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ABSTRACT In this paper, the optimal continuous/impulsive linear quadratic (LQ) control problem with
quadratic constraints is thoroughly solved for the first time. Themain contributions of this paper can be stated
as in the following. First, themaximumprinciple is developed by using the variationalmethod. Then, by using
the Lagrange duality principle, the optimal continuous/impulsive control can thus be obtained via decoupling
the forward and backward differential/difference equation (FBSDE). Finally, the optimal parameter can be
calculated by using the gradient-type optimization algorithm.

INDEX TERMS Continuous/impulsive control, quadratic constraints, maximum principle, solution to
FBSDE.

I. INTRODUCTION
Different to the traditional instantaneous stochastic con-
trol problem, the impulsive control problem has to choose
the optimal actions at every chosen time instant, and the
intervention times don’t accumulate (see [1]–[4]). Gener-
ally, for stochastic continuous/impulsive control problem,
the decision-maker has to choose both the instantaneous and
the cumulative components. The stochastic impulsive control
can be applied to solve problems raised in mathematical
finance (see [4]–[6]). For example, the stochastic continu-
ous/impulsive control can be used to solve the portfolio selec-
tion problem with transaction costs, the instantaneous control
is used to indicate the consumption process, and the impulse
control signifies the transactions cost at some stopping times
(see [6]).

Due to the potential applications in many fields, espe-
cially in natural resource economics and in studies con-
sidering the optimal control of exchange and interest rates
(see [7]–[9] and references therein), the study on continu-
ous/impulsive control have attracted many researchers’ inter-
est in the last decade, and significant contributions have
been made. In [3], some applications of stochastic impul-
sive control model were studied, including the optimal con-
trol of an exchange rate, the portfolio optimization under
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transaction cost and the cash management problem. On one
hand, the stochastic impulse control problem can be solved
by using the dynamic programming principle, and the value
function satisfies some HJB quasi-variational inequalities
(see [1], [6], [7], [10]–[12]); On the other hand, stochastic
maximum principle can be also used to obtain the nec-
essary conditions for the optimal impulse control problem
(see [13]–[15]). For recent development on the impulse con-
trol model (see [16]–[18], [24]–[27]).

Besides, the study on control problems with constraint
has been another hot research topic in recent years. Espe-
cially, the constrained LQR problem has been investigated in
many literatures (see [19]–[21]). Usually, the unconstrained
control problem can be viewed as single objective prob-
lem. While in practical applications, many objectives must
be achieved simultaneously, then the multi-objective con-
trol problems should be under consideration. For example,
the well-celebrated portfolio selection problem can be viewed
as multi-objective optimization problem (see [21]). To han-
dle with the multi-objective control problem, generally,
the multi-objective problem is converted to single-objective
problem subject to some constraints associated with other
objectives, readers can refer to [28], [30]. This framework
of LQ control problem with constraints is very useful in
practical applications, and some progress has been made in
the last several decades, [19]–[22]. Also, it is also possible
to remove some special type constraints (if such constraint

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

52955

https://orcid.org/0000-0002-8741-6273
https://orcid.org/0000-0002-9666-2572


Q. Qi et al.: Optimal Continuous/Impulsive LQ Control With Quadratic Constraints

can be embedded into a revised functional) via the revised
equivalent method transform as proposed in [23].

In this paper, we consider the LQ continuous/impulsive
control problem with quadratic constraints. At the instanta-
neous time, the system dynamics is described with the Itô
process; While at the impulsive time, the system state can
be calculated via the given discrete-time multiplicative noise
system. Meanwhile, the quadratic constraint should be satis-
fied for the investigated problem. In this paper, the problem
can be solved in the following way. Firstly, by defining the
Lagrangian, the original optimization problem with quadratic
constraints is converted to the unconstrained one. Secondly,
by using the convex variational method, the necessary con-
dition for the optimality (maximum principle) will be devel-
oped. In what follows, the optimal control can be derived by
decoupling the FBSDE both for the instantaneous time and
the impulsive time. Finally, by using the Lagrangian duality
theorem, the original LQ optimal continuous/impulsive con-
trol problem with quadratic constraints can be solved, and
the optimal parameter can be calculated via the gradient-type
algorithms.

It should be pointed out that previous works like [16]–[18]
studied the impulsive control problem, while other works
like [19]–[21] investigated the control problem with con-
straints. Furthermore, the continuous/impulsive LQ control
problem with quadratic constraints has not be solved in
previous literatures. While, both the impulsive control and
the quadratic constraints are considered in this paper. It is
stressed that the continuous/impulsive LQ control problem
with quadratic constraints will be thoroughly solved in this
paper. Moreover, the obtained results in this paper are innova-
tive in the following aspects: Firstly, by using the variational
method, themaximum principle for continuous/impulsive LQ
control problem with quadratic constraint will be proposed
for the first time; Secondly, by decoupling the FBSDE raised
by the maximum principle, the optimal continuous/impulsive
control will be derived; Finally, from the Lagrange dual-
ity principle, the optimal parameter selection problem
will be solved by using the gradient-type optimization
algorithm.

The remainder of this paper can be organized as below.
In Section II, the investigated stochastic impulsive control
problem is formulated; the main results are presented in
Section III, also the maximum principle for the optimization
is developed; some examples are provided in Section IV;
finally, this paper is concluded in Section V.

The following notations will be used in this paper:
Notations: In means the unit matrix with rank n; Superscript
′ denotes the transpose of a matrix. Real symmetric matrix
A > 0 (or ≥ 0) implies that A is strictly positive definite
(or positive semi-definite). Rn signifies the n-dimensional
Euclidean space. B−1 is used to indicate the inverse of
real matrix B. {�,F ,P, {Ft }t≥0} represents a filtered com-
plete probability space, with natural filtration {Ft }t≥0 gener-
ated by {x0, {Wθ }θ≥0, · · · , {wk}

{k|τk≤t}
0 } augmented by all the

P-null sets. E[·|Fk ] means the conditional expectation with

respect to Fk and F−1 is understood as {∅, �}. a.s. denotes
the ‘almost surely’ sense.

II. PROBLEM FORMULATION
In this paper, for t ∈ [0,T ], we consider the following
continuous/impulsive system:{
dxt =(Axt + But )dt + (Cxt + Dut )dWt , t 6= τk , (1)
xτ+k =Āxτ

−

k
+ B̄uτk + wk (C̄xτ−k + D̄uτk ), t = τk , (2)

where xt ∈ Rn is the system state, ut ∈ Rm is the con-
trol input, uτk ∈ Rm denotes the impulsive control at time
τk , k = 1, · · · ,N , and τN+1 = T . The superscripts −,+

means the instant immediately before and after the impulsive
dynamics is applied. {wk}Nk=1 is the Gaussianwhite noise with
zero mean and covariance 1, Wt indicates the 1-dimensional
standard Brownian motion.

The associated cost function is given by:

JT = E
{1
2

N∑
k=0

∫ τ−k+1

τ+k

[x ′tQxt + u
′
tRut ]dt

+
1
2

N∑
k=1

[x ′
τ−k
Q̄xτ−k + u

′
τk
R̄uτk ]

}
, (3)

where the weighting matrices Q ∈ Rn×n,R ∈ Rm×m and
Q̄ ∈ Rn×n, R̄ ∈ Rm×m are symmetric.
Moreover, we denote

J̄N , E
{
A

N∑
i=1

u′τiRuτi + B′
N∑
i=1

R̄uτi

+C
N∑
i=1

x ′
τ−i
Qxτ−i +D′

N∑
i=1

Q̄xτ−i
}
, (4)

where A ∈ R1,B ∈ Rm, C ∈ R1,D ∈ Rn are the given
coefficients, andR, R̄,Q, Q̄ are given symmetric weighting
matrices with appropriate dimensions.

In this paper, we consider the following quadratic con-
straint imposed on the stochastic impulsive control problem:

J̄N ≤ K , K ∈ R1. (5)

The admissible control set Uad is given by:

Uad = {ut |ut is Ft − adapted,

and
∫ T

0
E(u′tut )dt <∞,

N∑
k=1

u′τkuτk <∞}. (6)

In this paper, we make the following standard assumption:

Assumption 1: 1) The weighting matrices in (3) satisfy:
Q ≥ 0,R > 0, and Q̄ ≥ 0, R̄ > 0; 2) The coefficients in
(4) satisfy A ≥ 0, C ≥ 0, Q ≥ 0 andR ≥ 0.
Assumption 2: The impulsive time τ1, · · · , τN are fixed,

and satisfy: 0 = τ0 ≤ τ1 < · · · < τN ≤ τN+1 = T .
The main problem to be solved in this paper can be

described as:
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Problem 1: Under Assumption 1, find the continu-
ous/impulsive control ut ∈ Uad for t ∈ [0,T ] to minimize the
cost function (3) JT subject to the constraint (5): J̄N ≤ K.
Remark 1: Assumption 1 indicates the cost function (3) is

strictly convex on the admissible set Uad . Furthermore, if R
and R̄ are assumed to be positive semi-definite, the associated
impulsive control problem can be derived by introducing
generalized Riccati equations, which will not be discussed in
this paper, see [19], [20].

III. CONTINUOUS/IMPULSIVE CONTROL DESIGN
In this section, the closed-loop continuous/impulsive control
{uτk }

N
k=1 will be derived via the duality theory.

To guarantee the solvability of the optimal continu-
ous/impulsive control problem (Problem 1), we assume:
Assumption 3: There exists u ∈ Uad which is feasible for

Problem 1.
Theorem 1: Suppose Assumption 3 holds, then there exists

a unique optimal solution (x∗, u∗) for Problem 1.
Proof: Firstly, we define the following set:

Uσ = {ut |ut ∈ Uad , JT ≤ σ }.

We consider the problem as below:

To find u ∈ Uσ to minimize JT in (3),

subjecting to JT ≤ σ, and J̄N ≤ K . (7)

It is noted from Remark 1 that JT is strictly convex under
Assumption 1. Moreover, the constraint (5) and JT ≤ σ

define a convex subset (closed and bounded) on the admis-
sible set Uad . Thus, problem (7) admits a unique solution,
and the uniqueness can be implied from the strictly convexity
of JT .

Now we will show Problem 1 has a unique optimal solu-
tion. To show this, it is supposed that u∗ ∈ Uad is feasi-
ble for problem (7). In this case, if u∗ is not optimal for
Problem 1, then there exists ū which is feasible satisfying
JT (ū) ≤ JT (u∗) ≤ σ . This is contracted with u∗ is feasible
for problem (7). This ends the proof. �

A. DUALITY THEORY
In this section, we adopt the duality theory to calculate the
optimal impulsive control.

For the given parameter λ ≥ 0, from (4) and (5), we define
the Lagrangian as:

L(u, λ) = E
N∑
k=1

{
x ′
τ−k
(
1
2
Q̄+ λCQ)xτ−k

+u′τk (
1
2
R̄+ λAR)uτk + λB′R̄uτk + λD′Q̄xτ−k

}
+E

{1
2

N∑
k=0

∫ τ−k+1

τ+k

[x ′tQxt + u
′
tRut ]dt

}
, (8)

where λ is called the Lagrange multiplier.

Under Assumption 1, from [29] we know that for any
λ ≥ 0, the following relationship holds:

L∗(u, λ) = inf
u∈Uad

sup
λ

L(u, λ) = sup
λ

inf
u∈Uad

L(u, λ). (9)

Next we will establish the Maximum Principle for system
(1)-(1) and cost function (8) as follows, which is divided into
two parts: the instantaneous part and the impulsive part.
Lemma 1: For regular control (t 6= τk ), the adjoint equa-

tion (for t ∈ [τ+k , τ
−

k+1]) is given by:{
dpt = −(A′pt + C ′qt + Qxt )dt + qtdWt ,

pτ−k+1
,

(10)

where pt is the costate for regular control, and
pτ−N+1

= pT = 0.
For impulsive control (t = τk , k = 1, · · · ,N), the adjoint

equation is given by:
pτ−k = E[(Ā+ wk C̄)′pτ+k + λQ̄D|Fk−1]

+ (Q̄+ 2λCQ)xτ−k ,

pτ+k .

(11)

It is remarkable that the final condition pτ−k+1
can be obtained

from (11), and pτ+k can be calculated from (10).
Furthermore, the optimal instantaneous control (t 6= τk )

satisfies the stationary condition:

Rut + B′pt + D′qt = 0. (12)

While the stationary condition at t = τk is given as:

(R̄+ 2λ AR)uτk+E[(B̄+ wk D̄)
′pτ+k |Fk−1]+λB′R̄ = 0.

(13)

Proof: For the convenience of discussion, we define the
following notations.

Lτl (u, λ) = E
N∑
k=l

{
x ′
τ−k
(
1
2
Q̄+ λCQ)xτ−k + λD

′Q̄xτ−k

+u′τk (
1
2
R̄+ λAR)uτk + λB′R̄uτk

}
+E

{1
2

N∑
k=l

∫ τ−k+1

τ+k

[x ′tQxt + u
′
tRut ]dt

}
, (14)

and

Ll(u, λ) = E
N∑

k=l+1

{
x ′
τ−k
(
1
2
Q̄+ λCQ)xτ−k + λD

′Q̄xτ−k

+u′τk (
1
2
R̄+ λAR)uτk + λB′R̄uτk

}
+E

{1
2

N∑
k=l

∫ τ−k+1

τ+k

[x ′tQxt + u
′
tRut ]dt

}
. (15)

By using the Bellman optimality principle, we know that
the optimal control u∗t , t ∈ [0,T ] is still optimal of minimiz-
ing Lτl (u, λ), Ll(u, λ) in (14), (15), respectively.
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Thus, with l = N , it follows from (15) that

LN (u, λ) = E
{
1
2

∫ T
τ+N
[x ′tQxt + u

′
tRut ]dt

}
. (16)

At time interval [τ+N ,T ], for system (1)-(1), the task is to
find optimal control of minimizing LN (u, λ) in (16).
At time interval [τ+N ,T ], set u

ε
t = ut + εδut , in which ε ∈

(0, 1), δut denotes the variation of the optimal control. More-
over, we use LεN (u, λ),LN (u, λ) represent the Lagrangian
associated with uεt and ut , respectively.
Through calculation, the variation of δLN = LεN (u, λ) −

LN (u, λ) can be calculated as:

δLk = E
∫ τ−k+1

τ+k

E[H ′s|Fs]εδusds+ o(ε),

where o(·) means the infinitesimal of higher order, and

Hs =
[ ∫ τ−k+1

s
x ′tQ8tdt + x ′TPT8T

]
8−1s (B− CD)

+u′sR+ η
′
s8
−1
s B̄,

while 8t is the unique solution of the following SDE{
d8t = A8tdt + C8tdWt ,

80 = In,

and 8−1t = 9t exists, satisfying{
d9t = 9t (−A+ C2)dt −9t ĀdWt ,

90 = In.

Apparently from the above derivation, we know that the
optimality condition of minimizing LN (u, λ) at time interval
t ∈ [τ+N ,T ] is:

E[H ′s|Fs] ≡ 0, s ∈ [τ+k , τ
−

k+1].

Next, if pt , qt are set to satisfy the backward stochastic
differential equation as (10), and via applying Itô’s formula to
〈pt , δxt 〉, then it can be verified that the optimality condition
of E[H ′s|Fs] ≡ 0 can be rewritten as equation (12).

Next, by applying Itô’s formula to x ′tpt , t ∈ [τ+N ,T ], there
holds

d(x ′tpt ) = (dxt )′pt + x ′tdpt + (dxt )′dpt
= [(Axt + But )dt + (Cxt + Dut )dWt ]′pt
+x ′t [−(A

′pt + C ′qt + Qxt )dt + qtdWt ]

+(Cxt + Dut )′qtdt

= [u′t (B
′pt + D′qt )− x ′tQxt ]dt + {· · · }dWt

= −(x ′tQxt + u
′
tRut )dt + {· · · }dWt . (17)

Then, by taking expectation of (17), and taking integral
from τ+N to T , the optimal LN (u, λ) can be given as:

L∗N (u, λ) =
1
2E(x

′

τ+N
pτ+N ) (18)

where pT = 0 has been used.
In what follows, there holds from (14) and (18) that

LτN (u, λ) = E
{
x ′
τ−N
(
1
2
Q̄+ λCQ)xτ−N + λD

′Q̄xτ−N

+u′τN (
1
2
R̄+ λAR)uτN + λB′R̄uτN

}
+
1
2
E(x ′

τ+N
pτ+N ). (19)

To minimize LτN (u, λ), by using the results in [32],
At time τN , we set uετN = uτN + εδuτN , and ε ∈

(0, 1), δuτN denotes the variation of the optimal control.
LετN (u, λ),LτN (u, λ) are used to represent the Lagrangian
associated with uετN and uτN , respectively.
The variation of δLτN = LετN (u, λ) − LτN (u, λ) can be

calculated as:

LτN (u, λ) = E
{
x ′
τ−N
(
1
2
Q̄+ λCQ)xτ−N

+u′τN (
1
2
R̄+ λAR)uτN + λB′R̄uτN

+λD′Q̄xτ−N
1
2
E(x ′

τ+N
pτ+N )

}
,

and

LετN (u, λ) = E
{
x ′
τ−N
(
1
2
Q̄+ λCQ)xτ−N

+(uετN )
′(
1
2
R̄+ λAR)uετN + λB

′R̄uετN + λD
′Q̄xτ−N

+
1
2
[Āxτ−N + B̄uτN + wN (C̄xτ

−

N
+ D̄uτN )]

′pτ+N

}
.

In what follows, we have

δLτN = E
{
[u′τN (R̄+ 2λAR)+ λB′R̄]εδuτN

+
1
2
E([(B̄+ wN D̄)εuτN ]

′pτ+N )
}
+ o(ε),

where o(·) means the infinitesimal of higher order.
Therefore, at time τk , the optimality condition of minimiz-

ing LτN (u, λ) is as equation (13), i.e.,

(R̄+ 2λ AR)uτk+E[(B̄+ wk D̄)
′pτ+k |Fk−1]+λB′R̄ = 0.

If costate pτ−k is defined to satisfy (11), there holds

L∗τN (u, λ) = E
{
x ′
τ−N
(
1
2
Q̄+ λCQ)xτ−N + λD

′Q̄xτ−N

+u′τN (
1
2
R̄+ λAR)uτN + λB′R̄uτN

}
+
1
2
E{[(Ā+ wN C̄)xτ−N + (B̄+ wN D̄)uτN ]

′pτ+N }

=
1
2
E(x ′

τ−N
pτ−N ). (20)

Finally, by repeating the above procedures backwardly,
the relationships (10)-(13) can be verified to be the necessary
conditions of minimizing L(u, λ) in (8). This ends the proof.

�
Remark 2: For the first time, the maximum principle for

the LQ continuous/impulsive control problem with quadratic
constraint has been explored in Theorem 1. By decoupling
the FBSDE composed by (1)-(1) associated with (10)-(13),
the optimal continuous/impulsive control can be derived.
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B. OPTIMAL CONTROL
In this section, we will derive the optimal control by decou-
pling the FBSDE in Lemma 1. We have the following results.
Theorem 2: Under Assumptions 1-3, for the given λ ≥ 0,

the optimal control of minimizing L(u, λ) in (8) can be given
as:{
ut = −ϒ

−1
t Mtxt − ϒ

−1
t B′ft , t 6= τk , (21)

uτk = −ϒ
−1
τk
Mτk xτ−k − ϒ

−1
τk

(B′fτ+k + λR̄B), t = τk , (22)

where ϒt , ϒτk ,Mt ,Mτk can be presented as:
ϒt = R+ D′PtD, t 6= τk , (23)
ϒτk = R̄+ 2λAR+ B̄′Pτ+k B̄+ D̄

′Pτ+k D̄, (24)

Mt = B′Pt + D′PtC, t 6= τk , (25)
Mτk = B̄′Pτ+k Ā+ D̄

′Pτ+k C̄, (26)

while Pt , ft satisfy the following differential/difference
equations:
−Ṗt= Q+A′Pt + PtA+C ′PtC −M ′tϒ

−1
t Mt , (27)

−ḟt= A′ft −M ′tϒ
−1
t B′ft , (28)

Pτ−k = Q̄+2λCQ+Ā′Pτ+k Ā+C̄
′Pτ+k C̄−M

′
τk
ϒ−1τk Mτk , (29)

fτ−k = M ′τkϒ
−1
τk
B′fτ+k + λQ̄D + Ā′fτ+k , (30)

where Pτ+k , fτ
+

k
can be obtained from (21)-(21), and

Pτ−k , fτ
−

k
serve as the final condition in (21)-(21) at t ∈

[τ+k−1, τ
−

k ], k = 2, · · · ,N, which can be induced from
(21)-(21). In addition, PT = fT = 0.
Moreover, the relationship between the costate and the

state is presented as:

pt = Ptxt + ft , (31)

where Pt , ft can be calculated through (21)-(21) for t ∈
[0,T ]. With the optimal control (21)-(21), the optimal
L∗(u, λ) is given by:

L∗(u, λ) =
1
2
E(x ′0P0x0 + 2x ′0f0)

−E
N∑
k=0

∫ τ−k+1

τ+k

f ′t Bϒ
−1
t B′ftdt

−

N∑
k=1

(B′fτ+k +λR̄B)′ϒ−1τk (B′fτ+k +λR̄B). (32)

Proof: The backward recursive method is adopted here
to derive the main results in the theorem.

Firstly, from Assumption 2 and using Lemma 1, we know
that for t ∈ [τ+N ,T ], the solution to (10) is assumed to be
pt = Ptxt + ft , then by using the Itô’s formula, there holds:

dpt = [Ṗt + Pt (Axt + But )]dt + Pt (Cxt + Dut )dWt

= −(A′pt + C ′qt + Qxt )dt + qtdWt . (33)

Combining with (10) yields qt = Pt (Cxt + Dut ), and then
(12) can be rewritten as:

0 = Rut + B′(Ptxt + ft )+ D′Pt (Cxt + Dut ).

Thus, we have

ut = −ϒ−1t (Mtxt + B′ft ). (34)

Combining (33) and (34), for t ∈ [τ+N ,T ], the following
relationship can be easily derived:{
−Ṗt = Q+ A′Pt + PtA+ C ′PtC −M ′tϒ

−1
t Mt ,

−ḟt = A′ft −M ′t (R+ D
′PtD)−1B′ft ,

where the final condition is given by PT = 0, fT =

0, i.e., relationships (21)-(21) have been verified for
t ∈ [τ+N ,T ].
On the other hand, at time τN , it can be induced from above

that pτ+N = Pτ+N xτ
+

N
+ fτ+N , then it follows from (13) that

0 = E[(B̄+ wN D̄)′pτ+N |FN−1]

+(R̄+ 2λAR)uτN + λR̄B
= [R̄+ λ2AR+ B̄′Pτ+N B̄+ D̄

′Pτ+N D̄]uτN

+(B̄′Pτ+N Ā+ D̄
′Pτ+N C̄)xτ

−

N
+ B′fτ+N + λR̄B. (35)

Then (21) can be derived for k = N .
Next using (11), the relationship (21) for k = N can be

obtained.
By repeating the above steps backwardly, then (21)-(21)

can be derived for t ∈ [0,T ].
What remains to show is the optimal cost function.
By applying Itô’s formula to x ′t (Ptxt + 2ft ), where Pt , ft

satisfy (21)-(21), thus we have

d[x ′t (Ptxt + 2ft )] = dx ′t (Ptxt + 2ft )+ x ′t Ṗtxtdt

+x ′tPtdxt + 2x ′t ḟtdt + dx
′
td(Ptxt + 2ft )

= (Axt+But )′(Ptxt+2ft )dt+(Cxt+Dut )′(Ptxt+2ft )dWt

+x ′t (−Q− A
′Pt − PtA− C ′PtC +M ′tϒ

−1
t Mt )xtdt

+x ′tPt (Axt + But )dt + x
′
tPt (Cxt + Dut )dWt

+2x ′t (−A
′ft +M ′tϒ

−1
t B′ft )dt

+(Cxt + Dut )′Pt (Cxt + Dut )dt

= [2x ′tA
′ft + 2u′tB

′Ptxt − 2x ′t ft + 2u′tBft ]dt

+[x ′t (−Q+M
′
tϒ
−1
t Mt )xt + 2x ′tMtϒ

−1
t B′ft ]dt

+(2x ′tC
′PtDut + u′tD

′PtDut )dt + {. . . }dWt

= −(x ′tQxt + u
′
tRut )dt+(ut + ϒ

−1
t Mtxt +ϒ−1t B′ft )′ϒt

×(ut + ϒ−1t Mtxt + ϒ−1t B′ft )dt + {. . . }dWt

−f ′t Bϒ
−1
t B′ftdt, (36)

where the equations (21)-(21) are inserted in the above.
Actually, for t ∈ [τ+N ,T ], by taking expectation, then

integrating from τ+N to T , we have∫ T

τ+N

E(x ′tQxt + u
′
tRut )dt + E[x

′
T (PT xT + 2fT )]

= E[x ′
τ+N
(Pτ+N xτ

+

N
+2fτ+N )]−

∫ T

τ+N

f ′t Bϒ
−1
t B′ftdt

+E
∫ T

τ+N

(ut+ϒ−1t Mtxt + ϒ−1t B′ft )
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×ϒt (ut + ϒ−1t Mtxt + ϒ−1t B′ft )dt

= E[x ′
τ+N
Pτ+N xτ

+

N
+ 2x ′

τ+N
fτ+N ]−

∫ T

τ+N

f ′t Bϒ
−1
t B′ftdt, (37)

where the optimal control (21) has been used in the last
equality.

Next, by using uτN in (21), it can be obtained

E{x ′
τ−N

(
1
2
Q̄+ λCQ)x

τ−N
+ λD′Q̄x

τ−N

+u′τN (
1
2
R̄+ λAR)uτN + λB

′R̄uτN

+
1
2

∫ T

τ+N

E(x ′tQxt + u
′
tRut )dt + E[x

′
T (PT xT + 2fT )]

= E{x ′
τ−N

(
1
2
Q̄+ λCQ)x

τ−N
+ λD′Q̄x

τ−N

+u′τN (
1
2
R̄+ λAR)uτN + λB

′R̄uτN

+
1
2
E[x ′

τ+N
P
τ+N
x
τ+N
+ 2x ′

τ+N
f
τ+N

]−
1
2

∫ T

τ+N

f ′t Bϒ
−1
t B′ftdt

=
1
2
E(x ′

τ−N
P
τ−N
x
τ−N
+ 2x ′

τ−N
f
τ−N

)−
1
2

∫ T

τ+N

f ′t Bϒ
−1
t B′ftdt

−
1
2
(B′f

τ+k
+ λR̄B)′ϒ−1τk (B′f

τ+k
+ λR̄B) (38)

where Pτ−N , fτ
−

N
satisfy (21)-(21).

Finally, by repeating the above steps, the optimal L(u, λ)
can be calculated as below:

L∗(u, λ) = E
N∑
k=1

{
x ′
τ−k
(
1
2
Q̄+ λCQ)xτ−k + λD

′Q̄xτ−k

+u′τk (
1
2
R̄+ λAR)uτk + λB′R̄uτk

}
+E

{1
2

N∑
k=1

∫ τ−k+1

τ+k

[x ′tQxt + u
′
tRut ]dt

}
=

1
2
E(x ′0P0x0 + 2x ′0f0)−

N∑
k=0

∫ τ−k+1

τ+k

f ′t Bϒ
−1
t B′ftdt

−

N∑
k=1

(B′fτ+k +λR̄B)′ϒ−1τk (B′fτ+k +λR̄B) (39)

where P0, f0 is calculated from (21)-(21).
Thus (32) has been verified, and this ends the proof. �
Induced from Theorem 2, the following results can be

immediately obtained.
Corollary 1: For the given λ ≥ 0, from (5), we use ut (λ) to

denote the optimal continuous/impulsive control, which make
the parameter λ explicit. The optimal control of minimizing
L(u, λ)− λK can be presented as:
ut (λ) = −ϒ

−1
t (λ)Mt (λ)xt

− ϒ−1t (λ)B′ft (λ), t 6= τk , (40)
uτk (λ) = −ϒ

−1
τk

(λ)Mτk (λ)xτ−k
− ϒ−1τk (λ)(B′fτ+k (λ)+ λR̄B), t = τk , (41)

where ϒt (λ), ϒτk (λ),Mt (λ),Mτk (λ) satisfy:
ϒt (λ) = R+ D′Pt (λ)D, t 6= τk , (42)
ϒτk (λ) = R̄+2λAR+B̄′Pτ+k (λ)B̄+D̄

′Pτ+k (λ)D̄, (43)

Mt (λ) = B′Pt (λ)+ D′Pt (λ)C, t 6= τk , (44)
Mτk (λ) = B̄′Pτ+k (λ)Ā+ D̄

′Pτ+k (λ)C̄, (45)

and Pt (λ), ft (λ) are given by:

−Ṗt (λ) = Q+ A′Pt (λ)+ Pt (λ)A+ C ′Pt (λ)C
−M ′t (λ)ϒ

−1
t (λ)Mt (λ), (46)

−ḟt (λ) = A′ft (λ)−M ′t (λ)ϒ
−1
t (λ)B′ft (λ), (47)

Pτ−k (λ) = Q̄+ 2λCQ+Ā′Pτ+k (λ)Ā+C̄
′Pτ+k (λ)C̄

−M ′τk (λ)ϒ
−1
τk

(λ)Mτk (λ), (48)
fτ−k (λ) = M ′τk (λ)ϒ

−1
τk

(λ)B′fτ+k (λ)+ λQ̄D
+ Ā′fτ+k (λ), (49)

with final condition PT (λ) = fT (λ) = 0.
Remark 3: It is noted that Pt (λ), ft (λ),Mt (λ), ϒt (λ) in

(40)-(40) are dependent on the given parameter λ. In what
follows, the optimal parameter λ∗ will be explored through
the parameter selection methods.

Before adopting the Lagrangian duality theorem, we intro-
duce the following slater condition:
Assumption 4: For every λ ≥ 0, there exists an admissible

control u ∈ Uad such that:

λ(J̄N − K ) < 0. (50)

Remark 4: From the slater condition in Assumption 4,
we know if there exists u ∈ Uad such that J̄N < K, then
Assumption 4 holds.

C. OPTIMAL PARAMETER SELECTION
By using the Lagrange Duality theorem, the following result
can be obtained.
Theorem 3: Under Assumptions 3 and 4, there exists λ∗

which is optimal for Problem 1, which can also be stated as:

sup
λ≥0
{L∗(u, λ)− λK }=sup

λ≥0
E
{
x ′0P0(λ)x0 + 2x ′0f0(λ)− λK

}
,

Subject to:

−Ṗt (λ) =Q+ A′Pt (λ)+ Pt (λ)A+ C ′Pt (λ)C

−M ′t (λ)ϒ
−1
t (λ)Mt (λ),

−ḟt (λ) =A′ft (λ)−M ′t (λ)ϒ
−1
t (λ)B′ft (λ),

Pτ−k (λ) =Q̄+ 2λCQ+ Ā′Pτ+k (λ)Ā+ C̄
′Pτ+k (λ)C̄

−M ′τk (λ)ϒ
−1
τk

(λ)Mτk (λ),

fτ−k (λ) =M
′
τk
(λ)ϒ−1τk (λ)B′fτ+k (λ)+λQ̄D+Ā′fτ+k (λ),

λ ≥ 0,PT (λ) = fT (λ) = 0.
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In this case, the optimal continuous/impulsive control can be
calculated as below:
ut (λ∗) = −ϒ

−1
t (λ∗)Mt (λ∗)xt

− ϒ−1t (λ∗)B′ft (λ∗), t 6= τk , (51)
uτk (λ

∗) = −ϒ−1τk (λ∗)Mτk (λ
∗)xτ−k

− ϒ−1τk (λ∗)(B′fτ+k (λ
∗)+λR̄B), t = τk , (52)

where ϒt (λ∗), ϒτk (λ
∗),Mt (λ∗),Mτk (λ

∗) satisfy:



ϒt (λ∗) = R+ D′Pt (λ∗)D, t 6= τk , (53)
ϒτk (λ

∗) = R̄+ 2λ∗AR+ B̄′Pτ+k (λ
∗)B̄

+ D̄′Pτ+k (λ
∗)D̄, (54)

Mt (λ∗) = B′Pt (λ∗)+ D′Pt (λ∗)C, t 6= τk , (55)
Mτk (λ

∗) = B̄′Pτ+k (λ
∗)Ā+ D̄′Pτ+k (λ

∗)C̄ . (56)

Proof: The above theorem can be obtained by using
Lagrangian duality theorem, the detailed proof can be found
in [29] . �
Remark 5: The optimal control for the considered Prob-

lem 1 is proposed in Theorem 2 and Corollary 1 for the
first time. The main approach is the solution to the FBSDE
from maximum principle (Lemma 1). In what follows, we will
explore the calculation method of parameter λ in Theorem 2.

The optimal λ∗ can be calculated via the gradient-type
optimization algorithms, and the gradient is given as the
following theorem.
Lemma 2: Suppose Assumptions 3 and 4 hold. Let λ ≥ 0

be given, then

d(L(u, λ)− λK )
dλ

= E
{ N∑
i=1

x ′
τ−i
Gτk x

′

τ−i
+

N∑
i=1

x ′
τ−i
Hτk +

N∑
i=1

Iτk
}
− K ,

(57)

where 3k = E(xτ−k x
′

τ−k
) satisfies the following relationship:



Gτk = AM ′τk (λ)ϒ
−1
τk

(λ)Rϒ−1τk (λ)Mτk (λ)+ CQ, (58)
Hτk = 2AM ′τk (λ)ϒ

−1
τk

(λ)Rϒ−1τk (λ)(B′fτ+k (λ)+λR̄B)
+ Q̄D −M ′τk (λ)ϒ

−1
τk

(λ)R̄B, (59)
Iτk = (B′fτ+k (λ)+ λR̄B)′ϒ−1τk (λ)Rϒ−1τk (λ)

× (B′fτ+k (λ)+ λR̄B)
− (B′fτ+k (λ)+ λR̄B)′ϒ−1τk (λ)R̄B, (60)

where ϒτk (λ),M
′
τk
(λ) satisfy (40), (40), respectively.

Proof: Obviously, through simple calculation, we have

d(L(u, λ)− λK )
dλ

= J̄N − K . (61)

Following from Theorem 2 and Corollary 1, the optimal
control at t = τk for the given λ ≥ 0 can be given by:

ut (λ) = −ϒ
−1
t (λ)Mt (λ)xt

− ϒ−1t (λ)B′ft (λ), t 6= τk ,
uτk (λ) = −ϒ

−1
τk

(λ)Mτk (λ)xτ−k
− ϒ−1τk (λ)(B′fτ+k (λ)+ λR̄B), t = τk ,

In this case, (1) can be rewritten as:

xτ+k = [Ā− B̄ϒ−1τk (λ)Mτk (λ)]xτ−k
+wk [C̄ − D̄ϒ−1τk (λ)Mτk (λ)]xτ−k
+(B̄+ wk D̄)ϒ−1τk (λ)(B′fτ+k (λ)+ λR̄B). (62)

Thus, we have

d(L(u, λ)− λK )
dλ

= J̄N − K

= E
{
A

N∑
i=1

u′τiRuτi + B′
N∑
i=1

R̄uτi + C
N∑
i=1

x ′
τ−i
Qxτ−i

+D′
N∑
i=1

Q̄xτ−i
}
− K

= E
{ N∑
i=1

x ′
τ−i
Gτk x

′

τ−i
+

N∑
i=1

x ′
τ−i
Hτk +

N∑
i=1

Iτk
}
− K ,

where Gτk ,Hτk , Iτk are as (58)-(58).
Thus relationship (57) has been verified, and the proof is

complete. �
Remark 6: The optimal parameter λ∗ can be calculated

from the algorithm in Lemma 2. It is noted that the calcu-
lation of λ∗ can be viewed as an optimal parameter selection
problem, which is actually a finite dimensional optimization
problem.

IV. NUMERICAL EXAMPLE
In this section, for n = 2, we will investigate the
2-dimensional case to illustrate the main results in this paper.

For (1)-(4), we choose the following coefficients:

A =
(
0.5895 0

0 0.2262

)
, Ā =

(
0.3846 0

0 0.5830

)
,B =

(
0.2518 0

0 0.2904

)
,

B̄ =
(
0.6171 0

0 0.2653

)
,C =

(
0.8244 0

0 0.9827

)
, C̄ =

(
0.7302 0

0 0.3439

)
,

D =
(
0.5841 0

0 0.1078

)
, D̄ =

(
0.9063 0

0 0.8787

)
,Q =

(
0.8178 0

0 0.2607

)
,

Q̄ =
(
0.5944 0

0 0.0225

)
,R =

(
0.4253 0

0 0.3127

)
, R̄ =

(
0.1615 0

0 0.1788

)
,

A = 0.4229, B =
(
0.0942
0.5985

)
, C = 0.4709, D =

(
0.6959
0.6999

)
,

Q =
(
0.6385 0

0 0.0336

)
,R =

(
0.0688 0

0 0.3196

)
, Q̄ =

(
0.5309 0

0 0.6544

)
,

R̄ =
(
0.4076 0

0 0.8200

)
,K = 0.8060, x0 =

(
0.7184
0.9686

)
.

The time horizon is T = 1 and the impulse time is τ1 =
0.3, τ2 = 0.6. We can calculate the optimal λ, which is
approximately equal to 0.2205, via the gradient method.
Viewing FIGURE 1, We can see that the optimal λ∗ to
maximize L(u, λ)−λK is λ∗ ≈ 0.2205. The maximum value
of L(u, λ) − λK is approximately equal to 0.5090. More-
over, the minimum cost is J∗T ≈ 0.4822 and the constraint
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FIGURE 1. The relation among λ, dL(u,λ)−λK
dλ , L(u, λ) − λK .

FIGURE 2. x1
t : the first coordinate of x∗

t .

FIGURE 3. x2
t : the second coordinate of x∗

t .

FIGURE 4. u1
t : the first coordinate of u∗

t .

J̄N ≈ 0.7549 < K = 0.8060. Correspondingly, the optimal
control u∗t and the corresponding optimal trajectory x∗t are as
FIGURE 2 - FIGURE 5. The impulse control at time τ1 and
τ2 can be represented as the following closed-loop form{

uτ1 ≈
(
−0.6785 0

0 −0.2364

)
xτ1 −

(
0.0166
0.3283

)
,

uτ2 ≈
(
−0.5676 0

0 −0.1787

)
xτ1 −

(
0.0117
0.3016

)
,

respectively. Moreover, at t 6= τ1, τ2, the optimal continuous
control is given as

ut = −ϒ−1t Mtxt − ϒ−1t B′ft ,

FIGURE 5. u2
t : the second coordinate of u∗

t .

where{
ϒt =

(
0.4253 0

0 0.3127

)
+
(
0.5841 0

0 0.1078

)
Pt
(
0.5841 0

0 0.1078

)
Mt =

(
0.2518 0

0 0.2904

)
Pt +

(
0.5841 0

0 0.1078

)
Pt
(
0.8244 0

0 0.9827

)
,

and Pt , ft can be obtained by (40)-(40) via Runge-Kutta
numerical methods.

V. CONCLUSION
In this paper, the stochastic LQ continuous/impulsive control
problem with quadratic constraint has been investigated. The
necessary conditions for the optimization has been developed
for the first time; Under standard assumptions, the opti-
mal continuous/impulsive control have been derived through
decoupling the FBSDE; Finally, by using the Lagrangian
duality theorem, the stochastic continuous/impulsive control
problem has been solved, and the optimal parameter can be
calculated by the gradient type algorithm. For future research,
we will extend the obtained results to the random impulsive
time case.

REFERENCES
[1] A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational

Inequalities. Paris, France: Gauthier-Villars, 1984.
[2] M. Jeanblanc-Piqué, ‘‘Impulse control method and exchange rate,’’ Math.

Finance, vol. 3, no. 2, pp. 161–177, 1993.
[3] L. H. R. Alvarez, ‘‘A class of solvable impulse control problems,’’ Appl.

Math. Optim., vol. 49, no. 3, pp. 265–295, 2004.
[4] R. Korn, ‘‘Some applications of impulse control in mathematical finance,’’

Math. Methods Oper. Res., vol. 50, no. 3, pp. 493–518, 1999.
[5] Z. Yu, ‘‘The stochastic maximum principle for optimal control problems

of delay systems involving continuous and impulse controls,’’ Automatica,
vol. 48, no. 10, pp. 2420–2432, 2012.

[6] M. H. A. Davis and A. R. Norman, ‘‘Portfolio selection with transaction
costs,’’ Math. Oper. Res., vol. 15, no. 4, pp. 676–713, 1990.

[7] L. H. R. Alvarez, ‘‘Singular stochastic control, linear diffusions, and
optimal stopping: A class of solvable problems,’’ SIAM J. Control Optim.,
vol. 39, no. 6, pp. 1697–1710, 2001.

[8] L. A. Sobiesiak and C. J. Damaren, ‘‘Linear quadratic optimal control for
systems with continuous and impulsive inputs,’’ in Proc. IEEE 53rd Conf.
Decision Control, Los Angeles, CA, USA, Dec. 2014, pp. 5071–5076.

[9] S. M. McClure, D. I. Laibson, G. Loewenstein, and J. D. Cohen, ‘‘Separate
neural systems value immediate and delayed monetary rewards,’’ Science,
vol. 306, no. 5695, pp. 503–507, 2004.

[10] S. T. Zavalishchin and A. N. Sesekin, Dynamic Impulse Systems: Theory
and Applications. Dordrecht, The Netherlands: Kluwer, 1997.

[11] G. Mundaca and B. Øksendal, ‘‘Optimal stochastic intervention control
with application to the exchange rate,’’ J. Math. Econ., vol. 29, no. 2,
pp. 225–243, 1998.

[12] K. A. Brekke and B. Øksendal, ‘‘A verificiation theorem for combined
stochastic control and impulse control,’’ in Stochastic Analysis and Related
Topics VI. Boston, MA, USA: Birkhäuser, 1996, pp. 211–220.

52962 VOLUME 7, 2019



Q. Qi et al.: Optimal Continuous/Impulsive LQ Control With Quadratic Constraints

[13] A. Cadenillas and U. G. Haussmann, ‘‘The stochastic maximum principle
for a singular control problem,’’ Stochastics Stochastic Rep., vol. 49,
nos. 3–4, pp. 211–237, 1994.

[14] F. Dufour and B. Miller, ‘‘Maximum principle for singular stochastic
control problems,’’ SIAM J. Control Optim., vol. 45, no. 2, pp. 668–698,
2006.

[15] J. Huang and D. Zhang, ‘‘The near-optimal maximum principle of impulse
control for stochastic recursive system,’’ Sci. China Inf. Sci., vol. 59, no. 11,
pp. 112206:1–112206:13, 2016.

[16] S. Baccarin, ‘‘Optimal impulse control for a multidimensional cash man-
agement system with generalized cost functions,’’ Eur. J. Oper. Res.,
vol. 196, no. 1, pp. 198–206, 2009.

[17] L. A. Sobiesiak and J. D. Christopher, ‘‘Lorentz-augmented spacecraft
formation reconfiguration,’’ IEEE Trans. Control Syst. Technol., vol. 24,
no. 2, pp. 514–524, Mar. 2016.

[18] B. Vatankhahghadim and C. J. Damaren, ‘‘Optimal hybrid magnetic atti-
tude control: Disturbance accommodation and impulse timing,’’ IEEE
Trans. Control Syst. Technol., vol. 25, no. 4, pp. 1512–1520, Jul. 2017.

[19] A. E. B. Lim and J. B. Moore, ‘‘A quasi-separation theorem for LQG
optimal control with IQ constraints,’’ Syst. Control Lett., vol. 32, no. 1,
pp. 21–33, 1997.

[20] A. E. B. Lim and X. Y. Zhou, ‘‘Stochastic optimal LQR control with
integral quadratic constraints and indefinite control weights,’’ IEEE Trans.
Autom. Control, vol. 44, no. 7, pp. 1359–1369, Jul. 1999.

[21] X. Li, X. Y. Zhou, and A. E. B. Lim, ‘‘Dynamic mean-variance portfolio
selection with no-shorting constraints,’’ SIAM J. Control Optim., vol. 40,
no. 5, pp. 1540–1555, 2002.

[22] J. Qu, Z. Ji, C. Lin, and H. Yu, ‘‘Fast consensus seeking on net-
works with antagonistic interactions,’’ Complexity, vol. 2018, Dec. 2018,
Art. no. 7831317.

[23] J. Huang and Z. Yu, ‘‘Solvability of indefinite stochastic Riccati equations
and linear quadratic optimal control problems,’’ Syst. Control Lett., vol. 68,
pp. 68–75, Jun. 2014.

[24] D. Fudenberg and D. K. Levine, ‘‘A dual-self model of impulse control,’’
Amer. Econ. Rev., vol. 96, no. 5, pp. 1449–1476, 2006.

[25] J. Wu, ‘‘Optimal exchange rates management using stochastic impulse
control for geometric Lévy processes,’’ J. Math. Methods Oper. Res., to
be published. doi: 10.1007/s00186-018-0648-y.

[26] Y. Hu, Z. Liu, and J. Wu, ‘‘Optimal impulse control of a mean-reverting
inventory with quadratic costs,’’ J. Ind. Manage. Optim., vol. 14, no. 4,
pp. 1685–1700, 2018.

[27] Y. Guo and J. Cao, ‘‘Stability and stabilization for stochastic
Cohen-Grossberg neural networks with impulse control and noise-
induced control,’’ Int. J. Robust Nonlinear Control, vol. 29, no. 1,
pp. 153–165, 2019.

[28] H. T. Toivonen and P. M. Mäkilä, ‘‘Computer-aided design procedure for
multiobjective LQG control problems,’’ Int. J. Control, vol. 49, no. 2,
pp. 655–666, 1989.

[29] D. G. Luenberger, Optimization by Vector Space Methods. Hoboken, NJ,
USA: Wiley, 1997.

[30] A. E. B. Lim, X. Y. Zhou, and J. B. Moore, ‘‘Multiple-objective risk-
sensitive control and its small noise limit,’’ Automatica, vol. 39, no. 3,
pp. 533–541, 2003.

[31] J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and
HJB Equations. New York, NY, USA: Springer, 1999.

[32] H. Zhang, L. Li, J. Xu, and M. Fu, ‘‘Linear quadratic regulation and
stabilization of discrete-time systems with delay and multiplicative noise,’’
IEEE Trans. Autom. Control, vol. 60, no. 10, pp. 2599–2613, Oct. 2015.

QINGYUAN QI received the B.S. degree in math-
ematics and the Ph.D. degree in control theory
and engineering from Shandong University, Jinan,
Shandong, China, in 2012 and 2018, respectively.

He is currently a Lecturer with the Institute
of Complexity Science, School of Automation,
Qingdao University. His research interests include
optimal control, optimal estimation, stabilization,
and stochastic systems.

ZHENGHONG QIU received the B.S. degree
in applied mathematics from Wuhan University,
Wuhan, China, in 2014. He is currently pursuing
the Ph.D. degree with the Department of Applied
Mathematics, The Hong Kong Polytechnic Uni-
versity.

His current research interests include optimal
control, mean-field games, and stochastic systems.

ZHIJIAN JI was born in Qingdao, China, in 1973.
He received the M.S. degree in applied mathemat-
ics from the Ocean University of China, Qingdao,
in 1998, and the Ph.D. degree in control theory
and control engineering from Peking University,
Beijing, China, in 2015.

He is currently a Full-Time Professor with
the Institute of Complexity Science, School of
Automation, Qingdao University. He has authored
or coauthored 81 refereed papers in journals and

international conference proceedings. His current research interests include
multiagent systems, switched control systems, networked control systems,
intelligent control, and robot systems.

VOLUME 7, 2019 52963

http://dx.doi.org/10.1007/s00186-018-0648-y

	INTRODUCTION
	PROBLEM FORMULATION
	CONTINUOUS/IMPULSIVE CONTROL DESIGN
	DUALITY THEORY
	OPTIMAL CONTROL
	OPTIMAL PARAMETER SELECTION

	NUMERICAL EXAMPLE
	CONCLUSION
	REFERENCES
	Biographies
	QINGYUAN QI
	ZHENGHONG QIU
	ZHIJIAN JI


