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In recent years, emerging matrix learning methods have shown promising performance
in motor imagery (MI)-based brain-computer interfaces (BCIs). Nonetheless, the
electroencephalography (EEG) pattern variations among different subjects necessitates
collecting a large amount of labeled individual data for model training, which prolongs
the calibration session. From the perspective of transfer learning, the model knowledge
inherent in reference subjects incorporating few target EEG data have the potential to
solve the above issue. Thus, a novel knowledge-leverage-based support matrix machine
(KL-SMM) was developed to improve the classification performance when only a few
labeled EEG data in the target domain (target subject) were available. The proposed KL-
SMM possesses the powerful capability of a matrix learning machine, which allows it to
directly learn the structural information from matrix-form EEG data. In addition, the KL-
SMM can not only fully leverage few labeled EEG data from the target domain during
the learning procedure but can also leverage the existing model knowledge from the
source domain (source subject). Therefore, the KL-SMM can enhance the generalization
performance of the target classifier while guaranteeing privacy protection to a certain
extent. Finally, the objective function of the KL-SMM can be easily optimized using
the alternating direction method of multipliers method. Extensive experiments were
conducted to evaluate the effectiveness of the KL-SMM on publicly available MI-based
EEG datasets. Experimental results demonstrated that the KL-SMM outperformed the
comparable methods when the EEG data were insufficient.

Keywords: motor imagery, brain-computer interface, electroencephalography, support matrix machine, transfer
learning

INTRODUCTION

Brain-computer interface (BCI) systems enable machines to accurately perceive the mental
states of human beings, thereby establishing an effective user interface between humans and
machines. There are several kinds of BCI paradigms, such as steady-state visual evoked
potentials (Allison et al., 2008), P300 (Salvaris and Sepulveda, 2009), and motor imagery (MI)
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(Pfurtscheller and Neuper, 2001). Among them, the MI-based
BCI is widely used because of its self-paced fashion, and it does
not require any external stimuli (Pfurtscheller and Da Silva,
1999). Electroencephalography (EEG) is the most extensively
used technique to record neuronal activity in the brain due to
its high temporal resolution, portability, and non-invasiveness.
EEG-based motor imagery BCI has shown great potential in
many applications, such as rehabilitating the sensory-motor
functions of disabled patients (Ang et al., 2011; Al-Qaysi
et al., 2018) and facilitating smart living for healthy people
(Vourvopoulos et al., 2017; Wang et al., 2019).

Although many machine learning algorithms have been
developed to implement MI-based BCI with great success, most
of them need to collect a considerable amount of labeled EEG
data for model training, which is exceedingly time-consuming
and labor-intensive. Insufficient labeled EEG data weaken the
generalization capability of the classifier in the prediction. An
intuitive solution to this problem is to leverage historical EEG
data from the source domain (source subject) in modeling
the target domain (target subject). However, this approach
may engender some challenges. Owing to the EEG pattern
variations between different subjects (Morioka et al., 2015),
directly using the EEG data of the source domain may cause
performance degradation. Furthermore, because the original
EEG data contains personal information, the data of other
subjects may not always be available for constructing the classifier
for privacy reasons (Agarwal et al., 2019). Thus, exploring an
effective knowledge transfer strategy that can protect the personal
information of a source subject is highly desirable in the MI-
based BCI.

From the perspective of transfer learning (Pan and Yang,
2009), the model knowledge of the source domain can potentially
be leveraged to address these problems. Generally, EEG-based
learning methods involve two steps: EEG feature extraction
and classification. The model knowledge of the source domain
can either be integrated into the feature extraction process
(Kang et al., 2009; Samek et al., 2013), or be used in modeling
the classifier (Azab et al., 2019). Specifically, Kang et al.
(2009) proposed leveraging the linear combination of covariance
matrices of the source subjects as reference during the feature
extraction of the target EEG data. Azab et al. (2019) proposed
the construction of multiple-source models and transfer of the
weighted multiple-source model knowledge to the target domain.
Deng et al. (2013) proposed a knowledge-leverage-based fuzzy
system that can leverage the model knowledge from the source
domain in order to make up for the lack of labeled target data as
well as privacy protection.

Although it has been empirically demonstrated that the
aforementioned methods are effective in dealing with EEG
classification in scenarios where the labeled data are limited, these
methods always need to transform the input data into vectors
before classification. It is well known that EEG signals record
brain activities over a period of time from multiple channels,
which are naturally represented as matrices. Transforming the
input matrices into vectors may destroy the correlation of rows
or columns within matrix-form EEG features. Thus, several

classification methods that can directly handle these matrix-
form data have been developed accordingly. For example,
Wolf et al. (2007) proposed modeling the regression matrix
of a support vector machine (SVM), which is the sum of
the k rank-one orthogonal matrices (rank-k SVM). Pirsiavash
et al. (2009) proposed a bilinear SVM (BSVM) based on
factorizing the regression matrix into the product of two
low-rank matrices. Although these methods can capture the
correlation within matrix data, pre-determining the rank of
the regression matrix requires a tedious tuning procedure.
Luo et al. (2015) proposed combining the nuclear norm and
squared Frobenius norm of the regression matrix to derive
the support matrix machine (SMM). The cornerstone of the
SMM uses the nuclear norm of the regression matrix as the
convex approximation of the matrix rank; thus, its optimization
problem becomes more tractable and can be solved using the
alternating direction method of multipliers (ADMM) method.
Based on SMM, Zheng et al. proposed multiclass SMM (Zheng
et al., 2018c) and sparse SMM (Zheng et al., 2018b) for
EEG data. Although existing matrix classification methods can
effectively deal with the matrix-form EEG data, they have
not taken the transferrable knowledge into consideration to
improve EEG classification performance. They may suffer from
the weak generalization capability when the available EEG data
are insufficient.

We propose a novel knowledge-leverage-based matrix
classification method for MI-based EEG classification at the first
time. The proposed knowledge-leverage-based SMM (KL-SMM)
can address the above-mentioned problems by integrating the
model knowledge from the source domain and a few labeled
target EEG data. It possesses the powerful capability of the
SMM for learning matrix-form data. Furthermore, the model
knowledge of the source domain can be used to compensate
for the deficiency in learning due to the lack of labeled target
EEG data. Different from most current model parameter transfer
learning methods, the proposed method can propagate the
structural information from the source model to the target
model. Hence, the generalization capability can be greatly
enhanced by transferring the model knowledge and structural
information of the source domain. Instead of directly using the
source EEG data, the KL-SMM can afford privacy protection
by leveraging only the model knowledge of the source domain.
In addition, it can be efficiently optimized through the ADMM
method. We conducted extensive experiments on two publicly
available EEG datasets to validate the effectiveness of the
proposed method. As demonstrated by the experimental results,
the KL-SMM can achieve promising results in scenarios with few
labeled target EEG data.

The remainder of this paper is organized as follows: Section
“Related Works” is a review of related works. In Section “Matrix
Learning Preliminaries”, the notations and preliminaries of the
SMM are introduced. The KL-SMM model and its learning
algorithm are described in Section “Knowledge-Leverage-Based
SMM”. In Section “Experiments”, the details of extensive
experiments and analyses are presented. The conclusions of the
paper are presented in Section “Conclusion”.
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RELATED WORKS

Transfer learning has emerged as a novel technique for retaining
and reusing knowledge learned from historical tasks for new
tasks. As described above, transfer learning generally refers to
the knowledge-leverage-based learning mechanism, which can
extract useful knowledge from the source domain and propagate
them as the supervision information for modeling the target
domain. According to the types of transferred knowledge of
the source domain, most current research on transfer learning
for EEG classification can be broadly divided into the following
categories: (1) instance transfer, (2) feature representation
transfer, and (3) model parameter transfer (Wang et al., 2015).

For the first category, it is assumed that the partial source
EEG data can be selected and considered together with few
labeled target EEG data. The source EEG data are obtained
through either instance selection or importance sampling cross-
validation (Li et al., 2010; Hossain et al., 2016, 2018; Zanini et al.,
2018). For example, Hossain et al. (2016) proposed an instance
selection strategy based on active learning. The selected source
EEG data were then used together with available target-labeled
EEG data to train the target model. Li et al. (2010) demonstrated
the possibility of weighing the source EEG data through the
importance sampling cross-validation strategy, following which
the source data with high weights were used to estimate the
target classifier.

The aim of the feature representation transfer method is to
learn a good feature representation, which has some relevant
source knowledge encoded within it, for the target subject. Most
feature representation transfer learning methods were developed
based on the common spatial patterns (CSP) through the
modification of the covariance matrix or optimization function
(Kang et al., 2009; Lotte and Guan, 2010; Samek et al., 2013).
For example, Samek et al. (2013) developed an extension of
the CSP. They proposed learning a stationary subspace in
which the stationary information of multiple subjects can be
transferred. In addition to the above-mentioned shallow feature
representation transfer learning methods, several deep transfer
learning methods (Fahimi et al., 2019; Hang et al., 2019) have
been proposed. In general, these methods apply the domain
adaptation techniques in a task-specific layer to incorporate the
learned source and target deep features into a common feature
space. For example, Hang et al. (2019) proposed leveraging the
maximum mean discrepancy and the center-based discriminative
feature learning techniques simultaneously to reduce the domain
shift, demonstrating a performance improvement in the MI-
based BCI.

The third category is the model parameter transfer, which
assumes that the source subjects and target subjects share some
parameters or prior distributions of the models. Model parameter
transfer learning methods always leverage source models to
model the target subjects in EEG classification. For example, Azab
et al. (2019) proposed a logistic regression-based transfer learning
method. The linear combination of multiple-source models was
transferred for the construction of the target domain. In Alamgir
et al. (2010); Jayaram et al. (2016), Alamgir et al. proposed
a multi-task learning method to improve the generalization

performance of the EEG classification for individual subjects
using subject-specific information, as well as the shared model
knowledge inherent in all available subjects.

Despite these successes, most current transfer learning
methods require the direct use of source EEG data, which may
cause the issue of privacy disclosure, especially for biomedical
information. Furthermore, existing transfer learning methods
used for EEG recognition always built on that the input data are
vectors. However, transforming EEG data, which are naturally
represented as matrices, into vectors will destroy their structural
information. The proposed method belongs to the third category.
Unlike the previous transfer learning methods, the KL-SMM can
incorporate model knowledge from the source domain, thereby
guaranteeing privacy protection to some extent; it can also
directly handle matrix-form EEG data.

MATRIX LEARNING PRELIMINARIES

Among the current matrix learning methods, the SMM (Luo
et al., 2015) and its variants [e.g., (Zheng et al., 2018a)] are applied
in many fields, owing to their simplicity and effectiveness. In this
section, we present some notations and preliminary knowledge
on the SMM, which are the foundation of the proposed KL-
SMM method.

Mathematical Notations
Matrices are denoted by bold uppercase letters (i.e., X) in the
following. For a matrix X ∈ Rd1×d2 of rank r, it can be expressed
as rank (X) = r. The condensed singular value decomposition
(SVD) of X is denoted as X = UX

∑
X VT

X, where UX ∈ Rd1×r

and VX ∈ Rd2×r satisfy UT
XUX = Ir and VT

XVX = Ir , and
∑

X =
diag (σ1 (X) , σ2 (X) , . . . , σr (X)) with σ1 (X) ≥ σ2 (X) ≥ · · · ≥
σr (X) > 0.

Definition 1. Given any τ > 0, the singular value thresholding
(SVT) (Cai et al., 2010) of matrix X is defined as

Dτ [X] = UXSτ

[∑
X

]
VT

X (1)

where Sτ

[∑
X
]
= diag

(
{σ1 (X)− τ}+ , {σ2 (X)− τ}+ , . . . ,

{σr (X)− τ}+
)

and {z}+ = max (z, 0).

Let ‖ X ‖F=
√∑r

i=1 σi (X)2 be the Frobenius norm of X,
‖ X ‖∗=

∑r
i=1 σi (X) denotes the nuclear norm of X, and the

subdifferential of ‖ X ‖∗ can be defined as follows.
Definition 2. The subdifferential of ‖ X ‖∗, that is, ∂ ‖ X ‖∗

(Candes and Recht, 2009), can be formulated as

∂ ‖ X ‖∗=
{

UXVT
X + Z

∣∣∣ Z ∈ Rd1×d2 , UT
XZ = 0,

ZVX = 0, ‖ Z ‖2≤ 1
}
, (2)

where ‖ Z ‖2= σ1 (Z) denotes the spectral norm of Z.

SMM
The matrix classifier, SMM, is defined as a penalty function plus
a hinge loss. The penalty function, i.e., spectral elastic net, which

Frontiers in Neuroscience | www.frontiersin.org 3 November 2020 | Volume 14 | Article 606949

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-606949 November 17, 2020 Time: 18:40 # 4

Chen et al. Transfer Support Matrix Machine

enjoys the property of grouping effect as well as keeping a low-
rank representation. The hinge loss enjoys the property of large
margin while contributing to the sparseness and robustness of the
classifier. The objective function of the SMM can be formulated
as follows:

min
w,b

1
2

tr
(

WTW
)
+ τ ‖W ‖∗ +C

N∑
i=1

ξi

s.t. yi
[
tr
(
WTXi

)
+ b

]
≥ 1− ξi, ξi ≥ 0, ∀i = 1, 2, . . . ,N

.

(3)
Specifically, the spectral elastic net can be represented as a

combination of the squared Frobenius matrix norm ‖W ‖2
F=

tr
(
WTW

)
and nuclear norm ‖W ‖∗ on the regression matrix W.

The objective function of the SMM can be solved through the
ADMM method; thus, Eq. (3) is reformulated as

min
W,b,S

F
(
W, b

)
+ G (S)

s.t. S−W = 0
, (4)

where F
(
W, b

)
=

1
2 tr
(
WTW

)
+ C

∑N
i=1{1− yi[tr(WTXi)

+b]}+ and G (S) = τ ‖ S ‖∗ .
According to the augmented Lagrangian function in Eq. (4),(

W, b
)

and S can be iteratively computed in two steps:

(W(k), b(k)) = argmin
(W,b)

F(W, b)− tr((3(k−1))TW)

+
ρ

2
‖W− S(k−1)

‖
2
F, (5)

S(k) = arg min
S

G(S)+ tr((3(k−1))TS)+
ρ

2
‖W(k)

− S ‖2
F, (6)

where k denotes the iteration index. ρ > 0 is a hyperparameter,
and 3 is a Lagrangian multiplier.

Knowledge-Leverage-Based SMM
Generally, the current SMM and its variants belong to the
data-driven method that always focuses on achieving impressive

classification performance with sufficient training data. In
practice, it is necessary to collect sufficient EEG data for each
subject to establish a subject-specific classifier. However, long-
term recording EEG data may exhaust the subject. Therefore,
to model the target domain using insufficient EEG data, we
proposed a novel algorithm to enhance the generalization
capability of the SMM on the target domain by leveraging the
useful knowledge underlying the source domain.

The framework of the KL-SMM for an EEG-based MI BCI is
illustrated in Figure 1. To model the target domain, two main
types of information, the model knowledge of the source domain
and few labeled target EEG data, are used simultaneously.

KL-SMM Model
A dataset Ds =

{(
Xs,1, ys,1

)
,
(
Xs,2, ys,2

)
, · · · ,

(
Xs,Ns , ys,Ns

)}
in

source domain, it consists of Ns trials labeled EEG signals.
Xs,i ∈ Rp×q denotes the ith trial with p× q dimension. ys,i
is the corresponding class label of Xs,i. A dataset Dt ={(

Xt,1, yt,1
)
, · · · ,

(
Xt,N, yt,N

)
,Xt,N+1, · · · ,Xt,Nt

}
in the target

domain, it consists of N labeled EEG trials and (Nt − N)
unlabeled trials, where N � (Nt − N).

For modeling the target domain, we proposed to integrate the
labeled target EEG data and source model as follows:

min
f

N∑
i=1

L
(
f
(
Xt,i

)
, yt,i

)
+λtr

[
(Ws −Wt)

T (Ws −Wt)
]
, (7)

Here, L (·, ·) denotes the loss function. f
(
Xt,i

)
= tr

(
WT

t Xt,i
)
+ b

denotes the matrix classifier to be learned. Eq. (7) includes two
terms, where the first term is used to learn from labeled target
EEG data, and the second term is designed to leverage the model
knowledge (i.e., Ws) underlying the source domain. The goal is
to exploit the desired KL-SMM by approximating its model to
the source model. The parameter λ is adopted to balance the
influence between the two terms above.

As in the SMM, we introduced the spectral elastic net penalty
to capture the correlation information within the matrix-form

FIGURE 1 | Framework of the proposed KL-SMM for EEG-based motor imagery BCI. Both source EEG data and target EEG data are first bandpass filtered in the
frequency range of 8∼30 Hz. SMM is then applied to learn source model Ws. The source model (only needed) enables the classification model realize the privacy
protection. An objective function of the proposed KL-SMM is then implemented by using the source model and the matrix-form features extracted from few labeled
target data.
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EEG data. Furthermore, the hinge loss function was adopted,
owing to its inherent characteristic of sparseness and robustness.
Above all, the objective function of the proposed KL-SMM can be
formulated as follows:

min
Wt,bt

1
2

tr(WT
t Wt)+ τ ‖Wt ‖∗ +C

N∑
i=1

ξ t
i

+λtr[(Ws −Wt)
T(Ws −Wt)]

s.t. yt,i[tr(WT
t Xt,i)+ bt] ≥ 1− ξ t

i , ξ
t
i ≥ 0,

∀i = 1, 2, . . . ,N

, (8)

where the parameter C > 0 is used to maintain a balance between
fitting the labeled target EEG data and minimizing the complexity
of the solution.

Parameter Learning for KL-SMM
Because the Eq. (8) is convex in both Wt and bt , an alternating
iterative strategy based on the ADMM method can be used to
derive the learning algorithm of the KL-SMM. Specifically, by
introducing an auxiliary variable St , the objective function of the
KL-SMM can be equivalently reformulated as

min
Wt,bt,St

F
(
Wt, bt

)
+ G (St)

s.t. St −Wt = 0
, (9)

where F
(
Wt, bt

)
=

1
2 tr
(
WT

t Wt
)
+C

∑N
i=1{1− yt,i[tr

(
WT

t Xt,i
)

+bt]}++λtr
[
(Ws −Wt)

T (Ws −Wt)
]

and G (St) = τ ‖ St ‖∗.
The parameter optimization of Eq. (9) can be solved using the

augmented Lagrangian algorithm

La
(
Wt, bt, St,3

)
= F(Wt, bt)+ G (St)+ tr[3T(St −Wt)]

+
ρ

2
‖ St −Wt ‖

2
F, (10)

where 3 is the Lagrangian multiplier, and ρ > 0 is a
hyperparameter. Theorems 1 and 2 provide the calculations of
parameters St and

(
Wt, bt

)
.

Theorem 1. For the fixed Wt , using the Lagrangian multiplier
3 and any positive scalar τ > 0, ρ > 0 in Eq. (10), St can be
optimized using the following update rule:

St = Dτ [ρWt −3] . (11)

Proof of Theorem 1: Supposing Wt is fixed, the optimization
problem in Eq. (10) is equivalent to minimizing the function as
follows:

J (St) = τ ‖ St ‖∗ +tr(3TSt)+
ρ

2
‖ St −Wt ‖

2
F . (12)

Because J (St) is convex, with respect to St , if 0 ∈ ∂J
(
S∗t
)

with
S∗t =

(
1
/
ρ
)
· Dτ [ρWt −3] can be proven, we can conclude that

S∗t is a solution to Eq. (12). The derivation of J (St) with respect
to St can be expressed as

∂J (St) = 3− ρWt + ρSt+τ · ∂ ‖ St ‖∗ . (13)

To further simplify this equation, let the SVD of (ρWt −3) be
denoted as ρWt −3 = Ua

∑
a VT

a + Ub
∑

b VT
b . In the equation,

∑
a represents the diagonal matrix with diagonal entries greater

than τ.
∑

b represents the remaining part of the SVD with
diagonal entries less than or equal to τ. Ua and Va (Ub and Vb)
are matrices that correspond to the left and right singular vectors
of the diagonal matrix

∑
a (
∑

b). In terms of Definition 1, S∗t can
be reformulated as

(
1
/
ρ
)
· Ua

(∑
a−τI

)
VT

a . Substituting S∗t into
Eq. (13), we have

∂J (St)|S∗t = 3− ρWt + ρS∗t + τ · ∂ ‖ S∗t ‖∗

= −τ

(
UaVT

a +
1
τ

Ub
∑
b

VT
b

)
+ τ · ∂ ‖ S∗t ‖∗

. (14)

Let Z = (1/τ) · Ub
∑

b VT
b , because Ua, Ub, Va, Vb are column

orthogonal, we can easily verify that UT
a Z = 0, ZVa = 0, and ‖

Z ‖2≤ 1. Thus, we have 0 ∈ ∂J
(
S∗t
)
. Theorem 1 is proved.

Theorem 2. For the fixed St ,
(
Wt, bt

)
can be optimized using

the following update rule:

Wt =
1

2λ+ ρ+ 1

(
3+ ρSt + 2λWs +

Nt∑
i=1

αiyt,iXt,i

)
, (15)

bt =
1
|1|

∑
i∈1

{
yt,i − [tr(WT

t Xt,i)]
}
, (16)

where 1 = {i |0 ≤ αi ≤ C,∀i = 1, 2, . . . ,N } refers to the
Lagrangian multipliers, andα = [α1, α2, · · · , αN]T

∈ RN can be
obtained using the box constraint quadratic programming solver:

max
α
−

1
2
αTKα+HTα

s.t.0 ≤ α ≤ C,αTY = 0
, (17)

where K =
[
Kij
]
∈ RN×N and H =

[
hi
]
∈ RN with

Kij =
1

2λ+ ρ+ 1
yt,iyt,jtr(XT

t,iXt,j), (18)

hi = 1−
1

2λ+ ρ+ 1
yt,itr[(3+ ρSt + 2λWs)

TXt,i]. (19)

Proof of Theorem 2: Given the fixed variable St , the optimization
problem in Eq. (10) equals to optimize the following
objective function:

min
Wt,bt

1
2

tr(WT
t Wt)+ C

N∑
i=1

ξ t
i − tr(3TWt)+

ρ

2
‖ St −Wt ‖

2
F

+λtr
[
(Ws −Wt)

T (Ws −Wt)
]

s.t. yt,i
[
tr
(
WT

t Xt,i
)
+ bt

]
≥ 1− ξ t

i , ξ
t
i ≥ 0,∀i = 1, 2, . . . ,N

.

(20)
The augmented Lagrangian function of Eq. (20) is denoted as

L′a =
1
2

tr
(

WT
t Wt

)
+ C

N∑
i=1

ξ t
i − tr(3TWt)+

ρ

2
‖ St −Wt ‖

2
F

+λtr
[
(Ws −Wt)

T (Ws −Wt)
]

−

N∑
i=1

αi
{

yt,i
[
tr
(
WT

t Xt,i
)
+ bt

]
− 1+ ξ t

i
}
−

N∑
i=1

βiξ
t
i

.

(21)
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Setting the derivative of L′a with respect to ξ t
i and bt , to 0, we

can obtain

∂L′a
∂ξ t

i
= 0⇒ C − αi − βi = 0 and

∂L′a
∂bt
= 0⇒

N∑
i=1

αiyt,i = 0.

(22)
Substituting Eq. (22) into Eq. (21), and then setting the derivative
of L′a with respect to Wt to 0, we obtain

∂L′a
∂Wt

= 0⇒Wt

=
1

2λ+ ρ+ 1

(
3+ ρSt + 2λWs +

N∑
i=1

αiyt,iXt,i

)
. (23)

Substituting Eq. (22) and Eq. (23) into Eq. (21),

L′a =
N∑

i=1

(
1−

1
2λ+ ρ+ 1

yt,itr
[
(3+ ρSt + 2λWs)

T Xi

])
αi

−
1

2(2λ+ ρ+ 1)

N∑
i=1

N∑
j=1

αiαjyt,iyt,jtr(XT
t,iXt,j)+ θ. (24)

Here, θis a constant, which can be represented as θ =
ρ
2 tr
(
ST

t St
)
+ λtr

(
WT

s Ws
)
−

1
2(2λ+ρ+1) ‖ 3+ ρSt + 2λWs ‖

2
F .

Thus, the dual problem of Eq. (24) can be denoted as

max
α

N∑
i=1

(
1−

1
2λ+ ρ+ 1

yt,itr
[
(3+ ρSt + 2λWs)

T Xi

])
αi

−
1

2(2λ+ ρ+ 1)

N∑
i=1

N∑
j=1

αiαjyt,iyt,jtr(XT
t,iXt,j)

s.t.
N∑

i=1
αiyt,i = 0, 0 ≤ αi ≤ C,∀i = 1, 2, . . . ,N

.

(25)

Algorithm 1: The learning procedure for KL-SMM
Input: Training dataset DT =

{
Xt,i, yt,i

}N
i=1, source model Ws,

parameter τ and λ;
Output: Wt , bt ;
Initialize: S(−1)

t = Ŝ(
0)

t ∈ Rp×q, 3(−1)
= 3̂

(0)
∈ Rp×q, v(1) = 1,

η ∈ (0, 1), ρ > 0, l = 1
Repeat

1 Computing W(l)
t , b(l)t with Ŝ(

l)
t and 3̂

(l) using Theorem 2;

2 Computing S(l)t with W(l)
t and 3̂

(l) using Theorem 1;

3 Update 3(l) ← 3̂
(l)
+ ρ

(
S(l)t −W(l)

t

)
;

4 l← l+ 1.
Until convergence

The optimization problem of Eq. (21) can finally be
transformed into a QP problem. Substituting the obtained
optimal solution α into Eq. (23), it is easy to obtain the value of
Wt . Finally, the optimal bt can be calculated as follows:

bt = yt,i −
[

tr
(

WT
t Xt,i

)]
. (26)

In practice, averaging these optimal solutions, we can obtain

bt =
1
|1|

∑
i∈1

{
yt,i −

[
tr
((

Wt
)T Xt,i

)]}
, (27)

where 1 = {i |0 ≤ αi ≤ C,∀i = 1, 2, . . . ,N }. Theorem 2 is
proved.

For the fixed Wt and St , the Lagrangian multiplier 3 in Eq.
(10) can be updated as follows:

3(k) = 3(k−1) + ρ (St −Wt) . (28)

The optimal solution is estimated iteratively. The learning
procedure for the KL-SMM is given in Algorithm 1.

Computational Complexity
We further analyzed the computational complexity of the KL-
SMM. In Algorithm 1, Step 1 computes the parameter

(
Wt, bt

)
by solving a QP problem in Eq. (17), which takes time
O
(
N2pq

)
with Nsamples of p× q dimension. Step 2 computes

the eigen decomposition for St in Eq. (11), which takes time
O
(
min

(
p2q, pq2)). In practice, the dimensions, p and q, of the

extracted EEG features are not too high. Thus, the computational
complexity of the KL-SMM is dominated by the QP, that is,
O
(
I · N2pq

)
, where I denotes the iteration number.

EXPERIMENTS

In this section, we evaluate the proposed KL-SMM on two
publicly available MI EEG datasets [i.e., Datasets IIa and IIb of
the BCI competition (Hang et al., 2020)], which can be found
in http://www.bbci.de/competition/iv/. We first describe the
EEG datasets. Then, the compared methods and corresponding
parameter settings are provided. Finally, we present and discuss
the experimental results.

EEG Data Description and Preprocessing
(1) BCI competition IV Dataset IIa (Exp.1): This dataset

includes 22-channel EEG signals recorded from nine
subjects (denoted as S01–S09). During the experiment,
each subject was required to perform four kinds of MI
tasks, hand (left and right), foot, and tongue. A total of 576
trials of two sessions on different days were collected for
each subject. In our experiment, we used the left-hand and
right-hand EEG data. In addition, the EEG trials collected
from the second day were adopted. Thus, the training and
test datasets each contained 72 EEG trials.

(2) BCI competition IV Dataset IIb (Exp.2): This dataset also
contains the EEG signals of nine subjects (denoted as B01–
B09), which were recorded using three electrodes, C3, Cz,
and C4. During the experiment, each subject was instructed
to perform left- and right-hand MI tasks for 4.5 s. For each
subject, there were five sessions. Sessions 1, 2, and 3 were
collected on the first day, and 4 and 5 were collected on the
second day. Similar to Exp.1, the EEG trials collected from
the second day were used. Specifically, Session 4 was used
as the training data, and Session 5 was used as the test data.
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With reference to Hang et al. (2020), there was a time
interval of [0.5, 3]s after the visual cues in each trial for
all the datasets. We bandpass-filtered the EEG signals to 8–
30 Hz through a five-order Butterworth filter, which covers the
dominated frequency band for MI tasks (Nam et al., 2011).
Then, we adopted the spatial filters to detect the MI-related
desynchronization/synchronization (ERD/ERS) patterns. Finally,
the widely used band-power estimation method (Vidaurre et al.,
2005) was used to extract the matrix-form EEG features for all
the subjects. To construct the transfer learning tasks, each subject
was considered the target domain, and the training data of the
remaining subjects constituted the source domain. To evaluate
the performance of the KL-SMM, we set three different numbers
of labeled target EEG data, that is, the first 8, 14, and 20 training
trials. The classification performances on the test data of all the
subjects were reported.

Experimental Setup
Baseline Methods
To evaluate the classification performance of the aforementioned
transfer tasks, the proposed method was compared with four
methods in the experiments: (1) SVM (Vapnik, 1995), (2) BSVM
(Pirsiavash et al., 2009), (3) SMM (Luo et al., 2015), and
(4) Adaptive SVM (ASVM) (Yang et al., 2007).

Implementation Details
It is known that the format of the input data of both the SVM
and ASVM should be vectors or scalars. Thus, we first had
to reshape the extracted two-dimensional matrix features into
vector features. For the BSVM, SMM, and proposed KL-SMM,
the matrix features can be inputted directly. To evaluate the
effect of the transfer learning mechanism, because the SVM,
BSVM, and SMM are no-transfer baselines, we simply used the
labeled target EEG trials as the training data to build these
classification models. In addition, for the ASVM and KL-SMM,
we also leveraged the source model knowledge in constructing
the target classifier. However, unlike the ASVM, the traditional
transfer learning method, the KL-SMM can directly process EEG
matrix features and fully exploit the structural information.

The optimal parameters were selected using a five-fold cross-
validation method on the training group for all comparison
methods. Parameter C was assigned by selecting the value from
the set {1e− 6, 1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1, 1e0, 1e1}.
For the SMM and KL-SMM, we tuned the parameter τ from
the set {1e− 5, 2e− 5, 5e− 5, 1e− 4, 2e− 4, 5e− 4, 1e− 3,

2e− 3, 5e− 3, 1e− 2, 2e− 2, 5e− 2, 1e− 1, 2e− 1, 5e− 1,
1e0}. To ensure a fair comparison with the ASVM, an adjustable
parameter λA was added to the term of knowledge transfer,
which can control how much the knowledge of source domain
to transfer. For the KL-SMM and ASVM, parameters λ and λA
were set by selecting the value from set {1e− 4, 5e− 4, 1e− 3,
5e− 3, 1e− 2, 5e− 2, 1e− 1, 5e− 1, 1e0}. To validate the
classification performance of our method, we used the following
metrics on the test dataset, i.e., Accuracy (ACC), F1 score (F1),
and the area under the receiver operating characteristics curve
(AUC). Herein, ACC =(TP+ TN)

/
(TP+ FN+ FP+ TN)

and F1 =2× PPV× SEN
/
(PPV+ SEN), where the positive

predictive value (PPV) = TP
/
(TP+ FP) and sensitivity

(SEN)= TP
/
(TP+ FN) .

Experimental Results Analysis
The classification performances of all the comparison methods
on 14 labeled target EEG trials on two datasets are given in
Tables 1–6. The performance comparison of the KL-SMM with
the compared methods in Exp.1 is shown in Tables 1–3. The
classification results of all compared methods in Exp. 2 are
shown in Tables 4–6. The best classification performance values
are highlighted in bold. According to the results, the following
conclusions can be drawn.

From the classification performances of all the comparison
methods on the 14 labeled target EEG trials, we found that the
proposed KL-SMM method achieved the highest average results
in terms of the ACC, AUC, and F1. As shown in Tables 1–
3, the proposed KL-SMM outperformed the baseline SMM on
average by 5.87%, 5.66%, and 8.85% based on the ACC, AUC,
and F1, respectively. As can be observed from the classification
results in Tables 4–6, the KL-SMM outperformed the SMM on
average by 3.68%, 3.78%, and 5.83% based on the ACC, AUC,
and F1, respectively. The promising performances prove that
the KL-SMM can leverage the model knowledge of the source
subject to boost the generalization capability of the SMM when
there are limited labeled EEG trials. In addition, the KL-SMM
boosted the classification accuracy for six out of nine subjects in
Exp.1, and eight out of nine subjects in Exp.2, respectively. These
experimental results further demonstrate the effectiveness of the
proposed KL-SMM that leveraged the knowledge underlying
the source domain.

The BSVM and SMM outperformed the SVM in most cases.
This confirms the ability of the BSVM and SMM to exploit the
correlations between rows or columns of EEG matrix features.

TABLE 1 | Comparison of ACC using 14 labeled target EEG data in Exp.1.

Target subjects

Methods S01 S02 S03 S04 S05 S06 S07 S08 S09 Avg.

SVM 0.5972 0.5000 0.9583 0.5556 0.5139 0.5556 0.5972 0.9306 0.8472 0.6728

BSVM 0.5556 0.4861 0.9583 0.5278 0.5972 0.5417 0.5972 1.0000 0.8472 0.6790

SMM 0.6111 0.5000 0.9722 0.5556 0.5556 0.5556 0.6111 0.9444 0.8472 0.6836

ASVM 0.6111 0.5139 0.9167 0.6667 0.6389 0.5972 0.7222 0.9444 0.8472 0.7176

KL-SMM 0.6528 0.5000 0.9306 0.7361 0.6944 0.6111 0.7361 0.9583 0.8611 0.7423
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TABLE 2 | Comparison of AUC using 14 labeled target EEG data in Exp.1.

Target subjects

Methods S01 S02 S03 S04 S05 S06 S07 S08 S09 Avg.

SVM 0.6265 0.5015 0.9776 0.5640 0.5316 0.5548 0.6019 0.9228 0.9190 0.6889

BSVM 0.5980 0.5023 0.9367 0.5239 0.6019 0.5579 0.6181 1.0000 0.9190 0.6953

SMM 0.6273 0.5015 0.9830 0.5640 0.5733 0.5548 0.6142 0.9406 0.9190 0.6975

ASVM 0.6273 0.5177 0.9313 0.6790 0.6481 0.6142 0.7261 0.9406 0.9190 0.7337

KL-SMM 0.6744 0.5015 0.9375 0.7261 0.7068 0.6173 0.7415 0.9606 0.9213 0.7541

TABLE 3 | Comparison of F1 using 14 labeled target EEG data in Exp. 1.

Target subjects

Methods S01 S02 S03 S04 S05 S06 S07 S08 S09 Avg.

SVM 0.3256 0.5385 0.9589 0.4483 0.3636 0.4667 0.6234 0.9275 0.8308 0.6092

BSVM 0.2000 0.5195 0.9565 0.3462 0.5538 0.4407 0.5397 1.0000 0.8308 0.5986

SMM 0.3636 0.5385 0.9722 0.4483 0.4286 0.4667 0.6410 0.9429 0.8308 0.6258

ASVM 0.3636 0.5570 0.9091 0.6842 0.6579 0.5672 0.6970 0.9429 0.8308 0.6900

KL-SMM 0.4681 0.5385 0.9254 0.7397 0.7027 0.5333 0.7164 0.9565 0.8485 0.7143

TABLE 4 | Comparison of ACC using 14 labeled target EEG data in Exp. 2.

Target subjects

Methods B01 B02 B03 B04 B05 B06 B07 B08 B09 Avg.

SVM 0.4750 0.5125 0.4500 0.8688 0.5813 0.6688 0.7000 0.9500 0.7250 0.6590

BSVM 0.5125 0.5125 0.4813 0.8750 0.5688 0.5813 0.6250 0.9375 0.7188 0.6458

SMM 0.4875 0.5313 0.4500 0.8750 0.5938 0.6750 0.6813 0.9563 0.7625 0.6681

ASVM 0.6063 0.5000 0.5000 0.9125 0.6063 0.6938 0.6813 0.9500 0.6688 0.6799

KL-SMM 0.6125 0.5313 0.4625 0.9563 0.6438 0.7125 0.7250 0.9625 0.7375 0.7049

TABLE 5 | Comparison of AUC using 14 labeled target EEG data in Exp. 2.

Target subjects

Methods B01 B02 B03 B04 B05 B06 B07 B08 B09 Avg.

SVM 0.4614 0.5247 0.4655 0.8698 0.5948 0.6761 0.6980 0.9577 0.7263 0.6638

BSVM 0.4963 0.5102 0.5048 0.8652 0.5781 0.5833 0.6159 0.9453 0.7080 0.6452

SMM 0.4747 0.5431 0.4655 0.8814 0.6081 0.6825 0.6841 0.9605 0.7678 0.6742

ASVM 0.5922 0.5103 0.5356 0.9377 0.6172 0.7138 0.6664 0.9577 0.6580 0.6876

KL-SMM 0.5939 0.5470 0.4697 0.9673 0.6627 0.7389 0.7202 0.9670 0.7416 0.7120

TABLE 6 | Comparison of F1 using 14 labeled target EEG data in Exp. 2.

Target subjects

Methods B01 B02 B03 B04 B05 B06 B07 B08 B09 Avg.

SVM 0.5172 0.4348 0.3125 0.8800 0.6082 0.6788 0.7303 0.9518 0.7755 0.6544

BSVM 0.6100 0.5938 0.3566 0.8837 0.5767 0.5839 0.7170 0.9390 0.7368 0.6664

SMM 0.5119 0.4604 0.3125 0.8851 0.6061 0.6829 0.7052 0.9576 0.7935 0.6572

ASVM 0.6358 0.3651 0.5918 0.9176 0.6557 0.7322 0.7243 0.9518 0.7039 0.6976

KL-SMM 0.6702 0.4000 0.4691 0.9571 0.6885 0.7527 0.7528 0.9634 0.7857 0.7155

Notably, the SMM has better classification performance than
the BSVM because of its convex objective function that can
be effectively optimized by the ADMM method. Furthermore,

it can be observed that, owing to its ability to leverage the
source model knowledge in modeling the target domain when
the labeled target EEG data is very limited, the ASVM yielded
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FIGURE 2 | Average classification ACCs of comparison methods with different numbers of labeled target EEG trials in Exp.1 (A) and Exp.2 (B).

TABLE 7 | Statistical significance comparisons of ACC of KL-SMM and other methods in Exp.1 and Exp.2.

Exp.1 Exp.2

Num. of
labeled trials

KL-SMM vs.
SVM

KL-SMM vs.
BSVM

KL-SMM vs.
SMM

KL-SMM vs.
ASVM

KL-SMM vs.
SVM

KL-SMM vs.
BSVM

KL-SMM vs.
SMM

KL-SMM vs.
ASVM

8 0.0167 0.0116 0.0085 0.0085 0.0164 0.0107 0.0465 0.0307

14 0.0287 0.0485 0.0442 0.0207 0.0129 0.0074 0.0419 0.0376

20 0.0039 0.0227 0.0060 0.0249 0.0014 0.0053 0.0215 0.0328

A B

FIGURE 3 | (A) Running time for subject S01 using 14 labeled target EEG trials in Exp.1; (B) Parameter sensitivity of KL-SMM for the transfer tasks S04 in Exp.1 and
B04 in Exp.2 using 14 labeled target EEG trials, respectively.

better classification results than the SVM. The foundation of
the KL-SMM is the SMM, which can leverage the source model
knowledge and exploit the structural information within the EEG
feature matrices. The experimental results prove that structural
information can indeed improve classification performance.

We further studied the effects of different numbers of labeled
target EEG instances on the classification performance of the KL-
SMM. Figure 2 shows the average classification ACCs when 8,
14, and 20 labeled target EEG trials were available from the target
subject. Figures 2A,B show the average classification results of
all the compared methods for Exp.1 and Exp.2, respectively.
It can be observed that the KL-SMM outperformed the other
methods in all the cases. Specifically, the improvement was more
pronounced when few labeled target EEG trials were available,
as shown in Figure 2B. From these results, we can observe
that increasing the number of the labeled target EEG instances

improved the average classification ACCs of all the compared
methods. This is mainly because more training data may enhance
the generalization performance of the classification model. The
average ACC of the KL-SMM was significantly better than those
of the other methods when there was no knowledge transfer,
especially when the labeled target EEG instances were very
limited. Overall, compared to other methods, the classification
performance of the proposed KL-SMM was superior. The
encouraging results were mainly attributed to the fact that
the KL-SMM method possessed the matrix learning capability
derived from the matrix learning machine, which allowed it
to directly handle the matrix-form features, thus retaining
the structural information of EEG data. In addition, the KL-
SMM achieved a more outstanding classification performance
because of its ability to leverage the useful model knowledge of
the source domain.
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DISCUSSION

Statistical Analysis
We further performed a t-test statistical analysis to verify whether
there was a significant difference with a confidence level of 95%
between the KL-SMM and the other methods. The results of the
t-test using different numbers of labeled target EEG trials are
shown in Table 3. A p-value less than 0.05 indicates that there
are significant differences between the KL-SMM and the other
methods. We highlighted the statistically significant differences
in boldface. From Table 7, it can be observed that in all cases,
the null hypothesis can be rejected. This proves that the KL-
SMM significantly outperformed the other methods. This further
demonstrated the ability of the KL-SMM to capture the structural
information within the EEG data, in addition to a strong transfer
learning capability. Therefore, it is suitable for the classification
of complex matrix-form EEG data with cross-subject variability.

Running Time
Figure 3A shows the running time of the KL-SMM and other
methods on a subject, S01, in Exp.1 using 14 labeled target EEG
trials. Except for the SVM and ASVM, the KL-SMM achieved
comparable computational cost with the traditional matrix
leaning method SMM. Furthermore, the KL-SMM required less
computational time, compared to the BSVM. It was proven that
the running time of the KL-SMM was approximately 1.6 times
less that of the SMM. The KL-SMM achieved better classification
results, without the increase in computational costs becoming
unacceptable. This shows the potential value of the KL-SMM for
real-world BCI applications.

Parameter Sensitivity
We further show the effect of free parameter on the performance
of KL-SMM, i.e., the knowledge transfer penalty λ. We conduct
parameter sensitivity experiments on the transfer tasks S04 in
Exp.1 and B04 in Exp.2 using 14 labeled target EEG trials,
respectively. We vary the parameter of interest in {1e− 4, 5e− 4,
1e− 3, 5e− 3, 1e− 2, 5e− 2, 1e− 1, 5e− 1, 1e0}. Figure 3B
shows the classification accuracy of our KL-SMM in contrast
to SMM represented as dashed lines. It can be found that the
accuracy of KL-SMM is improved with the increase of parameter
λ, suggesting that taking the model knowledge of source domain
into account can benefit for EEG classification. As the parameter
value is further increased, the classification performance will
decrease due to the distribution discrepancy between the source
domain and the target domain.

CONCLUSION

In this study, we proposed a KL-SMM method for MI-based
BCIs. The proposed KL-SMM belongs to the matrix classifier,
which can exploit the structural information of EEG data in
matrix form. Furthermore, it can leverage the existing source
model knowledge in modeling the construction of the target
subjects in scenarios of limited labeled target training data.
Similar to the SMM, the KL-SMM can be easily optimized
using the ADMM. Extensive experimental results on two publicly
available MI datasets demonstrate the superiority of the KL-SMM
to the compared methods in most cases. However, despite its
promising performance, there is still room for improvement.
For example, adaptively controlling the penalty λ is critical to
determining how much knowledge is transferred. In addition,
how to extend KL-SMM to multi-class classification will be
investigated in future work.
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