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Abstract: 9 

Cellulose fibers, such as cotton and linen, are abundant in farmer’s fields. The traditional 10 

bottom-up technology to process these short staple fibers is spinning. State-of-the-art 11 

spinning technology requires not only high throughput processing of the cellulose fibers, 12 

but also the addition of functionalities and value into the supply chain. Recently, a 13 

modified ring spinning system has been developed which introduces a false twist into a 14 

traditional ring spinning frame. The modified system produces cellulose yarns that have a 15 

high strength but low twist, and a soft hand similar to cashmere. Unlike traditional textile 16 

finishing treatments which consume plenty of chemicals, water, and energy, this method 17 

is purely physical and sustainable. The superior properties of the modified cellulose yarns 18 

are attributed to the modified yarn morphology and structure. Theoretical investigation is, 19 

therefore, important in understanding of the spinning mechanisms of the modified ring 20 

spinning process that changes the morphology and structure of the cellulose yarns. In this 21 

paper, yarn behavior constrained to lie on a moving solid cylinder was theoretically and 22 

experimentally investigated. Equations of motion were derived based on the Cosserat 23 

theory and numerical solutions in steady-state were obtained in terms of yarn spatial path, 24 

yarn tension, twist distribution, yarn bending, and torsional moments. Effects of various 25 

spinning parameters including wrap angle, speed of the moving cylinder, yarn diameter, 26 

yarn tension, yarn twist, and frictional coefficient, on yarn behavior were discussed. The 27 

results suggested that in most cases the bending and torsional moments are of the same 28 

order of magnitude, and thus the effect of bending cannot be neglected. Experiments in 29 

the modified ring spinning system were conducted to verify the theoretical work, and 30 

good agreement has been made. Some simulation results of this study were compared 31 

with the results of earlier models as well as with experimental data, and it was found that 32 

the current model can obtain a more accurate prediction than previous models in terms of 33 

yarn twist and tension. The results gained from this study will enrich our understanding 34 

of the spinning mechanism of the modified ring spinning process and better handle of 35 

cellulose fibers for functional and value-added applications. 36 
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1. Introduction41 

Cellulose fibers are abundant in farmer’s fields, with two of the most common examples 42 

being cotton and linen (César et al. 2015; Liu et al. 2019; Morán et al. 2008). The 43 

traditional bottom-up technology of natural cellulose fibers is spinning. Spinning (Hearle 44 

et al. 1969) is a fundamental method for manufacturing long strands of staple yarn from 45 

cellulose fibers of cotton, rayon, and linen. Among all of the spinning technologies, ring 46 

spinning (Lawrence 2010) continues to predominate in the yarn manufacturing industry 47 

due to its high yarn quality and flexibility in materials and yarn counts. During the yarn 48 

manufacturing process, twisting increases fiber coherence and imparts strength to a staple 49 

yarn. The degree of twist in the final yarn is important not only because of its influence 50 

on yarn characteristics such as strength, hand, and hairiness, but also because it 51 

determines the yarn’s structure by manipulating a bundle of separated short fibers and 52 

assembling them into a consolidated yarn. Yarn tension also plays an important role in 53 

yarn formation and resultant yarn quality (Yin and Gu 2011a). Although yarn tension 54 

cannot exceed the strength of the yarn at any instant the tension at which the yarn is 55 

formed affects its structure and properties. At a macro level, power consumption in the 56 

spinning process is proportional to the yarn tension, it is, therefore, important to balance 57 

the tension level to minimize the power consumption while maximizing the yarn quality 58 

(Fraser 1993).  59 

60 

Much valuable work has been carried out to theoretically study the spinning process in 61 

ring (Stump and Fraser 1996; Tang et al. 2011), rotor (Guo et al. 2000; Xu and Tao 2003), 62 

air jet (Grosberg et al. 1987), etc. For instance, Fraser established the mathematical model 63 

and boundary conditions of ballooning yarn, and discussed the relationship between the 64 

traveler mass and yarn tension in detail (Fraser 1993). Xu and Tao proposed a theoretical 65 

model to study yarn tension and twist distributions in rotor spinning (Xu and Tao 2003). 66 

Miao and Chen proposed a method of which the governing equation of twist distribution 67 

of a straight yarn is a wave equation (Miao and Chen 1993). van der Heijden and 68 

Thompson investigated the bifurcations or instabilities of twisted yarn, as twisted elastic 69 

rods, under specific conditions (van der Heijden and Thompson 2000). 70 

71 
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State-of-the-art spinning technology requires not only high throughput processing of the 72 

cellulose fibers, but also the addition of functionalities and value into the supply chain. 73 

Continuous improvements have been made in the ring spinning sector due to the 74 

requirement of novel features or improving yarn quality. In particular, a modified ring 75 

spinning system has been proposed (Tao and Yin 2019) and studied (Guo et al. 2015; Hua 76 

et al. 2013; Yang et al. 2007; Yin et al. 2020a; Yin et al. 2020b) to produce a high strength 77 

but low twist and soft hand cellulose yarns. The hand of cellulose fabrics made by the 78 

modified spinning method is similar to cashmere, which greatly improves the added 79 

value of the cellulose fibers. Unlike traditional textile finishing treatments (César et al. 80 

2015; Kim and Son 2005; Liu et al. 2018) in which consume plenty of chemicals, water, 81 

and energy, this method is purely physical and sustainable. The key is to attach an 82 

additional device which is furnished with an additional false twisting unit. Theoretical 83 

investigations are, therefore, important in understanding of the spinning mechanisms of 84 

the modified ring spinning process which changes the morphology and structure of the 85 

cellulose yarns. Feng et al. proposed a mechanical model to study flexible yarn 86 

performance on a moving solid cylinder and treated the model as an initial value problem 87 

(Feng et al. 2012). Yin et al. further investigated yarn performance in the proposed 88 

modified system by means of twist generation and twist propagation (Yin et al. 2016).  89 

90 

However, in those works, the bending moment was omitted for simplification purposes. 91 

In many cases, the bending and torsional moments are of the same order of magnitude, 92 

and ignoring bending may lead to errors in the derived results and deviation in model 93 

prediction from experiment. Therefore, the investigations associated with yarn bending 94 

are conducted in this work. Equations of yarn motion are established based on Cosserat 95 

theory (van der Heijden et al. 2002) and the boundary value problems are numerically 96 

solved by the Newton-Raphson method. Then, the effects of various spinning parameters 97 

in terms of wrap angle speed of the moving cylinder, yarn diameter, yarn tension, yarn 98 

twist, and frictional coefficient, on yarn tension and twist distributions, yarn spatial 99 

position, bending and torsional moments lying on a cylinder are discussed. Next, 100 

experiments in the modified ring spinning system are described, and the experimental 101 

results are discussed. In addition, some simulation results of this study are compared with 102 
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the results of earlier models and experimental data. The results gained from this study 103 

will enrich our understanding of the spinning mechanism of a modified ring spinning 104 

process and improve the hand of cellulose fabrics  105 

106 

2. Theoretical107 

108 

A modified ring spinning system has been proposed by introducing a moving solid 109 

cylinder into the conventional ring spinning frame, shown in Fig. 1, which acts as a false 110 

twister and adds a false twist into the yarn. The existence of a false twist changes yarn 111 

tension and twist distributions in the spinning process. Additional false twist is introduced 112 

into the yarn above the false twister due to the interaction between the yarn and moving 113 

solid cylinder, while the presence of false twist is totally negated below the false twister.  114 

115 

The whole system can be divided into 5 zones. The first zone is from the front rollers A to 116 

the entrance point B of the solid cylinder. The yarn path in this zone can be deemed as a 117 

straight line. Next, the yarn slides over the convex surface of the solid cylinder. Both yarn 118 

tension and twist distributions are varied evidently. The next zone contains the yarn path 119 

from the exit point C of the solid cylinder to the yarn guide D. The yarn path in this zone 120 

can also be deemed as a straight line. The following zone includes the yarn path from the 121 

yarn guide D to the traveler. The ballooning effect in this zone has been widely reported 122 

in the literature (Fraser 1993; Yin and Gu 2011a; Yin and Gu 2011b; Yin et al. 2010). The 123 

last zone is from the traveler to the winding point on the bobbin, which can be treated as 124 

a straight line as well. In this work, we mainly focus on the behavior of the twisting yarn 125 

constrained to the moving solid cylinder, which is the second zone of the whole system. 126 

127 

The equilibrium configurations describing the steady-state motion of a twisting yarn were 128 

derived under several simplifying assumptions. 1) The yarn is assumed to be inextensible 129 

since twisting of yarn is the dominating phenomenon, while the deformation in the yarn’s 130 

axial direction is small can be ignored; 2) A uniform yarn is assumed with a single linear 131 

density and cross-sectional area; 3) The weight of yarn is relatively small when compared 132 

with other forces can be neglected; 4) The moving cylinder has a much greater rigidity 133 
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than the yarn can be regarded as non-deformable; 5) The moving cylinder is smooth with 134 

a constant radius of curvature; 6) A linear relationship between the yarn twist and torque 135 

is assumed based on solid mechanics as well as previous experimental results (Bennett 136 

and Postle 1979); 7) The model was built in a steady-state, thus time-dependent terms in 137 

the equations are ignored; 8) The study deals with stable twisting processes where no 138 

mechanical instability or bifurcation occurs. Validation and justification of these 139 

assumptions can be found in Supplementary Information. 140 

141 
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142 
Fig. 1 A modified ring spinning system 143 

144 
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Fig. 2 A yarn segment in the coordinate system 146 

 147 

2.1 Mathematical modeling 148 

Consider an arbitrary point Q of the yarn, which is at a distance s measured along the 149 

yarn from the initial contacting point A (s=0), as shown in Fig. 2. For the convenience of 150 

analysis, a fixed cylindrical coordinate system is selected with base vectors  , ,r ψ ze e e . 151 

The origin of coordinate O coincides with the center of the initial contact surface, and the 152 

z axis of the system is in line with the central axis of the rigid cylinder with its positive 153 

direction towards the moving direction (vb in Fig. 2). Let 0r ,  , z  be the cylindrical 154 

coordinates corresponding to the coordinate frame and 0( ) r zs r z= +R e e be the position 155 

vector of Q relative to the origin O. 156 

 157 

Because of inextensibility ( ) /s d ds=R R&  is the unit tangent to the centerline at s, which 158 

is denoted by 3( )sd . As shown in Fig. 3, a right-handed orthonormal basis  1 2 3, ,d d d  159 

of so-called directors is defined by taking 2 3 1= d d d . The configuration of the yarn is 160 

fully determined if the vectors id , i=1, 2, 3 are specified, and vice versa. The vector 161 

( )sR  can be derived by solving the differential equation 162 

 
3( ) ( )s s=R d& , (0) 0=R  (1) 163 

 164 

 165 
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Fig. 3 The angles used to describe a twisted yarn segment 167 

 168 

This moving coordinate system is related to a fixed cylindrical system  , ,r ψ ze e e using 169 

the following notation: 
i ir r i iz zd d d = + +d e e e . Due to the constraint of the yarn 170 

position, there are two degrees of freedom for the director frame  id . Therefore, two 171 

angles,   and   are introduced as follows, 172 

 
1 sin cos cos cos sinr z    = − +d e e e  173 

 
2 cos sin cos sin sinr z    = + −d e e e  (2) 174 

 
3 sin cos z = +d e e  175 

where 1d  is a radial line, perpendicular to the strand axis joined to any straight line 176 

parallel to the axis marked on the surface of the initially straight untwisted strand,   is 177 

the deviation angle formed between the unit vectors 3d  and ze , and   is the internal 178 

twist angle of 1d  about 3d . 179 

 180 

Since 1d , 2d , and 3d  are orthonormal, there exists a vector function ( )su , the 181 

deformation, such that 182 

 1,2,3i i i=  =d u d&  (3) 183 

The components of ( )su  with respect to  id  are the strains of our theory whose 184 

components are the curvatures and the twist. They are denoted by 185 
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1 1 2 2 3 3u u u= + +u d d d (4) 186 

where 1u and 2u are curvatures of the projections of the strained centerline on the187 

planes ( )2 3,d d and ( )1 3,d d , respectively. The strain 3u is the twist and measures the188 

rate of rotation about the body axis of the yarn. 189 

190 

The following equation is readily derived from the director frame equation expressed in 191 

cylindrical coordinates by using the equations for 1rd192 

3 cosu   = +& & (5) 193 

where 2 T =& , T is the inserted number of twists per unit length of yarn.194 

Eq. (5) expresses the usual partition of twist, 3u , into internal twist and space curve 195 

torsion. & means the initial torsion in the straight strand before its axis is deformed into196 

a curved path. cos &  is the torsion due to the rotation of the principal plane of 197 

curvature (Love 1927). 198 

199 

Suppose 1d  is equal to the principal normal and hence, 2d  to the binormal of ( )sR , 200 

 is the torsion of the centerline of the yarn and the deformation vector, now also called 201 

the Darboux vector, becomes (0, , ) =u . The corresponding equations then are the 202 

Frenet–Serret equations of differential geometry:203 

 = −n b t&204 

= −b n& (5) 205 

=t n&
206 

where /=n R R&& &&, /=  b R R R R& && & && and =t R& be the normal, binormal and tangent 207 

base vector of the yarn centerline, respectively.208 

209 

Let the internal forces and moments along the rod be p  and m , respectively, such that 210 

the equilibrium equations of the yarn are given by 211 

0+ =p f& (force balance) 212 

0+  + =fm R p m&& (moment balance) (6)213 
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where f  and fm are external loading and torque acting on the yarn element, 214 

respectively.  215 

The internal forces and moments can be expressed in the director frame  id as follows, 216 

1 1 2 2 3 3p p p= + +p d d d217 

1 1 2 2 3 3m m m= + +m d d d (7) 218 

where 3p be the tension in the yarn, and 1p , 2p be components of the shear force 219 

acting on the cross-section perpendicular to the yarn axis. For a flexible yarn, the bending 220 

stiffness is neglected, therefore the shear force of the yarn should be zero as well. In this 221 

study, the bending stiffness is now taken into consideration, so the yarn is not perfectly 222 

flexible, the shear force of the yarn should not be zero. 223 

ψ
e

τ
e

0 02 n R  
υ

e

dF

  

z
e

v

bv−
  

1 02 n R

224 

Fig. 4 Analysis on yarn motions 225 

226 

The external forces include normal reaction force and frictional force. Thus, if   is the 227 

coefficient of friction, and N is the magnitude of the normal reaction of the cylinder on 228 

the yarn, then 229 

( )cos sinr vN N  = + = + −f N F e e t (8) 230 

where ve is expressed as v r= e e t , 
0 1 0

cos
tan

sin 2 ( )

b

b

v v
arc

v R n n




 

+
=

+ −
be the friction 231 

angle between the direction of friction force and the unit vector ve , v  be the yarn 232 

delivery speed, Bv be the moving speed of the cylinder ze , 0n be the rotational speed 233 
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of the yarn generated by the twister, and 1n be the rotational speed of the yarn generated 234 

by the moving cylinder, as shown in Fig. 4. 235 

The frictional moment can be expressed as follows, 236 

0cosN R =
f

m t  (9) 237 

where R0 is the radius of yarn. 238 

239 

The scalar formulas of Eq. (6) can be written after some rearrangement as follows, 240 

1 2 3 2 1

1 2 3 2 1

3 1

2 3 2

2 1

3 0

( )( ) ( )( ) cos 0

( )( ) ( )( ) 0

sin 0

0

0

cos 0

p p p p p N

p p p p p N

p p N

m m p

m p

m N R

    

  

  

 

 

− +  + +  + =


− +  + +  + =

 − − =


− + =
 + =


+ =

v v

r r

n e b e

n e b e

& &

& &

&

&

&

(10) 241 

242 

Linear constitutive relations between the forces and deformations are assumed, 243 

1 1

1

1
u

B
= m d , 2 2

2

1
u

B
= m d , 

3 3

1
u

K
= m d (11) 244 

where 1B and 2B are the bending stiffnesses about 1d and 2d , respectively, and K245 

is the torsional stiffness. 246 

This leads to 247 

2m B= , 3m K= (12) 248 

249 

The assumptions for bending and twisting of yarns, the equations for the bending and 250 

torsional stiffness, respectively, of a circular shaft are 251 

4

0

1

2
K GR= , 4

0

1

4
B ER= (13) 252 

where E  is Young’s modulus, and G  is the shear modulus.  253 

If   is Poisson’s ratio, then / 2(1 )G E = +  and with 0.3 = , this leads to 254 

1.3B K= (14) 255 

The actual stiffnesses of yarns are smaller than would be computed by Eq. (13). However, 256 

the ratio of K to B derived by Eq. (14) is in approximate agreement with the experiment 257 
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(Tandon et al. 1995). It should be noted that these stiffness values have the same order of 258 

magnitude.  259 

260 

At this point, a model with three unknowns ( 3p , ,T ) and three equations relating them 261 

have been derived so far, while 1p , 2p ,   and   are functions of   and T . In 262 

addition, the rotational speed 1n is an unknown constant value. Therefore, a total of four263 

boundary conditions are necessary to make this problem solvable. 264 

265 

2.2 Boundary conditions 266 

One boundary equation can be derived based on the geometrical condition of the 267 

modified spinning system, as shown in Fig. 5. The line AD formed by the delivery rollers 268 

at point A and the yarn guide at point D are perpendicular to the centerline of the moving 269 

solid cylinder (line GH). Since the length of line AB formed by the delivery rollers at 270 

point A and the entrance point B and line CD formed by the exit point C and the yarn 271 

guide at point D are at least one order of magnitude higher than that of curve BC, lAB≈lAK 272 

and lCD≈lDK. Approximately, the deviation angles for line AB and CD follow, 273 

sin

sin

CDAB

CD AB

l

l




= − (15) 274 

275 

AB

A

- 

vb 

A

20

12 

to

yo

ta 

pri

us 

bi

g 

ba

tte

ry

D 

C 

lAB 

lCD 

CD
+ 

Moving solid cylinder 

G

20

12 

to

yo

ta 

pri

us 

bi

H

20

12 

to

yo

ta 

pri

us 

bi

K

20

12 

to

yo

ta 

pri

us 

bi

g 

B 

276 



12 

Fig. 5 Geometrical boundary conditions 277 

278 

Another boundary equation is directly obtained from the kinematic formula (Yin et al. 279 

2018) as follows 280 

1 ( )AB CDn T kT v= − (16) 281 

where k and   are propagation coefficients of twist trapping and congestion, 282 

respectively. Details of the derivation can be found in Supplementary Information.  283 

The other two boundary values are the tension and twist at either line AB or line CD, 284 

i.e. 3ABp  and CDT , which can be measured by using high-speed camera and tension meter285 

systems. 286 

287 

2.3 Bending and torsional moments 288 

According to Equation 12, the bending and torsional moments are dependent on 4 factors, 289 

namely, B, K,  , and  . And from Equation 14, we know that B and K are of the same 290 

order of magnitude. Therefore, whether the bending moment can be neglected or not is 291 

decided by the curvature and torsion of the yarn. The relationship between bending and 292 

torsional moments are displayed in Fig. 6. For a twisted yarn lying on a solid cylinder, the 293 

curvature of the yarn is largely dependent on the radius of the solid cylinder, while the 294 

yarn torsion is associated with the yarn twist inserted. In the case of a high twist yarn 295 

lying on a cylinder with a large radius, the yarn curvature is much smaller than the yarn 296 

torsion, therefore the yarn bending moment can be neglected. In the case of a low twist 297 

yarn lying on a cylinder with a small radius, the yarn bending moment must be taken into 298 

account since the yarn bending moment is of the same order of magnitude or larger than 299 

the torsional moment. Since the yarn twist changes during interaction with the solid 300 

cylinder, it is necessary to investigate the effect of system parameters on the bending and 301 

torsional moments as well as the yarn performance. In the following analysis, the 302 

governing and boundary equations are normalized to minimize the number of variables. 303 

304 



13 

1 10 100
0.1

1

10

100

1000

m
2
 (

N
m

)
m3 (Nm)

 =0.1

 =

 =10

305 

Fig. 6 The relationship between bending and torsional moments 306 

307 

2.4 Dimensionless equations 308 

The normalized variables introduced here are similar to those used by (Fraser and Stump 309 

1998). Lengths are normalized against the cylinder radius 0r , forces are normalized 310 

against 2

0/K r , which is a measure of the magnitude of forces required to bend and twist 311 

the yarns. Moments are normalized against 0/K r . 312 

0

0 0 0

0
0 0

0 0 0

2 2 3 3

0 0 0 0 1 0
0 1

0 0 0

2 2 2 3

3 0 3 0 0 0
3 3

=

, 1, ,

, , ,

, ,

, , ,

,

1,

r z r z

AB CD
AB CD

b
b

AB AB CD CD

AB CD
AB CD

z s
r z s

r r r

R l l
R r l l

r r r

vr v r n r n r
v v n n

K K K K

T T r T T r T Tr

p r p r pr Nr
p p p N

K K K K

B
K B

K

= = + + =

= = = =

= = = =

= = =

= = = =

= =

R
R e e e e

(17) 313 

The governing equations in the dimensionless form become 314 

2

1 2 3 2 1

sin sin
- (sin ) (sin ) cos 0p p p p p N

 
      

 


 − + + + + =315 

1 3sin sin 0p p N   − + − = (18) 316 

0sin cos 0N R   + =317 

Where 318 
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2

1 2 3 2 1

sin sin
(sin ) (sin )N p p p p p

 
    

 


 = − + + +319 

1 1.3sinp = −320 

2 0.3p = −321 

1 1.3(sin cos )p      = − +322 

2 0.3( )p     = − +323 

0 1 0

cos
tan

sin 2 ( )

b

b

v v
arc

v R n n




 

+
=

+ −
324 

2 2sin sin   = = +R&&325 

2 2

2 2
( sin cos 2sin cos )

sin


      

 


  = + +

 +
326 

2 2 2

4 2 2 2 2 32 2

2 2

3

2 2 2

sin sin cos 3 cos1

sin 2 sin cos 4 sin cos 2 sinsin

( sin cos 2sin cos )
( sin cos )

( sin )

          


          

      
   

 

       + + +
 =  

   − + + − +  

  + +
  − +

 +

327 

1

2
T 


= & 328 

sin cos 2 sin cosT      = + = +&329 

2 22 (cos sin )T      = + −330 

The boundary conditions become 331 

cos cos 0AB AB CD CDl l + = , 1 ( )ABn T k = − , 3ABp and CDT . (19) 332 

333 

3. Numerical computation334 

The finite difference method (Yin et al. 2016) for the numerical solution was applied to 335 

solve the equations presented in this paper. The transformed equations were integrated 336 

numerically over the domain 0    . The solutions were found by the following 337 

scheme: First, initialize the known parameters and input the four boundary values. Next, 338 

create trial matrix 0X  which was composed of unknown variables 3ip , i , 
iT . Then,339 
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create a trial value for 1n . After that, the Jacobian matrix was generated and iterated by 340 

the Newton-Raphson scheme until the norm of the functions was smaller than 10-5. If the 341 

results of two adjacent iteration for 1n  was larger than 10-5, use the new 1n  as trial 342 

values for iteration. Finally, the three unknown variables and one unknown constant value 343 

were obtained. 344 

345 

The parameter values used in numerical computation are shown as follows, 1CDT = , 346 

3CD 600p = ,
0 0.03R = , 1e3v = , bv v= , 0 CDn vT= , =0.8 , =60o , AB CDl l= unless 347 

otherwise stated. 348 

349 

3.1 Effects of wrap angle 350 

Fig. 7 shows yarn performance at different wrap angles of 30o, 60o, and 90o. Fig. 7 a-c 351 

display yarn spatial positions lying on a moving cylinder at three different wrap angles. 352 

For small wrap angles, the yarn spatial curve can be simplified as an in-plane curve due 353 

to the approximate constant value of the deviation angle close to 90o. As the wrap angle 354 

increases, a more curved spatial yarn path can be obtained. Fig. 7d shows the effect of 355 

wrap angle on yarn tension distribution. Since the yarn tension was controlled at the exit 356 

point of the cylinder, a large wrap angle leads to a low yarn tension at the entrance point 357 

of the cylinder. Moreover, a linear relationship can be found between the yarn tension and 358 

the wrap angle. Fig. 7e reflects the effect of wrap angle on yarn twist distribution. The 359 

larger the wrap angle, the higher the twist difference between two ends of the yarn lying 360 

on a solid cylinder. As the wrap angle increases from 30o to 90o, yarn twist in zone AB 361 

increases from 1.86 to 3.12. The change of warp angle has proven to be the most effective 362 

way to affect the false twisting efficiency, propagation coefficients of twist trapping and 363 

congestion (Yin et al. 2020a). Fig. 7f demonstrates the bending and torsional moments 364 

under 3 different wrap angles. In the cases of wrap angle of 30o, 60o and 90o, the mean 365 

values of bending and torsional moments are 1.51, 1.47, 1.41, and 9.14, 11.71, 14.08, 366 

respectively. Therefore, it is clear that in all cases the bending and torsional moments are 367 

of the same order of magnitude, and ignoring the bending moment may lead to errors in 368 

the simulation results.  369 
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Fig. 7 The effect of wrap angle on yarn performance 376 

377 

3.2 Effects of moving speed of the solid cylinder 378 

Fig. 8 shows yarn performance at different moving speeds of the solid cylinder. Fig. 8a 379 
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shows the effect of bv  on yarn tension distribution. As bv  increases from 0.5 v  to 1.5 v , 380 

the mean yarn tenacity increases from 427.11 to 492.96. Fig. 8b displays the effect of bv  381 

on yarn twist distribution. The increment of bv  also leads to a build-up in yarn twist. Fig. 382 

8c illustrates the effect of bv  on deviation angle. The deviation angle determines the 383 

level of out-of-plane yarn spatial curvature, and another way to express yarn geometry 384 

position. The higher the slope, the higher the level of yarn curvature. When bv  is 385 

increased, the slope of the deviation angle is slightly increased as well. The bending and 386 

torsional moments against 3 cases of bv  are shown in Fig. 8d. The mean values of 387 

torsional and bending moments are still of the same order of magnitude, though the 388 

values of torsional moments are much larger than those of bending moments.  389 
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3.3 Effects of yarn radius 396 

Fig. 9 shows yarn performance under different yarn radii 0R . The effect of yarn radius397 

has little influence on yarn tension distribution and yarn spatial position, as shown in Fig. 398 

9a and c, but the effect on yarn twist distribution is greater, as shown in Fig. 9b. As the 399 

yarn radius increases from 0.015 to 0.045, the corresponding yarn twist at zone AB also 400 

increases from 1.63 to 3.96, which leads to a higher torsional moment as shown in Fig. 9d. 401 

In the case of 0R =0.045, the mean value of the torsional moment is an order of 402 

magnitude larger than the bending moment. 403 
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Fig. 9 The effect of yarn radius (normalized) on yarn performance 408 
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410 

3.4 Effects of yarn tension 411 
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Fig. 10 shows yarn performance under different yarn tensions. The change of 3CDp412 

greatly influences yarn tension and twist distributions. As 3CDp increases, both the 413 

mean yarn tension and twist are built-up, as shown in Fig. 10a and b. However, the 414 

effect of 3CDp  has no influence on yarn geometry position, as displayed in Fig. 10c. 415 

The effect of 3CDp  on yarn bending and torsional moments are shown in Fig. 10d, 416 

and a similar trend for yarn twist can also be found. 417 

0 10 20 30 40 50 60
0

200

400

600

800

1000

Y
a
rn

 t
e
n

s
io

n
 d

is
tr

ib
u
ti
o

n
 (

N
o

rm
a

liz
e

d
)

Wrap angle (
o
)

        

 
3CD

3CD

3CD

300

600

900

p

p

p

=

=

=

0 10 20 30 40 50 600.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Y
a
rn

 t
w

is
t 
d

is
tr

ib
u
ti
o

n
 (

N
o

rm
a

liz
e

d
)

Wrap angle (
o
)

           

 
3CD

3CD

3CD

300

600

900

p

p

p

=

=

=

418 

(a) The effect of 3CDp on 3p (b) The effect of 3CDp on T419 

0 10 20 30 40 50 60
60

70

80

90

100

110

120

D
e

v
ia

ti
o

n
 a

n
g
le

 (
o
)

Wrap angle (
o
)

          
 

3CD

3CD

3CD

300

600

900

p

p

p

=

=

=

0 10 20 30 40 50 60
0

5

10

15

20

25

M
o

m
e

n
t 
(N

o
rm

a
liz

e
d
)

Wrap angle (
o
)

                 

 
3 3CD

3 3CD

3 3CD

2 3CD

2 3CD

2 3CD

( 300)

( 600)

( 900)

( 300)

( 600)

( 900)

m p

m p

m p

m p

m p

m p

=

=

=

=

=

=

420 

(c) The effect of 3CDp on   (d) The effect of 3CDp on m421 

Fig. 10 The effect of yarn tension (normalized) on yarn performance 422 

423 

3.5 Effects of yarn twist 424 

Fig. 11 shows yarn performance under different yarn twists. The change of CDT  has little 425 

influence on the yarn tension distribution and the yarn geometry position, as shown in 426 

Figs. 11a and c, but does have a large influence on the distribution of yarn twist as well as 427 
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the yarn torsional moment, as shown in Fig. 11b and d. 428 
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Fig. 11 The effect of yarn twist (normalized) on yarn performance 434 

435 

3.6 Effects of frictional coefficient 436 

Fig. 12 shows yarn performance for various coefficients of friction between the yarn and 437 

the cylindrical solid. In Fig. 12a, the three curves of yarn tension distribution present an 438 

approximately linear relationship with the wrap angle. A higher coefficient of friction can 439 

lead to a larger reduction in yarn tension. In Fig. 12b, an increase in the coefficient of 440 

friction leads to an increase in the normalized twist distribution. As expected, a higher 441 

coefficient of friction gives rise to a more curved figure of the yarn path on the solid 442 

cylinder, as shown in Fig. 12c. The torsional moment of the yarn also increases as a result 443 
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of increased yarn twist, as shown in Fig. 12d. 444 
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Fig. 12 The effect of frictional coefficient on yarn performance 449 

 450 

4. Experimental  451 

 452 

Experiments were conducted on a ring spinning machine (Zinser 351) with a moving 453 

solid cylinder made of polyurethane with a diameter of 6 mm, sitting between the front 454 

rollers and yarn guide. Cotton yarn with a linear density of 18.45 g/km and diameter of 455 

0.16 mm were spun for the experiments. The yarn tension was measured by a strain 456 

gauge sensor (Honigmann tension meter 125.12, 100cN maximum range, 0.1cN precision, 457 

15° measuring angle), and the yarn twist was measured by a high-speed camera (Phantom 458 

MIRO 4, CMOS sensor, 800 × 600 pixels, over 1200 fps at full resolution, 22 μm pixel 459 

size, 12-bit depth). Before measurement, both the yarn tension meter and the high-speed 460 
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camera system were calibrated. In addition, the coefficient of friction of the yarn and the 461 

rigid cylinder was 0.81, measured by a Shirley friction meter. The torsional rigidity of the 462 

yarns was measured by a KES yarn torsion and intersecting torque tester. Three sets of 463 

experiments were conducted as listed in Table 1 464 

465 

Based on the parameters given in Table 1, simulation results of the distribution of yarn 466 

twist, tension, and deviation angle lying on the solid cylinder for the three cases were 467 

obtained. Table 2 lists the simulated and measured values and errors of yarn tension, twist, 468 

and deviation angle at lAB. In all three cases, the errors between the simulated values and 469 

experimental data were lower than 10%, which indicates that a good agreement has been 470 

made between the model prediction and experimental results. Additionally, it was noted 471 

that the variation in the twist and angle measurements were larger than 14%, which may 472 

be caused by the relative motion of the yarn on the moving solid cylinder. 473 

474 

Table 1 Parameters for case study 475 

Case 
φ 

(o) 

CDT

(tpm) 

[CV%] 

3CDp

(cN) 

[CV%] 

K

(1e-9Nm2) 

[CV%] 

v

(m/s) 

bv

v

1 50 
902 

[14.55] 

16.53 

[5.32] 

4.87 

[14.43] 
0.16 2 

2 50 
563 

[18.23] 

14.20 

[7.54] 

2.51 

[13.23] 
0.25 2 

3 50 
562 

[15.44] 

19.82 

[6.23] 

2.73 

[12.34] 
0.25 2 

476 

Table 2 Comparisons between the simulated values and experimental observations 477 

Case 

3ABp (cN) ABT (tpm) B (o)

M 

[CV %] 
S 

E 

(%) 

M 

[CV %] 
S 

E 

(%) 

M 

[CV %] 
S 

E 

(%) 

1 10.61 9.61 9.43 1217 1180 3.04 77.9 73.09 6.17 
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[7.22] [14.22] [15.89] 

2 
10.03 

[5.48] 
9.71 3.19 

943 

[14.57] 
966 2.44 

76.7 

[20.67] 
72.66 5.27 

3 
14.07 

[5.89] 
13.79 1.99 

1157 

[15.41] 
1091 5.70 

77.9 

[14.51] 
72.46 6.98 

Note that M, S and E represent the measured value, simulated value, and error, respectively. 478 

479 

The simulation results of this study were compared with the results of an earlier model 480 

and with experiment (see Fig. 13). Compared with an earlier model in which bending was 481 

ignored, our simulation results of the current model show lower tension but higher twist 482 

values. As shown in Fig. 13a, the tension values predicted by our current model are closer 483 

to but slightly lower than measured experiment for all three cases, while the tension 484 

values simulated by a previous model predict slightly higher values than experimentally 485 

observed. In terms of yarn twist, the current model can also obtain a more accurate 486 

prediction than the previous model (which ignored bending) when compared with the 487 

experimental results, as shown in Fig. 13b. 488 
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Fig. 13 Comparisons among the current and previous models and experiments 492 

493 

5. Conclusions494 

495 

In this paper, the performance of a twisted yarn constrained to lie on a solid cylinder has 496 
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been studied. Equations of motion were established based on Cosserat theory. The 497 

boundary value problems were numerically solved by the Newton-Raphson method. The 498 

effects of various spinning parameters in terms of wrap angle, speed of the moving 499 

cylinder, yarn diameter, yarn tension, yarn twist, and frictional coefficient, on yarn 500 

tension and twist distributions, yarn spatial position, bending and torsional moments 501 

lying on a cylinder were discussed. The results suggested that in most cases the bending 502 

and torsional moments are of the same order of magnitude, and so the effect of bending 503 

should not be neglected. Moreover, among all of the parameters investigated, wrap angle 504 

is the most significant factor affecting yarn twist and tension distributions as well as yarn 505 

spatial position lying on a cylinder. Experiments of the modified ring spinning system 506 

were conducted to verify the theoretical work and a good agreement has been made 507 

between model prediction and experiment. In addition, some simulation results and 508 

experimental data of this study were compared with results from an earlier model. It was 509 

found that the current model can give a more accurate prediction than a previous model 510 

by incorporating a bending term. The results gained from this study will enrich our 511 

understanding of the modified ring spinning process and provide a better handle of 512 

predicting how cellulose fibers can add better value down the supply chain. 513 
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