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ABSTRACT Projective non-negative matrix factorization (PNMF) as a variant of NMF has received
considerable attention. However, the existing PNMF methods can be further improved from two aspects.
On the one hand, the square loss function that is intended to measure the reconstruction error is sensitive to
noise. On the other hand, it is non-trivial to estimate the intrinsic manifold of the feature space in a principal
manner. So current paper is an attempt that has proposed a new method named as robust ensemble manifold
projective non-negative matrix factorization (REPNMF) for image representation. Specifically, REPNMF
not only assesses the influence of noise by imposing a spare noise matrix for image reconstruction, but it also
assumes that the intrinsic manifold exists in a convex hull of certain pre-given manifold candidates. We aim
to remove noise from the data and find the optimized combination of candidate manifolds to approximate
the intrinsic manifold simultaneously. We develop iterative multiplicative updating rules for the optimization
of REPNMF along with its convergence proof. The experimental results on four image datasets verify that
REPNMF is superior as compare to other related state-of-the-art methods.

INDEX TERMS Non-negative matrix factorization, projection recovery, image representation, ensemble
manifold learning.

I. INTRODUCTION
Matrix factorization is a highly effective strategy for repre-
sentation learning. It aims to find two or more low-rank factor
matrices for which the product could closely approximate
the original high-dimensional data matrix. For one thing,
the dimension of decomposed factor matrices is often lower
than that of the original data matrix. This provides a com-
pact representation, which is beneficial to many subsequent
learning tasks, such as clustering. For another, because the
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learned latent representation can be represented by the corre-
sponding basis components, we could purposefully regularize
the factor matrices for specific assignments. Non-negative
matrix factorization (NMF) [1] is one of the most characteris-
tic techniques among matrix factorization. The non-negative
constraints may tend to a part-based representation in which
a zero-value represents the absence, and a positive-value rep-
resents the presence of a component. Therefore, NMF allows
a non-subtractive combination of parts to make a whole,
which is highly similar to the human perception mecha-
nism. NMF has demonstrated superior performance in image
representation [2]–[7].
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One limitation of NMF is that it fails to consider the out-
of-sample problem [3]. That is to say, NMF is not capable to
get the coefficient of any unseen instance. To get rid of the
limitations of standard NMF while inheriting all of its advan-
tages, Yuan et al. [3] developed an improved NMF, named
projective non-negative matrix factorization (PNMF), which
approximates the data matrix by its non-negative subspace
projection. Specially, PNMF learns the non-negative basis
matrix of the low-rank subspace and reputes its transpose as
the projection matrix. Due to the non-negative constraint of
the learned projection matrix, PNMF can obtain non-negative
coefficients for any new coming instance because the pro-
duction of a non-negative matrix and non-negative vector is a
non-negative vector. Moreover, PNMF has fewer parameters
and generates amuch sparser factor matrix, and thus, it is ben-
eficial to subsequent learning tasks, such as data clustering.

Both NMF and PNMF attempt to obtain new basis vec-
tors such that the data can be well represented. Data points
are typically sampled from a sub-manifold of the ambient
Euclidean space [8]–[10]. Therefore, considering the intrin-
sic manifold structure will be favourable for learning new
data representations. To address this issue, graph regularized
non-negative matrix factorization [2] and graph regularized
projective non-negative matrix factorization [11] were pro-
posed by adding the manifold regularizer on the new data
representations derived from NMF and PNMF, respectively.
Lu et al. [12] proposed projective robust non-negative matrix
factorization (PRNF) to make PNMF more robust. However,
in many real-world data analytic problems, data points might
be sampled from various distributions; hence, it is crucial to
estimate the intrinsic manifold in a principled manner.

To address this problem, we propose a novel method
termed Robust Ensemble manifold Projective Non-negative
Matrix Factorization (REPNMF) for image representation.
On the one hand, a sparse error matrix is introduced into
REPNMF to capture the noise such that the factorization
can extract more intrinsic information from the scoured
data. On the other hand, an assumption is made that intrin-
sic manifold is embedded in the convex hull of a set of
pre-given candidate manifolds [13]. The main purpose is to
find the combination of candidate manifolds to approximate
the intrinsic manifold. In this way, the local geometrical
structure of data can be better preserved because different
candidate manifold characters have different structural infor-
mation of the data. An iterative updating rule is generated
that repeatedly updates the projective matrix to optimize the
objective function. Furthermore, the convergence proof of
updating rule is presented. Experimental results on three face
datasets and one science-quality dataset (Chang’e 3 data:
Rover Pano-ramic Camera images [14], [15]) have shown the
superiority of REPNMF, and it can significantly outperform
related algorithms.

The rest of the paper is structured as follows. Section II
provides a short review of the related works. In Section III,
we introduce the proposed robust ensemble manifold projec-
tive non-negative matrix factorization method. In Section IV,

we report the experimental results with analysis. The paper is
summed up in section 5 with concluding remarks.

II. RELATED WORK
The section II is designed to give overview of related
works. This section starts with an explanation of commonly
mentioned notations in present paper.

A. COMMON NOTATIONS
In this paper, we use uppercase boldface letters to denote
matrices and lowercase boldface letters to denote vectors.Mij
indicates the (i, j)-th element of matrix M. The i-th element
of a vector a is denoted by ai. In the non-negative data matrix
X ∈ RM×N

+ , each column vector represents the feature vec-
tor of the corresponding item. Throughout the entire paper,
Frobenius norm of matrixM is represented as ||M||F .

B. NON-NEGATIVE MATRIX FACTORIZATION
Assumed a non-negative data matrix X ∈ RM×N

+ which
includes N data points inM -dimensional space and an exist-
ing positive integer K < min(M ,N ), NMF aims to obtain
two lower-rank non-negative matrices U ∈ RM×K

+ and V ∈
RK×N
+ the product of which could closely approximate the

original high-dimensional data matrix X:

JNMF = min
U,V
||X− UV||2F

s.t. Uik ≥ 0,Vkj ≥ 0, ∀i, j, k. (1)

Although NMF is jointly non-convex with respect to
U and V, it is convex with respect to U and V, respectively.
Thus, the optimization problem in Eq. (1) could be optimized
by efficient multiplicative update rules [16] as follows:

Uik = Uik
(XVT )ik
(UVVT )ik

, Vkj = Vkj
(UTX)kj
(UTUV)kj

(2)

It should be noted that the non-negative coefficient of
forecasted data point cannot be figured by NMF, because
NMF encounters challenge of out of the sample problem.

C. PROJECTIVE NON-NEGATIVE MATRIX FACTORIZATION
To eradicate the insufficiency of NMF to deal with out-of-
the-sample problem, Yuan et al. [3] developed projective
non-negative matrix factorization (PNMF). PNMF obtains
a non-negative projective matrix and projects the original
data matrix into a latent subspace that has lower dimensions.
Given the basis matrix U, PNMF regards UTX as the new
representation and employs UUTX for reconstruction data
matrix X. The objective function of PNMF is formulated as:

JPNMF = min
U
||X− UUTX|2F

s.t. Uik ≥ 0, ∀i, k. (3)

Since the objective function of JPNMF in Eq. (3) is not
convex in W, achieving the global minimum of PNMF is
impossible. The local minima of JPNMF is calculated using
the following updating rule [3]:

Uik = Uik
(VVTU)ik

(UUTVVTU+ VVTUUTU)ik
(4)
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It was revealed by Yuan et al. [3] that the local minima
can be found by objective function JPNMF according to the
updating rule Eq. (4).

D. AUTOMATED GRAPH REGULARIZED PROJECTIVE
NON-NEGATIVE MATRIX FACTORIZATION
NMF and PNMF fit data in Euclidean space, however the
intrinsic geometry of data remains unexplored. To address
this issue, Pei et al. [11] presented automated graph reg-
ularized projective non-negative matrix factorization. The
purpose behind AGPNMF is to reform the regular PNMF
that is done by combining automated graph regularization and
the PNMF decomposition. The main feature of this reformed
method is that AGPNMF instantaneously calculates the graph
weights matrix and operates a dimensionality reduction of
raw data. The model of AGPNMF is as follow:

JAGPNMF = min
H,S

||X− XHHT
‖
2
F+τTr(H

TLH)

+‖X− XS‖2F+αTr(S
TS)+ β‖S‖1

s.t. Hik ≥ 0, Sik ≥ 0, ∀i, k. (5)

In above equation τ , α, β are constants. Additionally, multi-
plicative update rule was designed by Pei et al. [11] proposed
to solve AGPNMF:

Sik = Sik
(XTX+ 1

2τHHT )ik

(XTXS)ik + 1
4τ ((HHT ))ik + (HHT ))ii +

β
2

(6)

Hik = Hik

−Bik +
√
B2
ik − 4AikCik

2Aik
(7)

where

Aik = (HHTXTXH+ XTXHHTH+ (τD)H)ik
Bik = −2(XTXH)ikHik

Cik = −
1
2
τ (RH)ikH2

ik

Pei et al. [11] have demonstrated that the objective function
JAGPNMF will obtain the local minima according to the updat-
ing rules Eq. (6),(7).

E. ROBUST PROJECTIVE NON-NEGATIVE MATRIX
FACTORIZATION
NMF, PNMF and AGPNMF are all susceptible to noise and
are unfit for feature extraction when the data are contami-
nated by noise. To increase the robustness of these methods,
projective robust non-negative factorization [12] (PRNF) is
developed for robust feature extraction. To capture the geo-
metrical structure of raw data, a graph regularization term
was introduced into PRNF. Additionally, PRNF introduced
a sparsity-inducing norm as sparsity constraints on the noise
matrix. RPNF is formulated as follow:

JRPNF
= min

U,E
‖X− UUTX−E‖2F+λ1 Tr(U

TXLXTU)+λ2‖E‖1/2

s.t. Uik ≥ 0,Eij ≥ 0, ∀i, j, k. (8)

where λ1 ≥ 0 and λ2 ≥ 0 are regularization parameters,
L = D−S and S is the weight matrix of the nearest neighbour
graph, Dii =

∑
Sij. and ‖E‖1/2 is defined as

‖E‖1/2=
M∑
i=1

N∑
j=1

e1/2ij (9)

An alternating scheme was designed by Lu et al. [12] to
optimize the objective function JRPNF :

Uik = Uik
(2XXTU+ λ1XWXTU)ik

(2EXTU+ 2UUTXXTU+ λ1XDXTU)ik
, (10)

Eij = Eij
(2X)ij

(2E+ 2UUTX+ λ2
2 E−

1
2 )kj

(11)

Lu et al. [12] have demonstrated that the objective function
JRPNF will obtain the local minima according to the updating
rules Eq. (10), (11).

III. ROBUST ENSEMBLE MANIFOLD PROJECTIVE
NON-NEGATIVE MATRIX FACTORIZATION
In this section, we develop a novel robust ensemble manifold
projective non-negative factorization (REPNMF) algorithm,
which takes into account the impact of noise and better cap-
tures the geometrical structure of the data simultaneously.

A. THE BASIC OBJECTIVE
PNMF [3] is an extension of NMF, but the squared loss used
in PNMF is sensitive to noise data. Typically, there are two
ways to deal with it. One involves using noise-robust loss
instead of squared loss as in PNMF. The other is removing
noise from the data. In this article, we choose the second
method. Inspired by Robust Principal Component Analysis
(RPCA) [17], the raw data matrix X can be decomposed as a
low-rank component and a sparse component. In fact, we can
find that the matrix U and UTX are all low-rank matrices.
Intuitively, we can design a sparse component matrix E to the
objective function such that the low-rank component can lead
to a better reconstruction of the underlying structure. Thus,
the basic objective function can be formulated as:

JBasic = min
U,E
‖X− UUTX− E‖2F+β‖E‖1

s.t. Uik ≥ 0, ∀i, k. (12)

where ‖E‖1=
∑

ij|Eij| presents the l1 norm, which ensures
the sparseness of the matrix.

B. ENSEMBLE MANIFOLD
Recall that PNMF attempts to obtain a set of projective
vectors that could be optimized for the linear approxima-
tion of the original data. The j-th column of matrix UTX,
zj = [(UTX)j1, · · · , (UTX)jr ]T can be viewed as the novel
representation of each instance according to the new basis.
A natural assumption is that if data points xj, xl are adjacent in
the original feature space, then zj, zl , the new representation
of these two data points in the new basis should also be close
to each other. This assumption is known as local invariance
assumption, which plays an essential role in various algo-
rithms, including semi-supervised learning algorithms [18]
and dimensionality reduction algorithms [8].
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Ensemble manifold theory [13] assumes that the intrinsic
manifold is located in a convex hull of the pre-defined man-
ifold candidates, each of which indicates one kind of data
distribution. Ensemble manifold essentially learns to com-
bine the diverse manifold candidates whose optimal linear
combination can approximate the intrinsic manifold. Let LEn
be the intrinsic manifold, Li be the i-th candidate manifold,
and there are qmanifold candidates corresponding to various
data distribution. In our work, we use the k-nearest neighbour
graph to characterize data distribution. Specifically, for data
point xj, we seek its k nearest neighbours and generate an
edge between xj and its neighbours. Generally speaking, there
are many schemes for defining weight matrix S. The three
most common methods are as follows:
1) 0-1 Weighting. Sjl = 1, if and only if node j and node l

are attached by an edge.
2) Hear kernel Weighting. If node j and node l are linked,

set

Sjl = e−
‖xj−xl‖

2

σ .

3) Cosine Similarity Weighting. If node j and node l are
linked by an edge, set

Sjl =
xjxl
‖xj‖‖xl‖

.

Each candidate graph Laplacian denotes a manifold which
can be denoted by Li = Di − Si, where Dii =

∑
j Sij.

Thus, the ensemble learning assumption is equivalent to
constraining the search space of candidate graph Laplacians,
i.e.,

LEn =
q∑
i=1

µiLi, s.t.
m∑
i=1

µi = 1, µi ≥ 0, i = 1, . . . , q

(13)

Because LEn is a linear combination of m candidate graph
Laplacians, it is also a graph Laplacian.

C. OBJECTIVE FUNCTION
To model the local geometric structure of the data
points, we impose the ensemble manifold regularizer
Tr(WTXLEnXTW) into a basic objective function.
Therefore, the objective function of REPNMF can be written
as

JREPNMF
= min

U,E,µ

1
2
‖X− UUTX− E‖2F+β‖E‖1

+ λTr(UTXLEnXTU)+ α‖µ‖2

s.t. Ujk ≥ 0,LEn =
q∑
i=1

µiLi,
q∑
i

µi = 1, µi ≥ 0∀i, j, k.

(14)

where the parameter λ controls the contribution of ensemble
manifold regularizer, β controls the regularization term ‖E‖1
and α controls the regularization term ‖µ‖2.

Algorithm 1 Optimization of REPNMF
Input: data matrix X, parameters β, λ, µ
Output: projective matrix U

1 begin
2 Initialize U, E
3 Initialize (µ1, µ2, µ3) = ( 13 ,

1
3 ,

1
3 )

4 repeat
5 Optimize problem (14) with respect to U while

keeping E and µ fixed.
6 Optimize problem (14) with respect to E while

keeping U and µ fixed.
7 Optimize problem (14) with respect to µ while

keeping U and E fixed
8 until convergence or max no. iterations reached
9 end

D. OPTIMIZATION
In this section, we investigate how to optimize the objec-
tive function of JREPNMF in Eq. (14). It is easy to see that
JREPNMF is non-convex in U, E and µ jointly. However it
is convex in them, respectively. Therefore, it is impossible to
obtain the global minimum because no analytical solution can
be found. We design an alternating scheme to optimize the
objective function. The procedure is depicted in Algorithm 1.
For the sake of convenience, we replace LEn as L. It can be
easily observed that L = L+ − L−, L+ij = (|Lij| + Lij)/2
and L−ij = (|Lij| − Lij)/2. We rewrite the objective function
as follows:

O =
1
2
Tr[(X− E)(X− E)T ]− Tr(UUTX(X− E)T )

+
1
2
Tr(UUTXXTUUT )+ λTr(UTXL+XTU)

−Tr(UTXL−XTU)+ β‖E‖1+α‖|µ‖2 (15)

1) OPTIMIZATION U
Let ψjl be the Lagrange multiplier for constraints ujl ≥ 0,
and denote 9 = [ψjl]. Then, we can write the Lagrange

L = O + Tr(9UT ) (16)

The partial derivatives of L with respect to U is

∂L
∂U
=−[(X− E)XTU+ X(X− E)TU]

+UUTXXTU+XXTUUTU+λXLXTU+9 (17)

According to KKT condition 9ikUik = 0, let ∂L
∂U = 0,

we can obtain

Uik = Uik
(2XXTU+ λXL−XTU)ik

(D1+ D2+ D3)ik
(18)

where D1 = EXTU + XETU, D2 = UUTXXTU +
XXTUUTU and D3 = λXL+XTU
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2) OPTIMIZATION E
It is easy to see that the optimization problem related to E
is element-wise decoupled. In other words, there is more
chance that E can be optimized individually. Denote R =
X − UUTX = [rij]. Then each sub-problem with respect to
eij can be written as:

Oij = (rij − eij)2 + β|eij| (19)

The unique solution of Eq. (19) can be effectively solved
by the soft-thresholding operator [19] as follows:

eij =


0, if |rij|≤

β

2
rij −

β

2
sign(rij), otherwise

(20)

By substituting Eq. (20) into Eq. (19), we may obtain

Oij =


r2ij, if |rij|≤

β

2
β|rij| − (

λ

2
)2, otherwise

(21)

It was revealed by the results that REPNMF can adaptively
allocate square loss to minor-error entries for accurate recon-
struction and `1 loss to major-error entries to reduce the
influence of noise.

3) OPTIMIZATION µ

After fixing U and E, the objective function simplified as:

min λTr[UTX(
q∑
i=1

µiLi)XTU]+ α‖µ‖2

s.t.
q∑
i

µi = 1, µi ≥ 0, i = 1, . . . , q. (22)

This is a classical quadratic programming problem, various
convex programming software are very effective designed for
solving this problem. Here, this convex optimization prob-
lem is solved by CVX 1, a Matlab-based convex modeling
framework for convex optimization.

E. CONVERGENCE ANALYSIS
In the following, we will analyze the convergence of the
updating rules in Eq. (20) and Eq. (18). ApparentlyOij meets
the minimum when eij is updated as Eq. (20). Because Oij is
non-increasing following Eq. (20), we only require to prove
that Oij is non-increasing under the updating rule for U in
Eq. (18). For iterative updating rules (18), we obtain the
following theorem.
Theorem 1: The objective function (14) does not increase

under the update rules in (18).
Firstly, an auxiliary function is introduced to prove

Theorem 1, in which the following definitions and lemmas
are required:
Definition 1: Function G(u, u′) is an auxiliary function for

F(u) if the conditions G(u, u′) ≥ F(u),G(u, u) = F(u) are
met.

1http://cvxr.com/cvx

Lemma 1: If G is an auxiliary function of F , then F is
non-increasing under the updating

ut+1 = argmax
u

G(u, u
′

) (23)

Let uab is any element inU and Fuab denote the part of (15)
relevant to uab.
Lemma 2: Function

G(u, utab)

=Fuab (u
t
ab)+ F

′
uab (u

t
ab)(u− u

t
ab)

+
(EXTU+XETU+6UUTXXTU+λXDXTU)ab

utab
(u−utab)

2

(24)

is an auxiliary function for Fuab , which is the only part of (14)
relevant to uab.

Proof: Since G(u, u) = Fuab , we only need to prove
G(u, utab) ≥ Fuab (u). We compare G(u, utab) with the Talore
series expansion of Fuab (u)

Fuab (u) = Fuab (u
t
ab)+ F

′
uab (u

t
ab)(u− u

t
ab)

+
1
2
F ′′uab (u

t
ab)(u− u

t
ab)

2, (25)

where F ′′uab is the second- order derivative with respect to U.
It is easy to see that

F ′uab = (−4(X− E)XtU+ 4UUTXXTU+ 2λXLXTU)ab,

F ′′uab = (−4X(X− E)T + 12XXTXUUT
+ 2λXLXTU)ab.

(26)

We find that to prove G(u, utab) ≥ Fuab (u) is equivalent to
prove

(EXTU+ XETU+ 6UUTXXTU+ λXDXTU)ab
utab

≥
1
2
F ′′uab (u

t
ab). (27)

To prove the above inequality, we have

(EXTU+ XETU)ab ≥ utab(X(E− XT )ab
(UUTXXTU)ab ≥ utab(XX

TUUT )ab
(XDXTU)ab ≥ utab(XLX

T )ab (28)

Thus, (27) holds and G(u, utab) ≥ Fuab (u).
Proof of Theorem 1: Replacing G(u, utab) in (23) by (24),

results in the update rule

u(t+1)ab

= argmax
u

G(u, u(t)ab)

= utab
(2XXTU + λXWXTU )ab

(EXTU + XETU + 2UUTXXTU + λXDXTU )ab
(29)

Because (24) is an auxiliary function, Fuab is non-increasing
under this updating rule.

VOLUME 8, 2020 217785
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Give the current solution U′, we approximate JREPNMF by
its Taylor-series expansion
JREPNMF
≈

1
2
Tr(XXT )− Tr(XET )− Tr(UTX(X− E)TU′)

+
1
2
Tr(EET )+

1
2
Tr(UT (XXTU′U′TU′+U′U′TXXTU′))

+
1
2
λTr(UTXL+XU′ − UTXL−XU′) (30)

We construct an auxiliary function G(U,U′) of JREPNMF
as follows:
G(U,U′)

=
1
2
Tr(XXT )− Tr(XET )+

1
2
Tr(EET )

−
1
2

∑
ik

(X(X− E)TU′)ikU′ik (1+ log
Uik

U′ik
)

−
1
2

∑
ik

((X− E)XTU′)ikU′ik (1+ log
Uik

U′ik
)

+
1
2
Tr(UT (XXTU′U′TU′ + U′U′TXXTU′))

+
1
2
λTr(UTXL+XTU′)

−
1
2

∑
ik

(L−XTU′)ik (XU′)ik (1+ log
(XTU)ik
(XTU′)ik

) (31)

It is easy to verify that JREPNMF (U′) = G(U′,U′).
Next, we will prove that JREPNMF (U) ≤ G(U,U′) to

complete the proof. For any z ≥ 0, we see that z ≥ 1+ log z.
By substituting z = Uik

U′ik
into the above inequality, we have

Uik ≥ U′ik (1+ log
Uik

U′ik
) (32)

since Tr(UTX(X − E)TU′) =
∑

ik (X(X − E)TU′)ikU′ik ,
Tr(UT (X − E)XTU′) =

∑
ik ((X − E)XTU′)ikU′ik ,

Tr(UTXL+XTU′) =
∑

ik (L+X
TU′)ik (XU′)ik , from (32),

we have

Tr(UTX(X− E)TU′)

≥

∑
ik

(X(X− E)TU′)ikU′ik (1+ log
Uik

U′ik
)

Tr(UT (X− E)XTU′)

≥

∑
ik

((X− E)XTU′)ikU′ik (1+ log
Uik

U′ik
) (33)

Tr(UTXL+XU′)

≥

∑
ik

(XL+XTU′)ikU′ik (1+ log
Uik

U′ik
) (34)

By substituting (34) and (33) into (30), we prove that
JREPNMF (U) ≤ G(U,U′)).

Assuming thatU′′ is the minimum ofG(U,U′)), we get the
following inequalities:

JREPNMF (U′′) ≤ G(U′′,U′) ≤ G(U′,U′) = JREPNMF (U′).
(35)

TABLE 1. Statistics of the datasets.

The remaining items involve calculating U′′ and verifying
its nonnegativity constraint. To this end, we set the gradient
of G(U,U′)) to zero;, that is to say i.e.,
∂G(U,U′)
∂Uik

= −(X(X− E)TU′)ik
U′ik
Uik
− ((X− E)XTU′)ik

U′ik
Uik

(+(XXTU′U′TU′)ik + U′U′TXXTU′)ik

+ λ(UTXL+XU′)ik − λ(UTXL−XU′)ik
U′ik
Uik
= 0.

(36)

Eq. (36) gives

U′′ =
Aik

B1ik + B2ik
(37)

whereA = 2XXTU′+λXL−XTU′,B1 = EXTU′+XETU′+
U′U′TXXTU′ and B2 = XXTU′U′TU′ + λXL+XTU′

Because (37) contains multiplications and divisions of
non-negative entries, U′′ is a non-negative matrix.
It is clear that (37) is equivalent to (18), and thus

(35) implies that (18) decreases the objective function of
REPNMF. It completes the proof.

IV. EXPERIMENT
We use extensive experiments on four image datasets: ORL,
YALE, UMIST and Chang’e 3 image database to validate the
efficacy of REPNMF.

1) DATASETS AND METRICS
Four datasets are chosen in the experiment. Table 1 summa-
rizes the statistical information of these datasets.

a: ORL
This dataset comprises 400 images of 40 different people.
10 different images were taken from each person at different
times, in varying lighting and with changed facial expres-
sions. These images are cropped to 32 × 32 pixel grey-level
images and then reconstructed into a 1024-dimensional vec-
tor.

b: YALE
Yale is the second face database which is made of total
165 images, belonging to 15 different people. Each person has
11 images with diverse facial expressions or configurations.
All images are reshaped to 32 × 32 pixel grey-level images
and then adjusted into a 1024- dimensional vector.

c: UMIST
There are 575 images of 20 individuals in UMIST face
databases. Like other dataset images are cut to 23× 28 pixel
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grey-scale images, and each image is reshaped into a 644-
dimensional vector.

d: Chang’e 3
Chang’e 3 is a Chinese robotic lunar exploration mission,
started by China National Space Administration (CNSA).
This mission is the first Chinese mission that has robotic
lander and lunar rover. From past decades China has been
successful in most of the space and lunar missions. Prof.
KL Yung [20]–[22] has led many space mission successfully
and his team was conducted at the Hong Kong Polytechnic
University in which they designed the camera system to
install it the lunar surface lander for getting images. For
current experience 200 images of 10 classes from Change 3
images are randomly selected. All images are cropped
to pixel grey-scale images and then reconstructed into a
1024-dimensional vector.

To evaluate the clustering performance, we use two com-
monly used metrics: Clustering accuracy (ACC) and normal-
ized mutual information (NMI). They are defined as follows:

Accuracy =

∑n
i=1 δ(si,map(ri))

n
, (38)

NMI(C,C†) =
MI (C,C†)

max(H (C),H (C†))
, (39)

where si serves as the cluster label of item i and ri is the
outcome of clustering of item i. If x is equal to y, then δ(x, y) is
equal to 1, otherwise δ(x, y) = 0. map(ri) is the permutation
mapping function that maps ri to the equivalent cluster label
in ground truth. H (C) denotes the entropy of cluster set C .
MI (C,C†) is the mutual information between C and C†:

MI (C,C†) =
∑

ci∈C,c
†
j ∈C

†

p(ci, c
†
j ) log2

p(ci, c
†
j )

p(ci)p(c
†
j )
. (40)

p(ci) shows the likelihood of the item that is nomi-
nated randomly fits in cluster ci among testing items and
p(ci, c

†
j ) is the joint probability of the randomly selected

item in both ci and c†j . If the two cluster sets are iden-
tical, NMI(C,C†) = 1. If the two cluster sets are fully
independent, NMI(C,C†) = 0.

2) COMPARED ALGORITHMS
To highlight the effects of the newmethod over other baseline
algorithms and its significance, REPNMF is compared with
the following methods:
• Traditional kmeans clustering method (Kmeans in
short).

• NMF [1]-based clustering (NMF in short).
• PNMF [3]-based clustering (PNMF in short).
• Automated graph regularized projective non-negative
matrix factorization [11]-based clustering (AGPNMF in
short).

• Projective robust non-negative factorization [12]-based
clustering (PRNF in short).

TABLE 2. Clustering accuracy on the 4 datasets.

TABLE 3. Normalized mutual information on the 4 datasets.

FIGURE 1. Parameters Sensitivity Analysis: (a) nearest neighbour k
(b) ensemble manifold regularization λ.

3) PERFORMANCE COMPARISON
Table 2 is the illustration of clustering accuracy that confirms
the accuracy of all the procedures operated on four data sets,
whereas Table 3 shows the normalized mutual information.
The observations are analyzed as follows. Firstly, methods
that made use of parted-based representation outperformed
Kmeans. These results are consistent to preceding work on
NMF. Secondly, PNMF-based methods outperformed NMF
methods, which indicated that learning spatially localized,
sparse and part-based subspace representation can improve
discriminative structures of latent space. Thirdly, AGPNMF
and PRNF performed better than PNMF. The reason behind
this is aforesaid in Section II, which is that AGPNMF and
PRNF consider native manifold structure of data that ulti-
mately enrich the performance. Finally, REPNMF left behind
all the baseline methods in almost all cases. This is due to
the fact that REPNMF integrates the ensemble manifold into
PNMF, which can be better to capture the intrinsic informa-
tion of the dataset. Furthermore, REPNMF impose `1 norm
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FIGURE 2. Convergence Analysis: (a) ORL, (b) YALE, (C) UMIST.

sparsity constraint on noise matrix which can effectively
weaken the noise.

4) PARAMETER STUDY
There are four parameters in REPNMF which are as follow:
λ, β, α and the number of nearest neighbours k . λ measures
the importance of the ensemble manifold regularized part
of REPNMF, β administers the amount of sparsity of the
noise matrices, and α is used to control the smoothness of
weight vector µ. In this paper the impact of these parame-
ters on REPNMF is investigated by changing one parameter
while others parameters remain unchanged. REPNMF was
executed 10 times for each set individually along with record
of average performance.

The outcomes of REPNMF in relation to k are outlined
in Fig 1 (a). k tracks the number of nearest neighbors. k
must be not too small, otherwise the native structure will
not be entirely manipulated. If k is too large, the nearest

neighbor graph may attach two samples with dissimilar
labels. REPNMF has a tendency to perform better when
k ∈ [2, 6].

The performance of REPNMF with respect to λ is shown
in Fig 1 (b). λ measures the importance of the ensemble
manifold regularization. A small λ cannot affect the objective
function because the geometrical structure of the data cannot
be fully exploited. On the contrary, a large λ might dominate
the objective function and lead to a trivial solution. REPNMF
shows superior performance when λ = 100 for YALE and
λ = 1000 for ORL and UMIST.

It is interesting to note that the performance of REPNMF
is stable when β ∈ [0.01, 0.1] and α ∈ [1000, 10000].
The optimizationmethod for REPNMF unties the subprob-

lems for U and E iteratively to obtain the local minimum
of (14).We analyze empirical convergence properties on three
datasets. Fig 2(a), Fig 2(b) and Fig 2(c) presents the objective
function values against the number of iterations computed
for ORL, YALE and UMIST, respectively. Results indicated
that at the beginning, the objective function value decreased
sharply and the performance increased dramatically. The
optimization procedure is quickly convergent around dozens
of iterations for 3 datasets.

V. CONCLUSIONS
In this work, we proposed robust ensemble manifold projec-
tive non-negative matrix factorization (REPNMF), a novel
non-negative latent representation learning algorithm for
image representation. REPNMF attempts to learn a pro-
jective subspace of items by exploiting both cleaned data
and ensemble manifold. On the one hand, the `1 norm is
added to REPNMF as the constraint of sparsity for noise,
because it can efficiently weaken the influence of noise.
On the other hand, ensemble manifold is incorporated into
REPNMF, which could be able to better model the locally
geometrical structure of the data. To optimize the objective
function, we provided an alternative method to learn the
variable and presented the convergence proof of the opti-
mization scheme. Finally, the experimental results on three
face datasets (ORL, YALE, UMIST) and one science-quality
dataset (Chang’e 3 data: Rover Panoramic Camera images
[14]) have demonstrated that the novel method obtains more
competitive performance compared to some alternatives.
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