 

designed output. The data sequence is processed the same way as RNN shown in Fig. 1(a) by 

replacing the RNN cell with the LSTM cell. LSTM network has been demonstrated as a powerful 

network to effectively solve complex prediction problems [33]. In this paper, the LSTM network is 

adopted for tunnel fire identification. The detailed structure of the network is illustrated in Section 3.2. 

Figure 2 shows an overview of the proposed method framework to identify the fire source information 

in the tunnel. First, a large number of tunnel fire scenarios were simulated. Then the temperature 

histories measured by sensors were extracted from the simulation results to form a big database. 

Finally, the database was used to train an LSTM model to identify the fire source in tunnels. 

 

 

Fig. 2. Overview of the method framework: (a) CFD simulation; (b) Database generation; (c) LSTM 

model. 
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2.2. CFD modeling of tunnel fire 

2.2.1. Fire scenarios 

It would be ideal if adequate sensor data can be obtained from full-scale fire experiments or real 

tunnel fire incidents. However, the existing tunnel-fire data from the literature is not large enough or 

sufficiently well organized to support deep learning. Alternatively, a database formed by massive 

numerical simulation could enable AI-based fire forecasting. In this work, CFD-based numerical 

simulations and a numerical tunnel-fire database are adopted to demonstrate a tunnel fire, as shown in 

Fig. 3.  

The numerical model is established in Fire Dynamics Simulator (FDS) version 6.7 [34], which is 

developed by the National Institute of Standards and Technology. FDS is an open-source CFD tool 

using the large eddy simulation turbulence model. This CFD code has gained extensive validation and 

verification and has been widely used to simulate tunnel fires for research and design [35, 36]. Three 

parameters, i.e., the fire location, HRR, and outlet ventilation velocity, were considered. As a first-step 

demonstration, only 4 to 5 varieties were considered for each parameter to form an event library of 

100 cases. This event library can be enlarged for better performance of identification by incorporating 

more parameters, varieties, and tunnel configurations. 

 

Fig. 3. Illustration of the numerical model of tunnel fire and key parameters (unit: m). 

The location of the fire source plays a critical role in emergency response and firefighting 

activities. From the viewpoint of tunnel fire dynamics, the fire location controls the gas temperature 

distribution and smoke movement in tunnels [37]. To identify the fire hazard and facilitate prompt 

operations of fire suppression and rescue, it is essential to determine fire fuel location. In practice, five 

fire locations relative to the total length of the tunnel are randomly set 0.1, 0.2, 0.4, 0.6 and 0.8, that 

is, 16 m, 32 m, 64 m, 96 m, and 128 m, respectively, from the inlet on the left-hand side.  

The HRR is the most important parameter to describe the severity of a tunnel fire, while the 

magnitude of HRR varies in a large range, depending much on vehicle types. Specifically, the peak 

HRRs are 1.7-4.6 MW for passenger cars, 29-35 MW for buses, and 60-200 MW for tanker trucks, 

respectively [2, 3, 38, 39]. Since generally fire first undergoes a developing period before reaching the 

peak HRR, the early-stage vehicle fire should have a relatively lower HRR. In this paper, five HRR 

values of 5 MW, 10MW, 20 MW, 50 MW and 80 MW are assumed for different tunnel fire scenarios. 

HRR is assumed constant from the ignition of fire. 

Smoke, toxic gases and hot airflow produced from the fire threaten people trapped in the tunnel. 

To mitigate the fire hazard, the ventilation system has been regarded as the most important facility in 

tunnel fire safety design. For the current study, a simple and uniform longitudinal ventilation was 

applied to the tunnel exit on the right-hand side. The critical ventilation velocity (CVV) is the 

minimum velocity to prevent the back-layering of smoke in tunnels, and its value increases with HRR 
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[3]. For this tunnel, CVV can be calculated as 2.82 m/s, when HRR is 80 MW, by using the empirical 

correlation proposed in [40]. The ventilation speed is thus supposed as 0 m/s, 1 m/s, 2 m/s and 4 m/s 

to consider the variety of real ventilation conditions. Overall, 5 fire locations, 5 HRRs and 4 

ventilation conditions constitute 100 (= 5 × 5 × 4) fire scenarios. 

2.2.2. Model setup 

Prohibitive magnitudes of computational resources would be required for conventional 3-D 

modeling of full-scale tunnels. Thus, as a first approximation and demonstration, 2-D modeling was 

considered to be a better choice for its simplicity, efficiency and cost-effectiveness. The accuracy and 

efficiency of 2D modeling tunnel fires using FDS have been demonstrated in the literature [35, 41, 

42], and Fig. A1 demonstrates the similarity in the modelled temperature evolution between 2-D and 

3-D model. Considering a large number of cases that must be simulated, all the fire scenarios were 

computed with 2-D models ignoring the variation in the transverse (𝑦) horizontal direction. 

Figure 3 shows the tunnel fire model built up using FDS. The tunnel is 160 m in length (𝑥), 6 m in 

width (𝑦), and 6 m in height (𝑧), which mimics the full-scale road testing tunnel at Sichuan Fire 

Research Institute, China. The thermal boundaries of tunnel surfaces were set as default inert wall 

with the temperature fixed at ambient temperature of 20 ℃. The left exit of the tunnel was set to open. 

The right exit was also set as open boundary if ventilation equals zero; otherwise, it was set as a 

constant value of the ventilation speed in the direction of positive x-axis to exhaust the smoke and 

gases produced. The inner surfaces of the tunnel were assumed as perfect smooth with roughness set 

as 0. The fuel representing a burning vehicle was modeled with a rectangular burner of 3 m along the 

x-axis and 6 m along the y-axis. The burner was located 0.5 m above the ground to mimic a vehicle 

fire. A constant value of HRR from the ignition of the fire was specified for the burner. 

The grid size is a key parameter for the accuracy and computational speed of modeling using 

FDS. The non-dimensional expression D*/δx is a criterion to evaluate the quality of grid resolution, 

where D* is the characteristic fire diameter, and δx is the nominal length of cell edge [43]. Studies 

showed that accurate predictions of airflow velocity and temperature could be achieved when D*/δx 

was no smaller than 10 in fire regions [44]. Then, the calculated maximum cell size changed from 0.2 

m to 0.54 m with the increase of HRR from 5 MW to 80 MW. The same cell size was deployed in 

both x- and z-axis.  

The same mesh method is adopted for all the fire models. In each fire model, the whole 

computational domain was divided into three regions. The region within 20 meters to the center of the 

burner in the x-axis was meshed with smaller cells of 0.05 m, while the remaining two regions had a 

larger cell of 0.2 m, which conformed to the calculated mesh size. The y-axis was meshed with a 

single cell throughout the tunnel for 2-D modeling using FDS. Thus, the total number of cells was 

69,000 for all cases. Each tunnel fire scenario was calculated for 300 s, which was long enough for all 

fire scenarios to reach the steady stage, where temperatures at different locations of the tunnel evolves 

periodically (see more details in Fig. A2). Temperature sensors, which measure the gas temperature 

distribution, were evenly distributed 0.1 m lower from the tunnel ceiling with an interval of 1 m. The 

temperature was output at every one second. 

2.2.3. Database generation 

For each of the 100 CFD simulations, temperatures measured by 160 sensors during a period of 

300 s from the beginning of the simulation with an interval of 1 s can be recorded and stored in a data 

sheet. Figure 4 shows the flow chart to generate the database for the training of the LSTM network. 

Then, each data sheet could be cut into 241 data samples through sweeping, each of which has a 
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temporal length of 60 s. The 241 data samples multiplying 100 scenarios form a database having 

24,100 samples. 

With supervised learning, each sample should be labeled with an expected output of the LSTM 

model, and this was done accompanied by the data segmentation. Here in this paper, the output is the 

fire location, HRR and ventilation. Then, all the labeled samples were randomly split into a training 

dataset, a validation dataset and a test dataset with a scale of 60%, 20%, and 20%, respectively. The 

training dataset is used for training the model, the validation dataset is used to evaluate the fitted 

model while training, and the test dataset is used to estimate the quality of the fitted model after 

training. 

 

Fig. 4. Process of datasets generation. 

2.2.4. Optimization of sensor allocation 

In practice, it is very costly to install and maintain many temperature sensors, such as 

thermocouples, especially for a long tunnel. Moreover, for data collection, too many redundant data 

will be produced if data collection is too frequent, such as every second, which may slow down the 

data processing. While valuable information would be missed if the insufficient data is collected, 

which may delay the detection and subsequent firefighting operation. For real-time fire prediction, a 

balance between the size of data and the speed of processing is required based on a rational 

arrangement of sensors. 

 

Fig. 5. Optimization for sensor allocation: (a) spatial factors; (b) temporal factors. 
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Figure 5 shows seven factors of sensor data that are evaluated for the accurate identification of 

tunnel fires. That is, three spatial factors in Fig. 5a, (1) sensor location, which is the distance from the 

left tunnel to the left sensor, (2) sensor region, in which area the sensor is located, and (3) sensor 

separation, which is the separation between adjacent sensors; and another four temporal factors, (4) 

sample period, during which the data will be trained in a sample, (5) start of data collection, which is 

the start time to collect data, (6) collection duration, during which data are collected, and (7) 

collection interval, which is the interval of data collection, in Fig. 5b, are considered. The number of 

temporal points in a sample equals the sample period divided by the collection interval. Overall, 7 

groups containing 72 cases are studied. More detailed information on all the cases is shown in Table 

A1 of the Appendix. Besides, a study case using all these simulation results is marked as the 

benchmark case. The default values for the 7 factors are 0 m, 160 m, 20 m, 10 s, 0 s, 30 s, 1 s, 

respectively. For clear showing, default values are not displayed unless otherwise specified. The 

model of the benchmark case was trained first, and the models for each case were trained individually. 

The influences of these factors on the accuracy of predicting tunnel fire (i.e., location, HRR, and 

ventilation velocity) are evaluated group by group. To quantify the factor’s sensitivity on prediction in 

each group, only the value of the corresponding factor changes while keeping the values of the 

remaining factors constant, i.e., the method of controlling variable. However, factor values in a 

current group are determined based on study on previous groups; thus, they may vary among groups. 

 

Fig. 6. Model development and validation process: normalization and divide the database; build up the model; 

train the model; calculate the metrics. 

https://doi.org/10.1007/s10694-020-00985-z
https://doi.org/10.1007/s10694-020-00985-z
https://doi.org/10.1007/s10694-020-00985-z


X. Wu, Y. Park, A. Li, X. Huang, F. Xiao, A. Usmani (2020) Smart Detection of Fire Source in Tunnel Based on the 

Numerical Database and Artificial Intelligence, Fire Technology, https://doi.org/10.1007/s10694-020-00985-z 

9 

It should be noted that the training of all the cases uses the 100 CFD simulations, no further 

numerical simulations are needed. For data extraction shown in the first step in Fig. 4, only the 

columns corresponding to the selected sensor locations calculated from the spatial factors, and the 

rows corresponding to the collection time points calculated from the temporal factors are extracted. 

The following sample database and datasets for the model are still applied. 

2.3. LSTM model 

2.3.1. Model architecture 

In this section, a regression LSTM network model is built up for identifying fire scenarios in 

tunnels. Deep LSTM networks having more than three layers are difficult to train due to the 

potentially large number of parameters to be fitted [45]. This can be more challenging if the database 

is small. The proposed network (Fig. 2) has two LSTM layers, followed by a fully connected layer as 

the output layer. The input layer has 100 hidden states, among which the outputs of the last 10 states 

are transferred into the second layer. The output of the last state of the second layer is exported to the 

output layer. Overfitting problem could be caused if detailed characteristics or noise of the training 

data is also learned by the model. The performance of the model would then be too perfect on trained 

data meanwhile unsatisfactory on untrained data [46]. To decrease the possibility of overfitting, a 

dropout ratio can be set after each layer. In the current model, an initial dropout ratio of 0.1 [47] was 

set after each LSTM layer. 

The samples generated in the training dataset are then used to train the established model. For 

each sample, the LSTM unit in the input layer receives a vector of temperatures measured by sensors 

sequentially. The received data is then treated and passed on to the next state. A three-element vector 

(fire location, HRR, and ventilation speed) can be predicted by the unit in the output layer. The 

database used in this study is available on Github: https://github.com/wu-xiqiang/Prediction-of-Fire-

Source-in-Tunnel. The programme is written using Python 3. The deep learning library Keras [54] and 

related third-party libraries are included in the modules. 

2.3.2. Training settings 

It is critical to ensure that the training dataset, validation dataset and test dataset are representative 

of the overall distribution of the samples. Thus, all labeled samples were randomly divided into these 

datasets. As illustrated in Fig. 3 and Section 2.2.1, the labels, i.e., fire location, HRR and ventilation, 

have evidently distinct range. It is also required to avoid the situation that the feature having a larger 

range would dominate the computation of similarity [48, 49]. Thus, the labels are individually 

normalized to make them have the same range between 0 and 1 with the MinMaxScaler function [50]. 

The mean squared error (MSE), root mean squared error (RMSE) and mean absolute error (MAE) 

are the most common optimized metrics for regression models. MSE calculate the squared error 

between target and predicted values, and it has been widely adopted due to its simplicity. RMSE is the 

root of MSE. MSE and RMSE are much similar except that they have different gradient. MAE 

measures the absolute differences between actual values and predictions. Compared with the other 

two metrics, MAE is insensitive to large deviations in the predictions. In the current study, MSE is 

used as the loss function to characterize how well the model behaves. The training of the model is 

conducted by minimizing the value of loss function (MSE in this case). The above metrics can also be 

used as performance metrics to evaluate the models. Though they can give the exactly values of error 

in predictions, they cannot tell whether a model needs to be further improved by just checking these 

values, e.g. we don’t know whether a model gaining an MSE of 0.02 is good enough or not. As 

another metrics, the coefficient of determination R2 is scale-free, meaning that it is independent of the 
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exact differences of the preditions, and performance of models can be directly evaluated compared 

with this value. Thus, R2 has been widely adopted for the regression model [51, 52]. In this method, 

MSE and R2 are two criteria that can be used for evaluating the fire prediction. It should be noted that 

R2 is just calculated during the training but is not used for training the model. For the optimizer 

method, RMSprop is selected as the optimizer method for its outstanding performance in [28]. 

Figure 6 summarizes the detailed process of training the proposed model. Linear activation is 

adopted for the last full connected layer [53]. Apart from the dropout technique, the choice of training 

epochs can also tackle the overfitting problem. The loss of the model prediction showed a decreasing 

but then an increasing trend with the increase of training epochs [27]. For the current LSTM model, 

preliminary study showed that 500 epochs would be enough to obtain a minimum loss while not 

causing overfitting. The batch size determining how many samples would be trained in an iteration 

should better be large while this is limited by the physical memory of the computer or server on which 

an ANN is trained.  

3. Results and discussions 

3.1. Benchmark case 

Figure 7 shows the calculated performance evaluations, including R2 and loss on training dataset 

and validation dataset for benchmark case evolving with training epochs. The performance 

evaluations on three fire parameters of fire location, HRR, and ventilation speed are also calculated 

individually, as shown in Fig. 7a-c. Their overall loss, which equals to the average of three individual 

losses, is the loss function minimized in the training process (Fig. 7d). Similarly, the overall R2 uses 

the average for three parameters (Fig. 7e).  

(a) Fire location (b) HRR (c) Ventilation velocity 

   

(d) Overall R2 (e) Overall loss 

  

Fig. 7. The variable R2 with (a) fire location, (b) HRR, (c) ventilation speed, (d) average of three 

tunnel fire parameters, and (d) the overall loss during the training process. 
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Compared to HRR and ventilation velocity, R2 of fire location increases fastest with the training 

epochs, indicating that it is easiest to train and find the fire location inside the tunnel. From the 

viewpoint of tunnel fire dynamics, this is due to the more evident distinctions of temperature 

distribution in the tunnel caused by scenarios with fire located at different positions. Despite that, the 

identification of all three fire information parameters can be trained more effectively, and finally 

converges to a high value of R2 approaching 100%. 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 8. Distributions of the prediction on: (a) fire location; (b) HRR; and (c) ventilation. 

Figure 7e also shows that the overall loss decreases with the number of training epochs on the 

training dataset, as expected. The training efficiency is high at the starting of training, while no 

apparent minimization is observed after epochs of 200 epochs, which demonstrates that the model has 

converged, and the pre-set training epoch number of 500 is sufficiently large. The loss on the 
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validation dataset is comparable to that on the training dataset, meaning that the overfitting problem 

was not caused. The validation loss is even smaller than training loss due to the setting of dropout 

after each LSTM layer. The loss fluctuates slightly on the training dataset, while more drastic 

fluctuations were found on the validation dataset, which is a common consequence of machine 

learning [55, 56]. 

To further check the detailed performance of the model on all the samples, the predictions of fire 

information corresponding to respective factor values are counted, and the frequency distribution is 

illustrated in Fig. 8. The predicted values have shown a certain distribution around, rather than equal 

to the actual values. The varieties of the distribution are larger for the prediction of HRR and 

ventilation. As revealed in Fig. 7, the converging speeds of HRR and ventilation are slower than the 

fire location, larger variations could be attributed to the similar nature of temperature distribution near 

the ceiling of the tunnel. It should be noted that despite the uncertainty in prediction, the prediction 

attaining the highest frequency is very close to the respective actual value, and the distribution is only 

confined to a small range around it. 

3.2. Sensor optimization 

The overall R2 of the cases in all groups are calculated, and the optimization of sensor allocation 

is done by comparing their R2 values. Specifically, more attention should be paid on the factors 

sensitive to changes, and the increasing trend of R2 points out the direction for optimization. 

(a) (b) 

  

(c) 

 

Fig. 9. R2 of three spatial factors for optimization: (a) sensor location, (b) sensor region, and (c) 

sensor separation. 
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Figure 9 compares the value of R2 on the training dataset for spatial arrangement factors of 

temperature sensors. In Group 1, the sensor location varies from extreme left to the extreme right of 

the tunnel. As shown in Fig. 9a, the prediction is more accurate by placing these sensors near the 

middle area of the tunnel, which may be for the reason that these sensors can acquire plenty of 

information when the fire is located in the middle of the tunnel. Meanwhile, they are also capable of 

detecting the fire when the fire is placed on the side of the tunnel. Based on this finding, the sensors in 

Group 2 are positioned centering in the middle of the tunnel. The sensor region expands from 10 in 

the center to the whole tunnel.  

As illustrated in Fig. 9b, the sensor region has a significant influence on predicting accuracy. The 

value of R2 increases almost linearly until a range of 80 m in Case 13 but shows only a slight increase 

after then. The sensor region is then set as the whole tunnel, and the sensor separation changes 

between 2 m and 40 m in Group 3. As shown in Fig. 9c, the prediction will not be influenced much if 

the separation is no larger than 20 m. The sensor separation of 20 m is then adopted in the following 

study on the factors influencing the temporal collection of data. 

 

(a) (b) 

  

(c) (d) 

  

Fig. 10. R2 of four temporal factors for optimization: (a) sampling period, (b) start of data collection, 

(c) duration of data collection, and (d) interval of data collection. 

The influence of the sampling period is estimated in Group 4 (Fig. 10a). Two collection duration, 

i.e., 30 s and 60 s, are evaluated. A longer duration can be cut into samples with a larger period. 

Generally, a larger sampling period will result in a better prediction. It is because a larger sampling 
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period carries more information about a specific fire scenario, which specializes in the scenario for 

identification. The predictions will be accurate if the sample period is no smaller than 10 s. 

In Group 5, the start of the data collection changes from ignition to 240 s after ignition. As 

illustrated in Fig. 10b, the predicting accuracy is not obviously influenced by the delay of the start of 

data collection. In Group 6, the collection duration changes from 15 s to 240 s (Fig. 10c), overall, the 

prediction approximately becomes more accurate for a longer duration of data collection. The 

predicting accuracy will not increase obviously if the duration is longer than 90 s.  

In Group 7 (Fig. 10d), the data interval for collection durations varying from 30 s to 120 s is 

evaluated. A smaller interval produces a more accurate prediction. However, Case 46, with a sampling 

period of 20 s and an interval of 2 s, attains a comparable accuracy as Case 41, with a sampling period 

of 10 s and an interval of 1 s. It should be noted that the number of temporal points for Case 46 and 

Case 41 is the same at 10. Thus, the predicting accuracy could be attributed to the number of data 

collected, rather than the interval. Nevertheless, for a limited data collection period, the influence of 

the number of data collected can be interpreted as the interval of data collection. 

3.3. Suggestions for tunnel fire identification 

Based on the evaluation of the factors considered in the optimization of sensor allocation, 

suggestions can be given on the sensor allocation for identifying key fire scenarios in tunnels. Sensors 

should be arranged throughout the tunnel with a separation of 20 m. The temporal collection of data 

depends on practical requirements. This evolves criteria of acceptable accuracy, the delay for 

identification, and the interval of data collection. The suggestions are mainly made based on Figs. 9 

and 10. For example, the criterion of acceptable accuracy is 90%, and as early identification, the delay 

for identification of the tunnel fire scenario after ignition should be no longer than 30 s, then the 

interval of data provided by the sensor should be smaller than 5 s. In this case, we can identify the 

tunnel fire scenario with the parameters in Case 46 attaining accuracy of 92%.  

(a) 

 

(b) 
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(c) 

 

Fig. 11. Distributions of the prediction for: (a) fire location; (b) HRR; and (c) ventilation when 

acceptable accuracy is 90%. 

Figure 11 shows the distribution of the frequencies predicted for individual factors on the test 

dataset. Compared with those of the benchmark case shown in Fig. 8, distributions predicted by Case 

46 is more dispersive, which could be attributed to the lower accuracy of Case 46. However, it should 

be noted that despite its vast variety in distribution, the distributions are still confined to respective 

actual values, and the predicted value achieving the highest frequency is also very close to the actual 

values. 

The closeness of the predicted fire source to the actual fire scenario indicates that the proposed 

LSTM network is a promising method for identifying the fire sources in tunnels. However, better 

performance of the model could be achieved by tuning the numbers of LSTM layers, fully connected 

layers and units in each layer. The analysis assumes that the CFD simulations are well representative 

of the evolution of real tunnel fire scenarios. Further training of the proposed model can be done using 

data obtained from the real fire or large-scale fire tests. Regarding more rational suggestions for 

practical engineering, further optimization can be made by analyzing more cases. Also, the feasibility 

of these suggestions for a tunnel with different shapes or dimensions needs further evaluation. 

4. Conclusions 

This study demonstrates the feasibility of AI and big data on identification fire source in tunnels. 

An LSTM model with two LSTM layers and a fully connected layer is proposed, and a big numerical 

database is established by the sensor temperature measurements of 100 tunnel-fire scenarios. The 

database was then used to train the proposed LSTM model. Results show that the proposed LSTM 

model is capable of identifying the fire sources in tunnels. Though the predicted values showed a 

certain frequency distribution around the respective actual value, the distributions were very 

condensed and the predicted value having the highest frequency was quite close to the actual value. 

Overall, the fire information including fire location, HRR and ventilation can be well predicted. A 

predicting accuracy of 94% can be achieved when the sensors are deployed over the whole tunnel 

with a separation of 1 m. 

The optimization showed that the sensor region has an evident influence on predicting accuracy, 

while the influence of sensor separation and the sensor location are relatively insignificant. Therefore, 

it is suggested that the sensors are evenly distributed throughout the tunnel with a separation of 20 m. 

The amount of data collected or the interval of data collection has a major effect on the performance 

of the model provided with a limited collection duration, while the influence of the start of collection 

and the duration are negligible. Generally, a prediction with an accuracy of greater than 90% can be 

made if provided with no less than 10 sequentially collected data. 
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The practical design of fire source identification in tunnels can be conducted with the findings on 

the factors considered in the optimization. Once the requirements of a satisfactory predicting accuracy 

and an acceptable delay of prediction are proposed, the largest interval of data collection by the 

sensors can be determined. To provide more rational suggestions, a further detailed evaluation of the 

sensor allocation is necessary for a tunnel with different shapes or dimensions. This work addresses 

the possibility of AI-based detection and prediction of fire source and hazard, potentially providing 

scientifically-based guidance for smart-firefighting technologies and paving the way for future 

emergency-response tactics in a smart city. 
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Appendix 

Figure A1 compares the temperature measured at the middle of the tunnel in 2 and 3D modellings 

when the fire location, HRR and wind equal to 64 m, 50 MW and 1 m/s, respectively. Roughly they 

coincide with each other though the temperature curve of 2D modelling shows a slightly larger 

fluctuation. Considering that the main goal of this paper is to demonstrate the use of AI method in the 

prediction of fire source in tunnel rather than precisely modelling the fire behavior, it is rational to 

utilize 2-D modelling in this study. 

 

Fig. A1. Comparison of temperatures measured at the middle of the tunnel between 2 and 3D modeling. 

 

Figure A2 shows that the temperature measured at left exit, middle and right exit of the tunnel, 

indicating that temperature varies periodically after around 30 s. The steady stage is assumed to be 

reached when the temperature measured at various locations of the tunnel varies periodically.  

 

 

Fig. A2. Temperature measured at various locations when the fire location, HRR and wind equal to 64 

m, 50 MW and 1 m/s, respectively. 
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Table 1. Modeled tunnel fire cases for sensor allocation optimization 

Group Case 

Sensor 

location 

(m) 

Sensor 

region 

(m) 

Sensor 

separation 

(m) 

Sample 

period (s) 

Start of 

data 

collection 

(s) 

Collection 

duration 

(s) 

Interval of 

data 

collection 

(s) 

 Benchmark 0 160 1 60 0 300 1 

1  

Sensor 

location  

1 0 20 5     

2 20 20 5     

3 40 20 5     

4 60 20 5     

5 80 20 5     

6 100 20 5     

7 120 20 5     

8 140 20 5     

2 

Sensor 

region 

9 75 10 5     

10 70 20 5     

11 60 40 5     

12 50 60 5     

13 40 80 5     

14 30 100 5     

15 20 120 5     

16 10 140 5     

17   5     

3  

Sensor 

separation 

18   2     

19   10     

20   15     

21        

22   40     

4  

Sample 

length  

23    2    

24    5    

25    15    

26    20    

27    25    

28      60  

29    20  60  

30    30  60  

31    40  60  

32    50  60  

5 

Start of 

collection 

33     10 40  

34     20 50  

35     60 90  

36     90 120  

37     120 150  

38     180 210  

39     240 270  

6  

Collection 

duration 

40      15  

41      20  

42      90  

43      120  

44      180  
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22 

45      240  

7 

Time 

interval 

46    20   2 

47    20   5 

48    20   10 

49    50  60 2 

50    50  60 5 

51    50  60 10 

52    50  60 15 

53    50  60 20 

54    50  60 30 

55    80  90  

56    80  90 2 

57    80  90 5 

58    80  90 10 

59    80  90 15 

60    80  90 20 

61    80  90 30 

62    80  90 40 

63    110  120  

64    110  120 2 

65    110  120 5 

66    110  120 10 

67    110  120 15 

68    110  120 20 

69    110  120 30 

70    110  120 40 

71    110  120 50 

72    110  120 60 
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