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ABSTRACT Conventional linear discriminant analysis and its extended versions have some potential
drawbacks. First, they are sensitive to outliers, noise, and variations in data, which degrades their perfor-
mances in dimensionality reduction. Second, most of the linear discriminant analysis-based methods only
focus on the global structures of data but ignore their local geometric structures, which play important roles in
dimensionality reduction. More importantly, the total number of projections obtained by linear discriminant
analysis (LDA) based methods are limited by the class number in the training data set. To solve the problems
mentioned above, we propose a novel method called robust locally discriminant analysis via capped norm
(RLDA), in this paper. By replacing L2 -norm with L2,1- norm to construct the robust between-class scatter
matrix and using the capped norm to further reduce the negative impact of outliers in constructing the within-
class scatter matrix, we can guarantee the robustness of the proposed methods. In addition, we also impose
L2,1-norm regularized term on projection matrix, so that its joint sparsity can be ensured. Since we redefine
the scatter matrices in traditional LDA, the projection numbers we obtain are no longer restricted by
the class numbers. The experimental results show the superior performance of RLDA to other compared
dimensionality reduction methods.

INDEX TERMS Feature extraction, capped L2-norm loss, L2,1-regularization, manifold learning,
discriminant analysis.

I. INTRODUCTION
As it is known to all, the curse-of-dimensionality is a dif-
ficult but essential problem in computer vision and pattern
recognition. The reason for this phenomenon is that
high-dimensional data is widespread and may lead to high
computational complexity. Therefore, dimensionality reduc-
tion methods are frequently needed and widely utilized
in practical application fields such as rough-fuzzy cluster-
ing [1], feature extraction [2], image recovery [3], feature
selection [4]–[6], image preprocessing [7] and subspace
clustering [8].

Generally, the dimensionality reduction methods can be
roughly divided into three categories: (1) L2-norm based
methods subspace learning methods, (2) L1-norm based
methods, and (3) other robust jointly sparse feature selection
methods. In what follows, we will review these three kinds of
methods related to this paper.

As for the first category, the most popular methods include
Principal Component Analysis (PCA) [9], Linear Discrim-
inant Analysis (LDA) [10] and Locality Preserving Projec-
tions (LPP) [11]. Researchers have also tried to integrate
the property of locality preserving and discriminant anal-
ysis theory together, and many of their studies achieved
promising results. For example, Masashi combined the prop-
erty of LDA and LPP and proposed local Fisher discrimi-
nant analysis (i.e. LFDA [12] ). Other discriminant locality
basedmethods include locality adaptive discriminant analysis
(i.e. LADA [13]), local similarity and diversity preserving
discriminant projection (i.e. LSDDP [14]), discriminant sim-
ilarity and variance preserving projection (i.e. DSVPP [15]),
local structure preserving discriminant analysis
(i.e. LSPDA [16]), local maximal margin discriminant
embedding (i.e. LMMDE [17]), fuzzy local discriminant
embedding (i.e. FLDE [18]) and so on. However, each of
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these methods uses L2 norm as the basic metric, and its square
operation will magnify the negative effect of outliers. This
leads to their lack of robustness, especially when training data
is corrupted with noise.

In order to address this problem, researchers proposed
L1-norm based methods so that we can improve the robust-
ness of the learned subspace. Inspired by this idea, L1-norm
based methods are widely used in feature extraction [19],
coupled dictionary learning [20], adaptive sparse
regression [21] and sparse subspace learning [22]. In recent
years, L1-norm based methods have been further developed.
Zhang et al. [23] proposed L1-norm-based local optimal
locality preserving LDA (i.e. LLDA_L1) and L1-norm-based
global optimal locality preserving LDA (i.e. GLDA_L1).
Furthermore, Yuan et al. [24] proposed a robust version of
EPP based on L1-norm maximization (i.e. EPP-L1).

While L1-norm based methods are superior to most of
the L2-norm based methods, they also have major problems
as follows: (1) In most of the methods, L1-norms are only
employed as regularization terms, but L2-norms are still
dominant in loss function, so that these methods are still
sensitive to outliers in a certain case. (2) Although we can
obtain sparse projections through L1-norm based methods,
we cannot ensure their joint sparsity. To solve these problems,
L2,1-norm based methods were proposed and widely used
in practical applications, among which jointly sparse feature
extraction techniques are the most popular methods wewould
like to introduce in the next paragraph.

For the latter category of dimensionality reduction meth-
ods, (i.e. robust jointly sparse feature selection methods),
researchers focus more on the L2,1-norm based methods due
to its simplicity and effectiveness. At first, Nie at el. proposed
RFS [25], in which they introduce L2,1-norm for feature
selection. By employing L2,1-norm as the basic metric and
also imposing it on projection matrix as regularization term,
we can enhance their robustness and ensure their joint spar-
sity. Following these idea, many feature selection methods
using L2,1-normwere also developed, including jointly sparse
representation [26], multi-kernel learning [27], [28], sparse
neighborhood preserving embedding [29] and so on.

In addition to the three categoriesmentioned above, capped
norms have also been extended to robust principal component
analysis problem since it is more robust than the former three
categories. For example, Ma et al. [30] proposed a novel local
linear regression for SISR based capped L2,1-norm function
recently. It was proposed to solve the problem in single image
super resolution tasks, and studies showed that it achieves
better reconstruction performance against other state-of-the-
art methods. Moreover, Sun et al. [31] presented a novel
nonconvex formulation for the RPCA problem using the
capped trace norm and the capped L1-norm.While their study
was based on the assumption that no elements are missing in
the sample data, this assumption was difficult to realize in
real-word application. Therefore, matrix completion remains
a major task in dimensionality reduction. Inspired by their
study, Zhang at el. [32] proposed to employ the capped

nuclear norm inmatrix completion since it can reflect the rank
more directly and accurately than the nuclear norm.

In addition, capped norm has also been utilized in
clustering [33], semi-supervised learning [34] and feature
selection [35] and anomaly detection [36]. These studies
also show that methods integrating capped norms outperform
many state-of-the-art methods.

However, as a new research field, capped norm basedmeth-
ods have potential drawbacks: (1) They ignore the relation-
ship between within-class scatter matrix and between-class
scatter matrix which is essential in preserving the global dis-
criminant structure. As a result, we are not able to lessen the
distance among the samples in the same class and enlarge the
distances among the samples from different classes. (2) Some
of the capped–norm based methods mentioned above do not
consider local geometric structures, which will remarkably
upgrade its performance in dimensionality reduction.

To address the first problem mentioned above, a feasible
approach is to introduce fisher criterion into capped norm
based methods, so that they can preserve the global discrimi-
nant structure to learn discriminative subspace. The second
problem mentioned above can be alleviated by integrating
the advantages of locality based methods since previous
studies [37], [38], [23] have shown that preserving locality
can effectively upgrade the performance in dimensionality
reduction.

Robustness is a major measurement in the performance
of dimensionality reduction. In this paper, we integrate the
property of capped norm into linear discriminant methods.

The main contributions of this paper are as follows:
(1) We propose a novel learning method called Robust

locally discriminant analysis (RLDA) via capped norm. In the
proposed method, we introduce fisher criterion to preserve
the global discriminant structure, and redefine the within-
class and between-class scatter matrices in original LDA.
That is, more robust L2,1–norm based metric and capped
norms are utilized to redefine the scatter matrices, so that
we improve the robustness of our method. In addition,
L2,1–norm regularization was also introduced to make sure
that the projections are jointly sparse.

(2) Different from LDA based methods, the proposed
methods can obtain more projections than C − 1, where
C is the total class number in training samples. That is,
the dimensions of projections are not limited by the class
number any more, and this is beneficial to feature extraction.

(3)We propose an iterative algorithm to solve the optimiza-
tion problem. In addition, the convergence analysis and com-
putational complexity analysis are also presented. Besides,
extensive experiments are also conducted to evaluate the per-
formance of the proposed method, and experimental results
show that the proposed method is superior to the compared
methods.

The rest of the paper is organized as follows. In section II,
we define some notations and review some related works.
In Section III, we present the formulation of RLDA and
propose an iterative algorithm to solve the optimization
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problem. In Section IV, the convergence analysis and compu-
tational complexity of the proposed methods are presented.
In Section V, a set of experiments are carried out to evaluate
the performance in dimensionality reduction of the proposed
RLDA algorithm and some other compared methods. Finally,
we draw a conclusion in Section VI.

II. RELATED WORKS
In this section, we first present some notations used in this
paper, and then review LDA, LPP and capped–norm.

A. NOTATIONS AND DEFINITIONS
In this paper, matrices and vectors are represented as upper-
case letters and lowercase letters, respectively. Besides,
let ai and aj be the i-th row and the j-th column of
matrix A, separately.
We use X ∈ Rd×n to denote data matrix, where d and

n represent the dimension of features and the total number
of training samples, respectively.

The L2,1-norm of a matrix A ∈ Rm×n is defined as:

‖A‖2,1 =
m∑
i=1

√√√√ n∑
j=1

a2ij =
m∑
i=1

∥∥∥ai∥∥∥
2
. (1)

B. LDA
In traditional LDA [10], the within-class scatter matrix and
between-class scatter are defined as (2) and (3) respectively:

Sw =
1
N

C∑
i=1

∑
j∈Ci

(xj − x̄i)(xj − x̄i)T . (2)

SB =
1
N

C∑
i=1

ni(x̄i − x̄)(x̄i − x̄)T . (3)

Fisher criterion in traditional linear discriminant analysis
theory aims to minimize the within-class scatter matrix and
meanwhile maximize the between-class scatter matrix, which
can be written as (4) or (5) separately:

min
B

tr(BT SWB)
tr(BT SBB)

, (4)

max
B

tr(BT SBB)
tr(BT SWB)

, (5)

where B is the projection matrix.
The optimization problem in LDA can be converted into

an eigen-decomposition problem. The optimal projections are
made up of the eigenvectors of S−1W SB corresponding to the
largest eigenvalues. In reality, SW is sometimes singular due
to small sample size problem, so we often employ PCA as
a preprocessing step to reduce the dimensionality of training
samples beforehand.

C. LPP
LPP [11] was proposed to preserve the local geometric infor-
mation of the training data. Assuming that we use P ∈ Rd×k

to represent the projection matrix we aim to learn, and then
the objective function of LPP can be presented as (6):

min
P

∑
ij

∥∥∥PT xi − PT xj∥∥∥2
2
Wij, (6)

where W is the local neighborhood graph and its definition
are presented in (7):

Wij =

{
1, if xi ∈ Ck (xj)orxj ∈ Ck (xi)
0, otherwise,

(7)

where Ck (xi) is a set consisting of the k nearest neighbors
of xi.

Based on the definitions above, (6) is equivalent to (8)

min
P
tr[PTX (Q−W )XTP], (8)

where Q is a diagonal matrix and its elements are row

(or column sum) of matrix W , namely, Qii =
n∑
i=1

Wij.

The objective function of LPP can be formulated as
follows:

min
P

tr[(PTXQXTP)−1PTXRXTP],

s.t. PTXQXTP = Id (9)

where IdεRd×d is an identity matrix, and R = Q − W . The
minimization problem can be further converted to eigenvalue
problem as follows:

XTRXTP = XQXTP3, (10)

where 3 is the eigenvalue matrix of matrix P. Eventually,
the optimal matrix consists of k minimum eigenvalue solu-
tions of the above generalized eigenvalue problem.

D. CAPPED NORM MINIMIZATION
As for the capped-L1 norm based minimization problem
in [39], [41], researchers hope to learn a weight matrix
K ∈ Rd×n consisting of the weight vectors under n pre-
dictive models: yi ≈ fi(Xi) = Xi × ki. L1 penalty was
employed on each row of K to obtain a column vector. Later
on, they impose the capped-L1 penalty afterwards on the
column vector. The capped norm minimization problem can
be formulated as follows:

min

 l(K )+ λ
d∑
j=1

min(
∥∥∥k j∥∥∥

1
, ε)

 , (11)

where l(K ) denotes an empirical loss function of K , and
λ (> 0) represents a parameter balancing the empirical loss
and the regularization term. ε(> 0) denotes a thresholding
parameter and k j is the j-th row of the matrix K .

III. ROBUST LOCALLY SPARSE REGRESSION
In this section, we present the objective function of the pro-
posed method, and then propose an iterative algorithm to
solve the optimization problem.
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A. MOTIVATION AND FORMULATION OF RLDA
Let B ∈ Xd×k be the projection matrix, where k is the
dimension of the low-dimensional subspace we aim to learn.
It is clear that we will map the original data points xi into
low-dimensional subspace yi according to (12).

yi = xTB. (12)

Within-class scatter value in conventional LDA is sensitive
to outliers since it is defined using L2-norm as the basic
metric. To address this problem, in this paper, we redefine it
by using the capped norm as the basic metric to further alle-
viate the negative effect of outliers, which can be presented
as (13):

c∑
i=1

Ni∑
j=1

min(
∥∥∥(x ji − x̄i)TB∥∥∥2, ε), (13)

where x ji represents the j-th sample in the i-th class.
However, the above definition only characterizes the

within-class information and neglect the local geometric
structure. As it is shown in the existing research, the locality
is very important to improve the algorithm’s performance
and it is necessary to take it into consideration. There-
fore, the locality in LPP is integrated in (13). Besides,
we also expect the algorithm can select the key features
to further improve the performance. As a result, the joint
sparsity of the learned projections should be guaranteed
and the L2,1-norm is imposed on our projection matrix
in the proposed model as a regularized term. Then we
obtain:

min
BTB=I

c∑
i=1

Ni∑
j=1

min(
∥∥∥(x ji − x̄i)TB∥∥∥2, ε)+ α ‖B‖2,1
+β

∑
ij

∥∥∥BT xi − BT xj∥∥∥2
2
Wij, (14)

where α > 0 is the regularization parameter of the L2,1-
norm and W is the k-nearest neighbor graph defined
in (7).

Minimizing the first part of (14) indicates that, if x ji is a
sample point in the i-th class, and x̄i is the mean of i-th class,
the low-dimensional representation of x ji and x̄i should be
close. Namely, x jiB and x̄iB should be close. However, if there
are outliers in training samples, they will magnify the penalty
in the loss function. Therefore, the capped norm is introduced
to reduce the negative impact of outliers.

Similar to within-class scatter value, we also utilize
L2,1-norm based metric to redefine between-class scatter
value as follows:∥∥∥∥∥∥

N1(x̄T1 − x̄
T )B

. . .

Nc(x̄Tc − x̄
T )B

∥∥∥∥∥∥
2,1

=

c∑
i=1

Ni
∥∥∥(x̄Ti − x̄T )B∥∥∥2, (15)

where x̄i is the mean of i-th class.

Inspired by the Fisher criterion, we finally obtain the objec-
tive function of RLDA as follows:

min
BTB=I

c∑
i=1

Ni∑
j=1

min(
∥∥∥(x ji − x̄i)TB∥∥∥2, ε)

+ α ‖B‖2,1 + β
∑

ij

∥∥∥BT xi − BT xj∥∥∥2
2
Wij.

s.t.
c∑
i=1

Ni
∥∥∥(x̄Ti − x̄T )B∥∥∥2 = cons (16)

The difference between the previously proposed SCM[41]
and our RLDA is that we introduce the property of LPP to
guarantee the joint sparsity of the projections, and further
improve the performance of LDA based methods by redefin-
ing the scatter matrices defined in LDA.

B. THE OPTIMAL SOLUTION TO RLDA
As for the first part of the objective function in (16), we can
compute it as it is shown in (17):

min
BTB=I

c∑
i=1

Ni∑
j=1

min(
∥∥∥(x ji − x̄i)TB∥∥∥2, ε)

=

∥∥∥XTRwB∥∥∥2,1
= tr(BTXRwDRwXTRwB) = tr(BT SRwB), (17)

where SRw = XRwDRwXTRw is the redefinition of within-class
scatter matrix in LDA. The data matrix XRw and the diagonal
matrix DRw are redefined as (18) and (19), shown at the top
of the next page, respectively, where Ind is an indicative
function defined as (20):

Ind =

{
1, if

∥∥∥(x ji − x̄i)TB∥∥∥2 ≤ ε
0, otherwise.

(20)

Moreover, the second part and the third part of (16) can be
computed by (21) and (22) respectively:

α ‖B‖2,1 = αtr(B
TDbB). (21)

β
∑

ij

∥∥∥BT xi − BT xj∥∥∥2
2
Wij = βtr

[
BTX (D1 −W )XTB

]
= βtr(BTXLXTB), (22)

where Db is a diagonal matrix with its i-th diagonal element
defined in (23), D1 is a diagonal matrix whose elements are
column (or row, sinceW is symmetric) sum ofW , and L is the
Laplacian matrix. The definition of D1 and L are presented
as (24) and (25), respectively.

Dbii =
1

2
∥∥bi∥∥2 . (23)

D1ii =
∑

j
Wij. (24)

L = D1 −W . (25)
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XRw = ((x11 − x̄1), . . . , (x
N1
1 − x̄1), . . . , (x

1
c − x̄c), . . . , (x

Nc
c − x̄c)). (18)

DRw =



Ind

2
∥∥(x11 − x̄1)B∥∥2

. . .
Ind

2
∥∥∥(xN1

1 − x̄1)B
∥∥∥
2

. . .
Ind

2
∥∥(x1c − x̄c)B∥∥2

. . .
Ind

2
∥∥∥(xNcc − x̄c)B∥∥∥

2



, (19)

After these transformations, we can obtain:

min
BTB=I

tr(BTXRwDRwXTRwB)+ αtr(B
TDbB)

+ βtr(BTXLXTB).

s.t.
c∑
i=1

Ni
∥∥∥(x̄Ti − x̄T )B∥∥∥2 = cons (26)

In addition, the constraint term can be formulated as
follows:

c∑
i=1

Ni
∥∥∥(x̄Ti − x̄T )B∥∥∥2 = tr(BTXRbDRbXTRbB)

= tr(BT SRbB), (27)

where SRb = XRbDRbXTRb is the redefinition of between-
class scatter matrix in LDA. Besides, the data matrix XRb
and the diagonal matrix DRb are redefined as (28) and (29),
respectively.

XRb= (N1(x̄T1 − x̄
T ), . . . ,Nc(x̄Tc − x̄

T )). (28)

DRb=


1

2
∥∥N1(x̄T1 −x̄

T )B
∥∥
2

. . .
1

2
∥∥Nc(x̄Tc −x̄T )B∥∥2

.
(29)

After that, we are able to obtain:

min
BTB=I

tr(BTXRwDRwXTRwB)+αtr(B
TDbB)+βtr(BTXLXTB)

s.t. tr(BTXRbDRbXTRbB) = cons (30)

From (30), we can know that it is the trace optimization
problem similar to classical LDA. Using Lagrangian multi-
plier methods we can obtain (31).

min
BTB=I

tr[BT (XRwDRwXTRw + αDb + βXLX
T )B]

tr(BTXRbDRbXTRbB)
(31)

After some simple transformations, we can get the follow-
ing generalized eigenfunction:

(XRbDRbXTRb)
−1(XRwDRwXTRw + aDb + βXLX

T )B = B3.

(32)

where3 is a diagonal matrix which is made up of eigenvalues
of their corresponding eigenvectors, and their corresponding
eigenvectors lies in each column of projection matrix B.
Thus, it is clear that the trace minimization problem

can be solved by the eigen-decomposition of the matrix
(XRbDRbXTRb)

−1(XRwDRwXTRw+aDb+βXLX
T ), and the opti-

mal matrix B is made up of eigenvectors corresponding to
its smallest eigenvalue. Since the updating of Db and DRb is
related to the projection matrix B obtained from the last iter-
ation, we need to develop an alternatively iterative algorithm
to compute the optimal projection, which can be obtained by
the algorithm procedures shown in TABLE 1.

IV. ALGORITHM ANALYSIS
In this section, we present the convergence analysis and
computational complexity of our proposed RLDA algorithm.

A. CONVERGENCE ANALYSIS
To prove the convergence of the proposed algorithm, we need
the following lemma.
Lemma 1 [25]: For any nonzero vectors a and b, the fol-

lowing inequality holds:

‖a‖2 −
1
2
‖a‖22
‖b‖2

≤ ‖b‖2 −
1
2
‖b‖22
‖b‖2

(33)

From Lemma 1, we can easily obtain Corollary 1:
Corollary 1: For any nonzero vectors bik+1 and b

i
k , inequal-

ity in (34) holds:∥∥∥bik+1∥∥∥12 − 1
2

∥∥bik+1∥∥22∥∥bik∥∥12 ≤
∥∥∥bik∥∥∥12 − 1

2

∥∥bik∥∥22∥∥bik∥∥12 (34)

Theorem 1: The algorithm shown in TABLE 1 will mono-
tonically decrease the objective function in (16).
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TABLE 1. Robust locally discriminant analysis via capped norm.

Proof: Although DRb has also been updated during the
iterative process, it was only used as a constraint. There-
fore, the optimization problem in (16) can be denoted as
J (B,Db,DRw) for simplicity, and the value of J (B,Db,DRw)
is as follows:

J (B,Db,DRw)

= tr(BTXRwDRwXTRwB)+ αtr(B
TDbB)+ βtr(BTXLXTB).

(35)

Suppose we have obtained Bk in the k-th iteration, since
Bk is updated by eigen-equation in (32), we can obtain
inequality as follows:

J (Bk+1,Dkb,D
k
Rw ) ≤ J (Bk ,D

k
b,D

k
Rw ) (36)

This is equivalent to:

tr(BTk+1XRwD
k
RwX

T
RwBk+1)+ αtr(B

T
k+1D

k
bBk+1)

+βtr(BTk+1XLX
TBk+1)

≤ tr(BTk XRwD
k
RwX

T
RwBk )+ αtr(B

T
k D

k
bBk )

+βtr(BTk XLX
TBk ) (37)

We can easily find that (37) can be rewritten as (38) utiliz-
ing the definition of L2,1-norm and F-norm

tr(BTk+1XRwD
k
RwX

T
RwBk+1)

+αtr(
d∑
i=1

1
2

∥∥bik+1∥∥22∥∥bik∥∥2 )+ βtr(BTk+1XLX
TBk+1)

≤ tr(BTk XRwD
k
RwX

T
RwBk )

+αtr(
d∑
i=1

1
2

∥∥bik∥∥22∥∥bik∥∥2 )+ βtr(BTk XLXTBk ), (38)

where bik denotes the i-th row of matrix Bk .

From inequality in (34) and (38), we can easily get (39)

tr(BTk+1XRwD
k
RwX

T
RwBk+1)

+αtr(
d∑
i=1

1
2

∥∥bik+1∥∥22∥∥bik+1∥∥2 )+ βtr(BTk+1XLXTBk+1)
≤ tr(BTk XRwD

k
RwX

T
RwBk )

+αtr(
d∑
i=1

1
2

∥∥bik∥∥22∥∥bik∥∥2 )+ βtr(BTk XLXTBk ) (39)

On each side of the inequality, we can reformulate the sec-
ond part and obtain:

tr(BTk+1XRwD
k
RwX

T
RwBk+1)

+αtr(BTk+1D
k+1
b Bk+1)+ βtr(BTk+1XLX

TBk+1)

≤ tr(BTk XRwD
k
RwX

T
RwBk )

+αtr(BTk D
k
bBk )+ βtr(B

T
k XLX

TBk ) (40)

From (40) we can get (41), which means updating Db
decrease our objective function

J (Bk+1,D
k+1
b ,DkRw ) ≤ J (Bk ,D

k
b,D

k
Rw ) (41)

Therefore, the last step is to prove that the updating process
of DRw also decrease the objective function. Namely, we aim
to prove (42):

J (Bk+1,D
k+1
b ,Dk+1Rw ) ≤ J (Bk+1,D

k+1
b ,DkRw ) (42)

Since the second and the third part of (30) are constants
with respect to DRw, we can fix them and ignore their influ-
ence during the process of proving (42).

To prove the above inequality, we need following proposi-
tion as preparation.
Proposition 1: When B and Db are fixed as constants,

(35) becomes a non-convex capped-norm based optimiza-
tion problem concerning only one variable DRw . This
problem can be solved by utilizing the concave convex
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FIGURE 1. Image samples collected from (a) AR face database, (b) FERET face database, (c) Binary Alphadigits (BA) dataset, and (d) COIL-20 database.

procedure (CCCP) [40], the property of concave function
and sub-gradient, and locally linear approximation simultane-
ously. Thus the updating process of DRw will monotonically
decrease the objective function in (35).

Proof: The proposition can be derived from previous
work of Lan et al. [41]. The detailed proof can be referred
in [41]. (To be exact, the proof of this proposition can be
referred to contents from (28) to (37) in [41]).
The main idea of his proof to the proposition is that, if non-

convex objective function has a convex upper bound, we are
able to minimize the objective function by minimizing its
upper bound, so that (42) can be proved.

Combining (41) and (42), we arrive at the following
inequality:

J (Bk+1,D
k+1
b ,Dk+1Rw ) ≤ J (Bk ,Dkb,D

k
Rw ) (43)

Therefore, we prove that the objective function of the
proposed RLDAmonotonically decrease and it will converge
to a local optimal solution.

B. COMPUTATIONAL COMPLEXITY
In this subsection, we use d , n to denote the dimension
of original training data, the number of training samples,
respectively. Besides, let c and k represent the number of
classes in the training data and the number of neighbors
separately. Updating DRb and DRw costs O(ckd) and O(nkd)
respectively. It takes us O(nkd + nk2c + nc) to update Db.
The main computational complexity comes from solving
the eigen-equation in (32), so updating B will cost O(d3).
In reality, the dimensions of original data are always bigger
than other constants, so we only take computational complex-
ity caused by eigen-equation into consideration. Therefore,
if the iteration steps is T , the total computational complexity
is O(Td3).

V. EXPERIMENTS
In this section, we conduct extensive experiments to evaluate
the performance of our proposed RLDA on four well-known
datasets, namely, AR Face dataset, FERET dataset, Binary
alpha digits (BA) dataset and COIL-20 database. Besides,
a number of subspace learning methods are selected for

comparison. These methods include conventional linear dis-
criminant methods Linear Discriminant Analysis (i.e. LDA)
[10], and its extended version low-rank linear regression
method (i.e. LRLR) [42]. In addition, locality based meth-
ods such as conventional Locality Preserving Projections
(i.e. LPP) [11] and its variant fast and orthogonal LPP
(i.e. FOLPP) [43] are also used for comparison. Moreover,
capped-norm based methods Robust Feature Selection via
Simultaneous Capped L2-Norm and L2,1-Norm Minimiza-
tion (i.e. SCM) [41], together with state-of-the-art subspace
learning methods robust discriminant regression (i.e. RDR)
[44], and low-rank linear embedding (i.e. LRLE) [45] are also
utilized for comparison.

A. DETAILS OF THE DATABASES
A subset of the AR face database includes 840 images
of 120 classes are selected for experiments. A subset of
FERET face dataset containing 800 images from 200 individ-
uals (namely, each individual has 4 images) were used to con-
duct experiments. The Binary alpha digits database consists
of 1404 binary handwritten images of 36 classes, and each
class is corresponding to 39 images. The COIL-20 database
is made up of 1440 images from 20 objects, and each object
has 72 figures. Sample images from these datasets are shown
in Fig.1.

B. EXPERIMENTAL SETTINGS
In this experiment, we randomly selected L images from each
individual and used them as training samples. L was set as
L = 4, 5 for AR dataset, L = 3, 4 for FERET dataset,
L = 10, 15 for Binary alpha digits database , and L = 6, 7 for
COIL-20 database. Experiments are performed 10 times
repeatedly, and the average recognition of all the methods
were calculated with the purpose of evaluating their perfor-
mances in dimensionality reduction.

In each experiment, the range of subspace dimensions for
AR, FERET and Binary alpha digits were from 5 to 200 with
step 5, and for COIL-20 database, the dimension range was
set as from 5 to 100 with step 5.

To release the singular value problem caused by the inverse
calculation of the scatter matrix, we perform PCA as a pre-
processing step before conducting our experiments.
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FIGURE 2. The recognition rates on (a) AR, (b) FERET database.

FIGURE 3. The recognition rates vs. the dimension of each method on (a) Binary alpha digits database, (b) COIL-20 dataset.

In LPP, FOLPP and RLDA, the weight mode was set as
Binary mode, and the neighbor graph W was defined in (7).
The nearest neighbor parameter k was selected from the
set {1, 2, 4, . . . ,C − 1}, where C denotes the number of
classes in training data. K Neighbors Classifier was used for
classification.

C. EXPERIMENTAL RESULTS AND ANALYSIS
For all the methods, best average recognition rates and
standard deviation, together with corresponding dimension
and training time on AR, FERET, Binary alpha digits and
COIL-20 face database are presented in Tables 2 to 6, respec-
tively. The variation curves of average recognition rates in
relation to the subspace dimension of each method on these
databases are shown in Fig. 2 and Fig. 3.

From the tables and figures listed above, we can draw some
conclusions as follows:

1. All the experimental results show that our proposed
RLDA has superior performance to conventional LDA.

The reason is that RLDA is more robust than LDA by redefin-
ing the scatter matrices. Moreover, we are able to address the
problem in traditional LDA that it can only obtain C − 1 pro-
jections at most, where C is the total number of classes in the
training data. In addition, L2,1-norm regularization ensures
the joint sparsity of the projections, which can select more
discriminative features. Furthermore, the locality discrimi-
nant information has been taken into consideration in RLDA,
which can preserve the local geometric structure when the
data is embedding in a latentmanifold so as to further improve
the performance.

2. We can find that the proposed RLDA always performs
better than other compared methods in any low-dimensional
subspace. These phenomena appear on all datasets, and show
that the proposed method is much powerful than other meth-
ods in dimensionality reduction.

3. Since LRLR integrates the property of low-rank,
it achieves comparatively better results than conventional
L2-norm based method. SCM utilizes L2,1-norm based metric
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TABLE 2. Performance on AR dataset.

TABLE 3. Performance on FERET dataset.

TABLE 4. Performance on binary alpha digits dataset.

TABLE 5. Performance on Coil20 dataset.

and capped norms to alleviate the negative of outliers, and
the improvements in its robustness leads to its promising
recognition rate especially on AR and COIL-20 database.
However, both LRLR and SCM encounter the small-class
problem. Namely, there exists an upper bound in the total
number of the projections obtained by these two meth-
ods, and the upper bound is exactly the class number.
The small-class problem limits their performances in some
extent.

4. In addition to traditional subspace learning methods,
we also compared the proposed RLDA with state-of-the art
RDR and LRLE. These two methods also achieve prominent
performance in dimensionality reduction mainly due to the
integration of L2,1-norm based metric and local geometric
structure. Although both LPP and FOLPP preserve local dis-
criminant information, their recognition rates are unsatisfying
compared to the former two methods. The reason for this
phenomenon may be that they are sensitive to outliers and
variant in data owing to the utilization of L2-norm based
metric.

D. CONVERGENCE ANALYSIS
In section IV-A, we have proven that the proposed objective
function is a monotonically decreasing function, and it will
converge to local optimum. The value of objective function
can be computed by equation in (16). Fig. 4 (a) and Fig. 4 (b)
depict the variation of the value of objective function versus

the number of iterations on AR and Binary alpha digits
datasets, respectively. The figures show that the proposed
method converges very fast. Similar phenomena can also be
found on other databases, and we can draw a conclusion that
the proposed algorithm will converge to the local optimal
solutions within a few iterations.

E. PARAMETERS DETERMINATION
Since the performance of our prosed RLDA was affected
by the parameters α, β and ε, we can adjust these three
parameters to find their optimal combination.

For the regularization prarmeterα, we first fix the other two
parameters and vary α in the range of 10−5, 10−4, . . . , 105.

Fig. 5. (a) shows the variation curve of recognition rates
versus the variations of parameter α on AR dataset when
the other two parameters β and ε were fixed at 104, 10−5

respectively. It demonstrates that the recognition rate grows
as we increase the value of parameter α, and climbs to the
highest recognition ratewhenwe setα as 104, but it falls when
we continue increasing the value of parameter α. Therefore,
the range of optimal α is α ∈ [102, 104].
Similarly, β and ε were selected from the range

of 10−10, 10−9, . . . , 100, 10−5, 10−4, . . . , 105 separately.
Fig. 5 (b) shows that the recognition rate continuously decline
as parameter β varies from 10−5 to 100, so the range of opti-
mal β is [10−10, 10−6]. Fig. 5 (c) indicates that the optimal
range of parameter ε is ε ∈ [102, 104]. After estimating the
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FIGURE 4. Convergence on (a) AR dataset, (b) Binary alpha digits database.

FIGURE 5. Parameters determination of RLDA. (a) The variations of recognition rate vs. the parameter α. (b) The variations of recognition rate
vs. parameter β. (c) The variations of recognition rate vs. the parameter ε.

optimal ranges of these three parameters using the strategy
mentioned above, we can utilize the grid search with cross
validation to obtain the optimal parameter combination ver-
sus the highest recognition rate on each dataset. The param-
eter selection processes on other datasets are similar to the
process on AR dataset described above.

Eventually, the parameters we set on each database are as
follows. For AR database, when α = 104, β = 10−5 and
ε = 105, the proposed RLDA achieves its best performance.
For FERET database, the optimal parameters for RLDA are
set as α = 104, β = 10−5, ε = 105. For Binary alpha digits
database, the optimal parameters for RLDA are set as α =
104, β = 10−5, ε = 105. For COIL-20 database, the optimal
parameters for RLDA are set as α = 104, β = 10−4, ε = 104.

VI. CONCLUSIONS
In this paper, we propose a discriminant analysis method
called RLDA for dimensionality reduction. In order to solve
the problems in conventional LDA, we redefine the data
matrix and the scatter matrices. In addition, by introducing
capped-L2 norm on loss function, we enhance the robust-
ness of the proposed method. The L2,1-norm regularization

term is also utilized to select features with joint sparsity.
RLDA takes local geometric structure into account and pre-
serve locality of the data points as LPP. An iterative algo-
rithm is designed to compute the optimal solutions of the
proposed RLDA. Theoretical analysis, including conver-
gence analysis and computational complexity, are also pre-
sented. To evaluate the performance of our method, we
carried out experiments on four datasets, where we compared
our proposed methods with seven methods, and the results
illustrated that RLDA outperformed all the related methods
and stat-of-the-art methods. In the future, we will further
explore the property of capped norms to design more robust
algorithms.
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