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Abstract - Both the starting current and the starting torque 
of induction motors cannot be evaluated antl measnred 
accurately antl readily. In particular, the geometrical features 
of the skewed rotor bars a re  very difficult t o  study if a general 
2-D finite element method i s  used. 'l'his paper presents an 
approach in using a multi-slice, time stepping 2-D eddy- 
current finite element method to  stiicly the starting processes 
of skewed rotor induction machines. The fields o f  the multi- 
slices are being solved en bloc simultaneously, and thus the 
eddy current effects can be taken into account directly. New 
forins o f  the governing equations for  the multi-slice model are 
derivecl so as to allow the meshes o f  the multi-slices to  be taken 
as one 2 - 0  mesh. The resultant algorithni i s  then very similar 
to that of general 2-D problems. Special time stepping 
techniques for studying the starting process of motors are also 
presented. The performances of motors with skewed and non- 
skewed ro tor  a re  shown. I t  was foiind that the simulation 
results correlated very well with test data. 

In~I~xttrrn. i  - Induction motors, iinite element methods. 

I. INTRODUCTION 

The starting current and the starting torque are important 
quality indexes for induction motors. An accurate 
evaloatioii o f  these quantities is always very challenging. 
The main reasons for such difficulties are because these 
parameters are greatly influenced by skin effect in the rotor 
and saturatioii in the slot tectli. All tlicse factors are 
changing dynamically during [lie starting processes. Evcn 
after the prototypes are made, it is sometimes difficult to 
measure the starting torque readily if the machines are 
large. 

With the advent o f  computing power and iiumerical 
methods in recent years, it has become practical to use 
finite element methods (FEM) to compute the magnetic 
fields in electrical machines. Such numerical techniques 
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should enable the designer to solve problems that are 
difficult to consider by using the analytical approach. Many 
empirical factors then become unnecessary. 

For induction motors with non-skewcd rotor bars, a rime 
stepping two dimensional (2-D) FEM which is coupled to 
the external circuit equations and mechanical equation, has 
been successfully developed. The method can take into 
account the skin effect, the machine rotation and the non- 
sinusoidal quantities in the mathematical models directly 
[I-21. However, almost all practical induction motors have 
skewed rotor bars, and such geometrical feature presents an 
enormously difficulty if 2-D FEM i s  used. Note however 
that compared with the 3-D FEM, the 2-D FEM has the 
advantages of having simple mesh generation, short 
coinpiitiiig time and small computer storage. So it would 
be highly desirable if a 2-D model can be developed to 
study motors with skewed bars. 

One possible technique i s  to represent a skewed motor 
with a 2-D multi-slice model [3]. A set of non-skewed 2-D 
models, each corresponding to a section taken at different 
positions along the axis o f  the machine, is used to model 
the skewed rotor. In order to ensure that the current 
flowing in the bars o f  one slice i s  the same as that f lowing 
in thc bars o f  every other slices o f  the same rotor bar, i t w i l l  
be necessary to carry out the field solutions simultaneously 
for all slices. Piriou et al. [4] has used this method to 
simulate a permanent inagiiet synchronous machine. 
However the eddy current iii the model was not considered. 
Gyselinck et al. [SI also used the multi-slice method to 
simulate the steady-state operation o f  a squirrel cage 
induction motor. The system equations were separated into 
several sub-groups [SI. The disadvaiitage o f  such method is 
the need for the sub-systems o f  the equations to have 
identical solutions with that o f  the original system o f  
equations. However the coefficient matrixes o f  the system 
equations are non-linear and the solutions of the sub-system 
of equations'will affect each other. Thus the solutions may 
not always converge rapidly. Boualem et  at. [6] also used 
the multi-slice approach to simulate the operation o f  a 
squirrel cage induction motor, although the end ring 
inductance was not considered. In those studies reported [4- 
61, the magnetic equations on each slice were separately 
established and then coupled together before such equations 
are being solved. This w i l l  introduce unnecessary 
complexities in the software programs. 

Alternatively, one can use circuit models instead o f  eddy- 
current models in which the slice models may be solved - 
independcntly, rather than simultaneously. The 
disadvantage i s  that the eddy-current effect i s  not included 
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in the field solution [7 ] .  That is to say, the skin effect, 
which is especially important during the starting process, 
cannot be taken into account directly. 

In this paper new forms of governing equations for 
models with coupled multi-slices are derived. Program of 
the single slice model can be easily extended to deal with 
the multi-slice model from the equations derived. The 
divisions of the slices in the axial length can also be non- 
uniform. Special techniques needed in the time stepping for 
starting process of motors is also described. The developed 
program can be run on personal computers. With the 
proposed method, the skewing effect, the skin effect, 
saturation, rotor movement and the non-sinusoidal 
quantities can all be included directly in the system 
equations. When the applied terminal voltage is known, the 
currents, torque, etc., can be computed directly. The 
performances of motors with skewed and non-skewed rotor 
can be studied. The test results of two identical I I  kW 
skewed cage induction motors are used to verify the 
computed results. 

11. BASIC EQUATIONS OF MULTI-SLICE MODEL 

The following assumptions are made: 
1 .,There are no leakage fluxes in the outer surface of the 

stator core atid in the inner surface of the rotor core. 
2. As the iron cores are laminated, the eddy currents in 

the iron cores are neglected i n  the mathematical model. 
3. The end effects are considered by coupling the 

electrical circuits into the FEM equations. The leakage 
inductances at the end of the stator windings and at the end 
rings of the rotor cage are obtained by analytical methods. 

4. The motor in the axial direction is considered as 
composing of multi-slices. In each slice the magnetic vector 
potential has an axial component only. The magnetic field 
is present in planes normal to the machine axis. Hence the 
characteristics of the electromagnetic field of each slice is 
two-dimensional. The relationship between slices is based 
on the principle that the current flowing in the bars of one 
slice is the same as that which flows in the same bars of 
every other slices. 

According to the stated assumptions, the Maxwell's 
equations applied to all domains under investigation will 
give rise to the following equation: 

A. In the Air-gap and in the Iron Domains 

j = O  (2) 

B. In the Rotor Conductor' Domain 

Because the induced electric field intensity in the k"' slice 
is _ _  , the induced electromotive force between the 

two ends of the conductor being considered is: 

aA'i" 

at 

where I(k) is the axial length of the k"' slice. Using the 
reference direction as shown in Fig. 1, the total current 
densityy) in the conductor of the k"' slice is: 

where U") is the potential difference between the two ends 
of a conductor in the k"' slice and a is the conductivity of 
the material. In equation (4) LLeii) is the induced eddy 

current density. 
Integrating the current density j'" over the cross-section 

of the rotor bar gives: 

ilLl 

where ik) is the total current in the conductor. s = 

the cross-sectional area of one rotor bar. 
in equation ( 5 )  to the left hand side, letting 

k=1,2, ..., M (M is the total number of slices) and grouping 
all these Mequations together, one has 

is 
n,*' 

By moving 

According to assumption 4 the rotor bar current is: 
i = i '" = i"l = , . .  = jliil (7) 

Replace I@" in equation (6) with i, one obtains: 

where I = 2 I ~ j l t ~  is the total axial length of the bar and 

I I  = f u ~ l i ~  is the potential differences between the two ends 

of a bar. 

,,a=,  

,,,=I 

(a) A rotor bar (h) A stator phase circuit 

Fig. I rhe rcfereiice directions i n  rotor and stator 

Because the items on the right hand side of equation ( 5 )  
and (8) are equal, one has 

Substituting (9) into (4), one has 
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element in the stator winding; R is the resistance of each 
element in the stator. The total induced electromotive force 
in one phase is therefore 

Since (10) is applicable to the rotor bars of all slices, the 
superscript k can be omitted. By substituting (10) into (l), 
one obtains the basic electromagnetic field equation in the 
rolor conductor domain as: 

Another relationship between i and U can be obtained 
from the circuit equations for the rotor end windings. 
Derivation of the circuit equations in the end winding of a 
rotor is described in [I]. The unknown potential difference 
U can then be eliminated at first. Equations (X), ( I  1) and the 
end winding circuit equations will give rise to the 
governing formulas in the rotor bar domain. 

Assume all the slices are grouped together to form one 
single master slice with the nodes and elements of the FEM 
mesh being numbered slice by slice sequentially. That is to 
say, each mesh of the multi-slices are considered as part of 
one mesh. The data structure of the resulting FEM mesh 
then becomes the same as that for a general 2-D problem. 
With (S), the form of the formula is indeed the same as that 
for a single slice model. With (l l) ,  the only differences of 
the proposed method compared with the single slice model 
are the last two items on the right-hand side. The integrals 
of these two items in (1 I )  can however be realized easily in 
the program by summations using the Newton-Cotes 
quadrature as described in [ X I .  

C. In lhe Stator Conductor Domain 

Because the stator winding generally consists of fine 
wires, the current density j in the stator conductor is 
assumed uniform. The stator circuit of one phase is shown 
in Fig. 1. In keeping with the rotor equations, the reference 
direction of the stator phase current i is identical with that 
of the electromotive force. 

Assuming the stator winding of one phase consists of w 
turns in series, the cross-sectional areas of each conductor 
at one side of the coils are S,, S, ,..., S ,,,, The area of each 
conductor at the other side of the coils are S ,,,.,. ,, &+>, ..., 
S,,,. The total cross-sectional area of one turn at one side of 
the coil is equal to S. The circuit equations are: 

(12) d i  
V? = t i -  R,i- L, ~ 

df 

u = e - R i  (13) 

where V, is the applied voltage; i is phase current; R, and 
L, are resistance and inductance at the end of winding, 
respectively; U is the total potential difference of each 

where ~ ~ l = ~ ~ l + ~ ~ l + . . . + ~ , i ' " ~  and by1 =si~~O+s~~ml 
,,.+) ,,,** +-+s:,'; 

Substituting equation (14) into (13), and noting that 
K = - 2 wl and the total conductor area of one phase is 

os 
~ I , , , I  = +@I = zws, one obtains 

Substituting equation (12) into (15), one has 

Equations (I) and (16) constitute the governing formulas 
in the stator conductor domain. j in ( I )  can be replaced by 
j = i j S .  It is noted that with the data structure described 
beforehand, the forms of (1) and (16) are the same as that 
for the single slice model. 

If one divides the slice uniformly in the axial length, i.e. 
)"I = / ( U  = . , . = , ' W  = / / M  in equations (S), (ll), and ( IQ,  

can be simplified as I I' a.r"' . By , . I ,  
/""I __ 

a t  TZ,  a t  

using finite element formulation and coupling the 
electromagnetic field equations together with the electrical 
circuit equations, one obtains the following large non-linear 
system of equations: 

where the unknowns [A]  and [ i ]  are, respectively, the 
magnetic vector potentials and currents that are required to 
be evaluated; [q, [q, [Q], [RI are the coefficient matrices 
and [PI is the vector associated with input voltages. 

In simulating the starting process, the following 
mechanical equation of the motor is also required to be 
coupled to the FEM model : 
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where J,n is the moment of inertia; 0 is the angular position 
of the rotor; T, is the electromagnetic torque and T, is the 
load torque. The Maxwell Stress Tensor is used in the 
computation of the electromagnetic torque. 

111. GENERATION OF THE FEM MESH 

The mesh generation should be simple, robust, and the 
mesh of the rotor should be allowed to rotate easily. A 
method to generate meshes for this multi-slice technique 
will also be presented in this paper. It has been found that 
the computing time can be reduced substantially. The 
proposed method consists of the following steps: 

A .  Generation of the Basic Mesh 

Basic meshes at the cross-section of the induction motor 
being studied is generated at first. In the air gap, the 
solution domain is divided into two parts: the stator domain 
and the rotor domain, with each including a part of the air 
gap. Meshes of the two domains are then generated 
separately. For each part, the mesh is automatically 
generated fully using the deduction of points algorithm and 
the mesh refinement method [9 ] .  

B. Rotation of the Mesh 

The unknowns at the inner-most nodes of the stator and 
at the outer-most nodes of the rotor are connected by virtue 
of the “periodic boundary conditions”. That is to say, when 
the rotor is rotated, the shape of the rotor mesh will not be 
changed, but the coordinates and the periodic boundary 
conditions will. Thus the stator mesh and the rotor mesh are 
required to be generated once and once only. 

C. Generation of the Meshes at Other Slices 

The geometrical difference between the basic slice and 
the other slice is that the rotor of the other slice has rotated 
by a small angle because of the skewing in the rotor bars. 
The meshes at the other slices can be easily obtained by 
rotating the basic rotor mesh marginally. 

(a) At the first slice (b) At the fourth slice 

Fig. 2 FEM meshes of I 1  kW skewed motor after a 
rotation of30” (4 slices, each ha3 2523 nodcs, 4439 
elements) when skin effect needs to be considered 

D. Connection of Slices 

The nodes, elements, etc. in the FEM model are, re- 
numbered slice by slice continually. Therefore, the data 
structure is two-dimensional, The time stepping FEM is 
very similar to the general method with the exception of the 
relationship between the adjacent slices which are 
introduced in this multi-slice technique. Fig. 2 shows FEM 
meshes of an 11 kW skewed motor. In rotor to consider the 
eddy-current during the starting process, a dense mesh is 
used for the rotor bars. If the speed of the motor is near the 
synchronous speed, in which the skewed effect can be 
neglected, the meshes in Fig. 3 are used. 

(a) At tlie first slice (b) At tlie fourth sllcc 

Pig. 3 FEM meshes of I I t W  skewed inotor after a 
rotation of30” (4 slices, each has 1626 nodes, 2655 

elements) when skin effect does not need to be considercd 

IV. SOLUTION OF THE SYSTEM OF EQUATIONS 

The Backward Euler’s method is used to discretize the 
time variable. If the solution at the (k-1)”’ step is known, 
then at the k”’ step one has : 

r, 
J m  

o, = wh-, +-At 

eh  =e,.,+o,~r 

where w is the rotor speed. The rotor FEM mesh is moved 
in accordance to the rotor movement. The position of the 
rotor mesh is determined by On [Kh], [C,]. [Q,], [R,] will 
change with the rotation of the rotor mesh. In the iteration 
process for solving the equation coupling (19), (20) and 
(21), the rotor mesh will be changed again and again. This 
will certainly give rise to difficulties in the program. 

The proposed method is, instead of using (19), one could 
use the Euler’s method to obtain an initial gauss of w, as 
follows : 

mX(O’=wk-,+-At Tx-l (22) 
J,,, 
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program (to skewed motors) or even a limited number of 
elements in each one of the slices may also cause such 
ripple. The precise explanation will however need to be 
studied further. 

The Computed magnetic flux distributions at different 
states of operations are shown in Fig. 9. 

TABLE I 

During the process in solving (21), the rotor mesh is 
fixed. After the solution of (21) one can then obtain Tk, ak 
can be computed subsequently by using the Backward 
Enler's method according to (19). The difference between 
ak(0' and a, indicates the discretization error which is 
dependent on the step size At'[IO]. If this error is larger 
than that allowed, the step size AI will be reduced 
automatically. 

At each step of the time stepping process, an iterative 
solver is most suitable in solving the system of large 
equations. This is because of the good initial value, which 
was obtained easily from the result of the last step, has been 
used to reduce the number of iterations. In this paper the 
Newton-Raphson method coupled with the incomplete 
Cholesky-conjugate gradient algorithm are used to solve 
the system of large non-linear equations. 

V. RESULTS 

The presented method has been used to simulate the 
starting operation of two identical 1 1  kW, skewed rotor 
cage induction motors (380 V, 50 Hz, A connected, 4 poles, 
48 slots in stator, 44 slots in rotor, and a skewing of 1.3 
stator slot pitch). 

The programs are run on a personal computer Pentium 1 
150 MHz. The motor in the axial direction is divided into 4 
slices. For the meshes in Fig. 2, the system equation at each 
time step has a total of 8962 unknowns. Its solution 
requires 0.82 min. of CPU time by using the Newton- 
Raphson method coupled with ICCG method. For the 
meshes in Fig. 3, the equation has 5394 unknowns. Its 
solution requires 0.38 min. of CPU time. The basic size of 
each time step is 0.039 ms. The simulation for the locked 
rotor test and for the starting process needs a CPU time of 
about 14 hours and 45 hours, respectively. 

The comparison of the results between the computed and 
experimental data for locked rotor operation at steady state 
is shown in Table 1. Fig. 4 shows the performances of the 
electromagnetic torques for motors with skewed and non- 
skewed rotors. Because the torque of skewed motors can 
be considered as the sum of the torques of many non- 
skewed motors which are in different relative positions, the 
torque ripple is relatively smaller in skewed rotor motors 
compared to their unskewed rotor counterparts. The 
position of the rotor for the locked rotor test was the same 
as that given in Fig. 2 except that the rotor has not moved. 

For the starting process at no-load conditions, the 
computed stator phase current is shown in Fig. 5 ,  while the 
measured values are shown in Fig. 6. The results computed 
using the proposed method show very good correlation 
with the test data. The computed electromagnetic torques 
are shown in Fig. 7 and Fig. 8. It can be noticed that the 
motors with appropriate skewed rotor bars develops more 
stable torque than that of non-skewed rotor motor. The high 
ripple torque may be caused by (lie relative movement of 
slots and teeth. A limited number of slices used in the 

Phase current (RAM) Torque (Averagc) 
Computed result 148.2 A 145.3 Nm 
Test result of ,motor I 150.4 A 158.4 Nm 

~ ~~ 

I ,, 111 3 0 401 111 
t , , "  S J  

Fig. 4 Compmcd torque at locked rotor conditions for motor with (a) a 
skewing of 1.3 stator slot pitch in rotor and (b) imskewed rotor 

-150 
0 I on 200 

t(ms) 

Fig. 5 Computed stator current at the starting process (skewed motor) 

I50 i ( A )  

-150 
0 100 200 

t ( m 3 )  

Fig. 6 Measured stator Current at the starting process (skewed motor) 
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100 t I , "  S )  100 

Fig 7 Coinputed torque at the starting process (skewed motor) 

4 0 0  ' 
200 

loo I (1 "  I )  

Fig. 8 Computed torque at the starting process (non-skewed motor) 

(a) at locked rolor (steady state) (b) at on load (steady-state) 

(c) during starting process 
(t=0.800 ms) 

(d) during starting process 
(t=4.609 ms) 

Pig. 9 Computed flux distributions 

VI. CONCLUSION 

The skewed geometry of the rotor bars in induction 
motors has great influences upon the performances of the 
machines. The proposed multi-slice time stepping 2-D FEM 
model for skewed motors, with the governing equations 
similar to that for a general 2-D problem, can be used to 
precisely simulate the locked rotor operation and the 
starting process of induction motors. The proposed method 
solves the fields of multi-slices en bloc simultaneously, so 
the effects of skewed rotor bars, the saturation and the eddy 
current can all be included in the mathematical model. The 
method overcomes the difficulties of estimating the starting 

current and starting torque when using traditional magnetic 
circuit method and will be applied in the design of 
machines. 
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