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ABSTRACT For multicomponent structures enduring dynamic workloads coming from multi-physical
fields, safety assessment is significant to guarantee the normal operation of entire structure system.
In this paper, an enhanced extremum Kriging-based decomposed coordinated framework (E2K-DCF) is
proposed to improve the dynamic probabilistic failure analyses of multicomponent structures. In this method,
extremum Kriging model (EKM) is developed by introducing Kriging model into extremum response
surface method (ERSM) to process the transient response problem and shorten computational burden in
dynamic probabilistic failure analyses. Multiple population genetic algorithm (MPGA) is employed to solve
maximum likelihood equation (MLE) and find the optimal hyperparameter θ in the EKM,which is promising
to enhance approximate accuracy; decomposed-coordinated (DC) strategy is used to handle the coordinated
relationship of multiple analytical objectives. To validate the proposed E2K-DCF, the probabilistic failure
analysis of turbine blisk radial deformation is conducted by comparing with different methods within time
domain [0 s, 215 s], considering fluid-thermal-structural interaction. It is revealed that the failure probability
of blisk radial deformation is only 0.0022 when the allowable value is 2.5702× 10−3 m acquired from real
world practice. Compared to the other approaches, this E2K-DCF has obvious advantages in fitting time and
accuracy as well as simulation efficiency and accuracy. The results illustrate that the E2K-DCF is effective
and applicable in dynamic probabilistic failure analysis. The efforts of this paper provide a novel viewpoint
for the transient reliability evaluation of multicomponent structures, which is likely to enrich mechanical
reliability theory.

INDEX TERMS E2K-DCF, multicomponent structure, multiple population genetic algorithm, probabilistic
failure, turbine blisk.

I. INTRODUCTION
Complex structure in gas turbine always involves multiple
components and endures complicated workloads induced
by multi-physical fields during operation [1]. The complex
structure involving multiple components is called as mul-
ticomponent structure. When one component occurs fail-
ure, the multicomponent structure cannot function properly
and even a catastrophic event emerges during operation [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Dong Wang .

For complex machine, in fact, the factors or parameters influ-
encing the structure hold naturally randomness and time-
varying feature in operation. To guarantee the safety and
performance of the structure, it is urgent to investigate the
probabilistic failure analysis of multicomponent structures
considering the effect of dynamic loads and the randomness
of influencing parameters.

With the development of structural probabilistic failure
analysis, various approaches have emerged. Azizsoltani, et al.,
discussed the structural reliability estimation of engineer-
ing systems by adopting Monte Carlo (MC) simulation
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and Gaussian process regression active learning [3].
Zhan, et al., presented continuum damage mechanics based
approach for the fatigue life evaluation of scarf bolted
joints [4], [5]. Liu, et al., used first order second moment
(FOSM) method to evaluate the chatter reliability of milling
system [6]. Adarsh, et al., studied the probabilistic failure
analysis of composite channels with advanced FOSMmethod
and MC simulation [7]. Du, et al., applied first order reli-
ability method and saddlepoint approximation to discuss
structural reliability degree on the premise of guaranteeing
computational efficiency [8]. Zhao, et al., investigated the
first order third moment reliability method to calculate fail-
ure probability of mechanical structures [9]. Zhang, et al.,
exploited second order reliability method with first order effi-
ciency to assess structural failure probability [10]. Zhu, et al.,
discussed the fatigue reliability assessment of gas turbine
discs/bladed disks based on finite element (FE)-based com-
putational and experimental methods [11]–[13]. Lu, et al.,
proposed a second order fourthmomentmethod for the failure
probability estimation of mechanical structures [14]. Despite
the aforementioned methods are effective in structural proba-
bilistic failure analysis, they cannot be applied to the dynamic
reliability analyses of multicomponent structures, due to the
required thousands of iterations for real models.

To address the above issue, a number of analytical
approaches emerged for structural dynamic probabilistic
analysis. Guerine, et al., proposed an interval analysis method
for the dynamic probabilistic failure analysis of wind turbine
gear [15]. Codetta-Raiteri, et al., used dynamic Bayesian net-
works for structural reliability evaluation regarding dynamic
loads [16]. Mo, studied structural dynamic failure analy-
sis using perturbation stochastic finite element with stress-
strength interference model [17]. In addition, some effective
methods based on surrogate models such as response sur-
face method (RSM), Kriging meta-model, artificial neural
network, support vector machine, and so forth, were recently
applied to structural dynamic probabilistic failure analysis.
Li, et al., investigated t a sequential surrogate method for reli-
ability analysis based on radial basis function [18]. Bai, et al.,
employed the extremum RSM (ERSM) to assess the dynamic
reliability of turbine blisk [19]. Cheng, et al., employed adap-
tive Kriging meta-model to the structural comprehensive
performance evaluation with dynamic characteristics [20].
Soltani, et al., explored a novel approach for reliability inves-
tigation of LEDs on molded interconnect devices based on
FE-analysis coupled to injection molding simulation [21].
Fei, et al., quantified the transient failure probability of tur-
bine blade deformation with support vector machine-based
ERSM [22]. Although the above approaches can be applied to
structural reliability analysis with regard to dynamic bound-
ary, it is insufficient yet to resolve the dynamic probabilis-
tic analysis of multicomponent structures. Furthermore, Fei
et al. offered a distribution collaborative ERSM for the
dynamic probabilistic analysis for turbine blade-tip radial
clearance [23]. However, the improved surrogate modeling
strategy still suffers from low approximate accuracy and low

simulation performance, owing to the limitation quadratic
polynomials (QP) and the thousands of structural dynamic
deterministic analyses. Therefore, we need to explore an
efficient and precise technique to perform the dynamic prob-
abilistic analysis of multicomponent structures.

The objective of this paper is to provide an enhanced
extremum Kriging-based decomposed-coordinated frame-
work (E2K-DCF) for multicomponent structural probabilistic
failure analysis with dynamic loads and random parameters,
by integrating the strengths of Kriging model, ERSM, multi-
ple population genetic algorithm (MPGA) and decomposed-
coordinated (DC) strategy. Herein, ERSM is introduced into
Kriging model, named as extremum Kriging model (EKM),
to alleviate computational burden and improve approximate
accuracy. MPGA is adopted to resolve the maximum likeli-
hood equation (MLE) rather than gradient descent optimizer
to search the hyperparameter θ in the EKM. The DC strategy
is to coordinate the relationship of multiple components.
To validate the developed method, the dynamic probabilistic
failure analysis of turbine blisk is conducted to verify the pro-
posed approach in engineering, by considering fluid-thermal-
structural interaction.

In what follows, Section II elaborates the basic principles
of E2K-DCF. In Section III, we discuss the dynamic proba-
bilistic failure analysis with the proposed method. Section IV
validates the developed E2K-DCF via the dynamic proba-
bilistic failure analysis of turbine blisk radial deformation.
Some conclusions are summarized in Section V.

II. THEORY AND METHODS
This section investigates the related theory and methods
including EKM, MPGA, E2K-DCF and the dynamic prob-
abilistic failure analysis procedure of multicomponent struc-
tures with E2K-DCF.

A. EXTREMUM KRIGING MODEL
Kriging model holds good approximate performance in pre-
diction, and thus is widely applied in performance analysis
[20], [24], probabilistic failure analysis [25], [26], sensitivity
assessment [27], [28], and design optimization [29], [30],
for structure system. However, Kriging model is inefficient
for dynamic structural probabilistic analysis, because multi-
ple models are required modeling for dynamic operational
process and greatly enlarge computational complexity and
consumptions. To resolve this issue, ERSM was proposed
to reduce computational burden by considering the extreme
value of output response process instead of the whole pro-
cess in time domain [0, T ] [31], [32]. However, this model
still faces the challenge of approximate accuracy for large-
scale parameters and high-nonlinear problem because of the
limitation of quadratic polynomial. To overcome the two
defects, we develop extremum Kriging model (EKM) for
structural dynamic probabilistic failure analyses by absorbing
the superiorities of ERSM and Kriging model. Thereinto,
the ERSM is used to resolve the dynamic response prob-
lem in respect of the extremum values, and Kriging model
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is employed to improve the prediction accuracy. Therefore,
regarding Kriging model and ERSM, EKM model can be
expressed as

yEKM (x) = yERSM (x)+ z (x) (1)

which contains two parts, i.e., an ERSMmodel yERSM (x) and
a realization z(x) of stochastic process that is to amend the
error between predicted value with ERSM model and true
value; x∈ Rm denotes the data to be predicted where m is the
number of dimensions (i.e., the number of input parameters).

Assuming that {yl,max(xl)}l=1,2,...,n is the set of the
extreme values of dynamic response process in time domain,
the ERSM function yERSM can be fitted as

yERSM (x) =
{
yl,max (xl)

}
l=1,2,···n (2)

where n is the number of samples; the symbol yl,max(xl)
indicates the extreme value of l-th transient output response
yl in time domain [0, T ] corresponding to l-th sample xl .

Regarding quadratic polynomial, the ERSM function is
written as

yERSM (x) = a+ bx+ xT cx (3)

where a is constant coefficient; b is vector of linear term;c is
matrix of quadratic term.

The second term z(x) is a stationary Gaussian random
function and obeys

E [z (x)] = 0
Var [z (x)] = σ 2

Cov
[
z
(
xp
)
, z
(
xq
)]
= σ 2R

(
θ , xp, xq

) (4)

here the symbols xp and xq indicate the vectors of p-th and
q-th input samples(p, q = 1, 2, . . . , n); σ 2 is the process
variance; R(·) denotes spatial correlation function (SCF) with
R(0) = 1; θ = [θ1, θ2, . . . , θm] represents correlation param-
eter vector to be estimated by R. The hyperparameters θ are
called as distance weights or length scales, which is typically
obtained by solving MLE with gradient descent optimizer.
In engineering, Gaussian correlation function is generally
regarded as the SCF to find the optimal parameters in Kriging
model, because Gaussian function can enhance the Kriging
modelling of high dimensional problem in computational
efficiency and accuracy by effectively reducing dimensions
[25], [32]. The Gaussian correlation function R(·) in Eq.(4)is
expressed in Eq. (5).

R
(
θ , xp, xq

)
=

m∏
i=1

exp
(
−θi

∣∣∣x ip − x iq∣∣∣2)

= exp

(
−

m∑
i=1

θi

∣∣∣x ip − x iq∣∣∣2
)

(5)

in which x ip and x
i
q are i-th component of p-th and q-th input

samples;
∣∣∣x ip − x iq∣∣∣ represents the distance between p-th and

q-th points in i-th dimension; θk describes the sensitivity
of output response with respect to i-th dimensional input
variation x i, which controls the characteristics of inputs and

outputs to ensure the prediction accuracy of model via opti-
mal solution.

To gain the hyperparameter θ , we usually employ the
gradient descent optimizer to maximize the MLE, i.e.,

9 (θ) = −
(
n ln σ̂ 2

+ ln |R|
)

(6)

With regard to the gradient descent optimizer [25],
the hyperparameter θgdo can be gained as

θgdo = argmax {9 (θ)}

= argmax
{
−

(
n ln σ̂ 2

+ ln |R|
)}

(7)

where R is n × n correlation matrix which is a positive
semidefinite matrix since the SCF defines all elements as
positive semidefinite; σ̂ 2 is the estimated variance.
In line with the acquired the hyperparameter θgdo, we can

gain the stochastic process z(x) and then derive EKM model
Eq.(1) together with ERSM model Eq.(3).

B. ENHANCED EXTREMUM KRIGING MODEL
The hyperparameters θ is the key factor of affecting the
modeling accuracy of EKM. When the gradient descent opti-
mizer approach is applied to resolve the MLE and to obtain
the hyperparameters θ for traditional Kriging model, it is
required to implement numerous iterations for the large-scale
parameters and high-nonlinear problems, and the results also
easy immerses in local optimum. To overcome this problem,
genetic algorithm (GA) was applied to find the optimal val-
ues of hyperparameter θ , which was demonstrated to have
better advantages than gradient descent optimizer, owing to
strong robustness and global search ability [33]. However,
we find that the GA exist premature problem due to fitness
value, crossover and mutation probabilities, population size,
termination criterion and so forth [34].

To address the above issue, we attempt to adopt the MPGA
to search the optimal values of hyperparameters θ . Relative to
the GA, the MPGA holds flexible and adaptive design space
exploration, and avoid the influence of the plateau-like func-
tion profile of MLE. Besides, the MPGA uses multiple pop-
ulations with different control parameters for optimization
iterations which can breaks the limitation of single population
evolution of GA in premature problem [35], [36]. Substan-
tially, MPGA originates from GA and inherits natural selec-
tion and genetic characteristics. And the optimal solution of
objective function can be gained via successive iterationswith
selection, crossover and mutation. The schematic diagram of
MPGA is shown in Fig. 1.

As shown in Fig. 1, N initial populations with binary
encoding are firstly generated. Then N new populations are
obtained by the procedures of selection operator, crossover
operator and mutation. We further select the optimal indi-
viduals of each excellent population via artificial selection
operator to structure elite population for searching the opti-
mal value of objective function. Obviously, the MPGA is
essentially a combination of multiple GAs, and different
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FIGURE 1. The schematic diagram of MPGA.

control parameters (i.e., crossover probability pc,l and muta-
tion probability pm,l) are used to complete the collabora-
tive evaluation of multiple populations (l = 1, 2 . . . ,N ).
Meanwhile, immigrant operator [8], [15] is introduced to
exchange message among populations, and to avoid the
destruction and loss of optimal individual information. In the
exchange, the elite population doesn’t participate selec-
tion, crossover and mutation operators, and the minimum
reserved generation is usually regarded as the terminal con-
dition of optimization iterations. Obviously, the MPGA have
global search and local search ability, as well as avoid the
phenomenon of premature.

For an optimal problem, the objective function is built as

ϕ (θ) = |R|
1
n σ̂ 2 (8)

By minimizing objective function with MPGA, the hyper-
parameter θMPGA is gained as

θMPGA = min {ϕ (θ)}

= min
{
|R|

1
n σ̂ 2

}
θ i>0,i=1,2,··· ,m

(9)

The EKM of finding the hyperparameters θ by MPGA is
called as enhanced EKM (E2K model, short for). In term of
Eqs. (1) and (9), the E2K model is structured as

yE2K (x) = yERSM (x)+ zMPGA (x) (10)

C. ENHANCED EXTREMUM KRIGING-BASED
DECOMPOSED-COORDINATED FRAMEWORK
For the probabilistic failure evaluation of multicomponent
structure involving many parts, E2K model is workable if it
is directly applied, because this analysis has excess computa-
tional burden and unacceptable accuracy for high nonlinearity
and hyperparameters. To address this problem, we absorb the
basic thought of DC strategy to divide the whole structure
into multiple components, and firstly perform their analy-
ses with E2K models and then coordinate their responses
to process the probabilistic analysis of multicomponent
structure. The framework commonly includes three layers,

i.e., structure layer, substructure layer and variable layer.
Obviously, the DC strategy is promising to effectively reduce
the nonlinearity and parameter size for probabilistic analy-
ses, which skillfully relieve the computational burden and
improve computing accuracy [37]. Along with the heuristic
thought, the DC strategy and the E2K model are integrated
to develop E2K-based DC framework (E2K-DCF), for the
dynamic probabilistic failure analyses of multicomponent
structure.

When multicomponent structure consists of k (k ∈ Z )
substructures, the coordinated surrogate models between
structure and substructures are established as

yE2K−DCF (x) = f
(
y(1)E2K

(
x(1)

)
, · · · , y(k)E2K

(
x(k)

))
(11)

where f (·) denotes the function of multicomponent structure
layer; y(k)E2K

(
x(k)

)
is the decomposed surrogate model of k-th

substructure; x =
{
y(k)E2M

(
x(k)

)}
is the coordinated input

variables of the structure; x(k) =
[
x(k)1 , x(k)2 , · · · , x(k)l

]T
is

the input parameter related to k-th substructure.
In respect of ERSM model and MPGA, the k-th decom-

posed E2K model is

y(k)E2K
(
x(k)

)
= y(k)ERSM

(
x(k)

)
+ z(k)MPGA

(
x(k)

)
(12)

The relationship between x for structure system and
{x(l)}l=1,2,...,k for l-th substructure can be expressed as

x =
k⋃
l=1

x(l) (13)

In line with the above analysis, the models of E2K-DCF
including coordinated model (Eq. (11)) and decomposed
models (Eq. (12)) are obtained.

To ensure the effectiveness of E2K-DCF modeling,
the S-Fold Cross Validation (SF-CV) is employed to evaluate
themodeling accuracy using training samples, by comparison
of different approaches [38]. The procedure of SF-CV is
shown as follows: the training samples are first separated into
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FIGURE 2. The procedure of multicomponent dynamic probabilistic failure analysis with E2K-DCF.

S groups randomly and averagely, in which S can be 5, 10 or
15; we then derive the models of E2K-DCF with the samples
of S-1 groups, and the remaining samples are used to assess
the merits and demerits of this model via root mean square
error (RMSE), which is shown in Eq. (14); the mean value of
RMSE with S iterations is obtained to assess the accuracy of
surrogate models.

RMSE =

(∑n′
l′=1 (Fl′ (x)− ul′ (x))

n′

)
(14)

in which l ′ = 1, 2, . . . , n′, n’ is the number of samples of
each group; F ′l (x) is the l

′-th output response obtained by the
direct simulation with full FE models; yl′ (x) is l ′-th output
response computed by different methods.

Based on the determined model of E2K-DCF, we further
apply absolute error Eab,l′′ and average absolute error Eav to
validate the superiority of this model in term of computational
accuracy, by using testing samples. Eab,l′′ and Eav are defined
by

Eab,l′′ = |Fl′′ (x)− yl′′ (x)|

Eav =
∑n′′

l′′=1
Eab,l′′/n (15)

where l ′′ = 1, 2, . . . , n′′, n′′ is the number of testing samples;
Fl′′ (x) and yl′′ (x) denote the output response obtained by the
direct simulation and different surrogate modeling methods,
corresponding to l ′′-th testing sample.

The dynamic probabilistic failure evaluation of multicom-
ponent structure is performed with the derived model of
E2K-DCF. Simultaneously, we use some surrogate modeling
methods to implement the multicomponent dynamic proba-
bilistic failure analyses by dividing a multicomponent struc-
ture into many substructures to reduce modelling dimension
and parameter scale, to demonstrate the E2K-DCF in reduc-
ing computational burden and improving accuracy.

D. DYNAMIC PROBABILISTIC FAILURE ANALYSIS
PROCEDURE FOR MULTICOMPONENT STRUCTURE
In respect of the E2K-DCF, the dynamic probabilistic failure
analysis of multicomponent structure is shown in Fig. 2.

As illustrated in Fig. 2, the analytical process with
E2K-DCF comprises dynamic deterministic analysis, sam-
ples collection, hyperparameters optimization in E2K model,
E2K-DCF modeling and dynamic probabilistic failure
analysis.
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In respect of engineering practice, we establish the
3-dimension FE models of multicomponent structures.
By defining time domain [0, T ], related load and boundary
constrains, dynamic deterministic analysis is implemented
with the FE models.

According to the analyses, the extreme values of ana-
lytical objectives are selected at the specified time point
t(t ∈ [0,T ]). At this point, we then generate samples of
input parameters with regard to their numerical characteris-
tics, using the linkage sampling method [33], [39], and then
acquire the output samples in light of the deterministic analy-
ses. Finally, the samples containing training samples and test-
ing samples are structured formodeling. Hereinto, the linkage
sampling method is to achieve the output responses for one
sample simultaneously. Obviously, this sampling strategy can
enhance the efficiency and reduce the burden in surrogate
modeling process due to the synchronicity of sampling.

For confirming hyperparameters in E2Kmodeling, we nor-
malize the data of training samples, and define the allowable
parameters θ (k), and objective functions. Then the MPGA is
applied to search for the optimal hyperparameter θ in E2K
models (i.e., decomposed surrogate models) with iterations.
It is important to note that the training samples are separated
into S groups randomly and averagely during the process
of MPGA optimization, to obtain different Kriging hyper-
parameters with respect to different training samples, and
the SF-CV is utilized to evaluate the accuracy of E2K-DCF
modeling with the mean value of RMSE.

Using the obtained hyperparameter θ (k), the undetermined
coefficients are computed and the decomposed E2K models
of multicomponent structure are built, to derive the coor-
dinated E2K model with respect to the relationship among
multiple substructures.

The testing samples are adopted to verify the modelling
performance of E2K-DCF. If not satisfy the accuracy require-
ment, new training samples are generated for model updating
until the accuracy is acceptable.

With the derived model of E2K-DCF, the dynamic prob-
abilistic failure analysis of multicomponent structure is
performed.

E. TRANSIENT PROBABILISTIC APPROACH
For dynamic probabilistic analyses of multicomponent struc-
tures, the limit state function is established based on E2K
models. The allowance value of analytical objective yallow(x),
i.e.,

h (x) = yallow (x)− yE2K−DCF (x)

= yallow (x)− f
(
y(1)E2K

(
x(1)

)
, · · · , y(k)E2K

(
x(k)

))
(16)

where this multicomponent structure is safe when h(x) > 0,
while it is failed as h(x) < 0.
FOSM method and MC method are commonly employed

to handle dynamic probabilistic evaluation. Although the
FOSM method is widely applied to investigate structural

reliability analysis [5], [11], [40], it is unable to effectively
resolve large-scale parameters and high-nonlinear problem
yet, as the computational burden becomes onerous with the
increasing parameters and dimensions. To avoid the existing
shortcoming, MC method is applied to perform the dynamic
probabilistic analysis of multicomponent structure, resulting
from high efficiency and accuracy in determining limit state
function of complex structure. Besides, the convergence of
this method dependents on the number of simulations, and is
not affected by the dimension of parameters [25], [41].

With Chebyshev theorem and Bemoulli theorem, the
reliability and failure probabilities are achieved, i.e.,

pr = p (h (x) > 0) ≈ Nr/Ntotal
pf = p (h (x) ≤ 0) ≈ Nf /Ntotal (17)

where Ntotal = Nr + Nf is the total number of simulations;
Nr is the number of failure simulations; Nf is the number
of safe simulations; pr is safety probability; pf is failure
probability; p(·) is probability function.
In view of the above analysis, we can derive the limit

state function for multicomponent structure, the failure
probability and reliability degree are computed by the
MC method.

III. DYNAMIC PROBABILISTIC FAILURE
ANALYSIS OF TURBINE BLISK
Turbine blisk comprises one whole disk and 48 blades, which
is typically- axisymmetric structure. To reduce simulation
consumption, we only study 1/48 model with 1/48 disk and
one blade. The 3D models of the blisk and flow field were
generated in Fig. 3 and Fig. 4 by using Spaceclaim software.1

By ANSYS Meshing,2 the 3D FE/Finite Volume (FV) mod-
els of turbine blisk and flow field were gridded in Figs. 5,
in which the blade has 75 097 nodes and 48 551 elements,
the disk has 57 213 nodes and 33 885 elements, and flow field
has 472 930 nodes and 338 917 elements, respectively. FTSI
surface denotes fluid-thermal-structural interaction surface
which is to deliver fluid and heat workloads to structure
models.

Themission profile of aeroengine from start to cruise phase
within time domain [0 s, 215 s] is selected to simulate the
operation states of a turbine blisk [42], [43]. Fig. 6 defines
12 time points as computing points, which shows the vari-
ations of inlet velocity, rational speed and gas temperature
with time. The material of turbine blisk is Nickel-based
superalloy, GH4133B, with the density of 8.560 × 103

kg/m3, Poisson’s ratio of 0.3224 and modulus of elasticity of
161 GPa.

Since material and operational parameters have natural
randomness in engineering, in accordance with engineering
experience we select five parameters (i.e., inlet velocity v,
outlet pressure Pout , gas temperature Tg, rational speed w
and material density ρ) as random input parameters,

1http://www.spaceclaim.com/en/default.aspx
2https://www.ansys.com/products/platform/ansys-meshing
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FIGURE 3. 3-D model of turbine blisk.

FIGURE 4. 3D model of flow field.

while the other parameters including Poisson’s ratio,
modulus of elasticity, and so forth, are regarded to be deter-
ministic. For the random inputs, their features such as
mean, standard deviation (Std. Dev.) and distribution types,
are determined by the extremum selection method [44].
In respect of engineering practices [19], the random variables
are considered to be normal distribution, for reducing the
complexity of analysis [45], [46]. The distribution features
of all random inputs are listed in Table 1.

A. DYNAMIC DETERMINISTIC ANALYSIS
OF TURBINE BLISK
Under workbench environment of ANSYS (15.0 version),
blisk radial deformation is deterministically investigated in
[0 s, 215 s], by FEmodeling and fluid-thermal-structural cou-
pling. In fluid-thermal-structural coupling analysis, the close-
coupling analysis method [33] is employed to implement the
radial deformation analyses of turbine blisk in [0 s, 215 s],
by Multiphysics Simulation module3 [47], [48]. We decom-
pose the fluid-thermal-structural system into three subsys-
tems such as fluid, thermal and structural system. In other
words, the dynamic deterministic analysis of blisk radial
deformation is carried out by operating three subsystems
separately with the standard k-ε turbulence model, employ
the law of energy conservation to complete thermal analysis,

3https://www.ansys.com/products/platform/multiphysics-simulation

FIGURE 5. FE/FV models of turbine blisk and flow field.

and apply FE method to achieve turbine blisk analyses with
tetrahedron shape equation and geometric equation. Regard-
ing the deterministic analysis, therefore, the variations of
blade and disk radial deformations with time are drawn
in Fig. 7.

As illustrated in Fig. 7, the values of blade and disk
(blisk) radial deformation become larger with the increas-
ing inlet velocity, gas temperature and rational speed.
The maximum values emerge in climb phase. In this case,
we chose t = 200 s as the study point to perform the dynamic
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FIGURE 6. Change curves of inlet velocity, rational speed and gas
temperature with time.

TABLE 1. Distribution features of random input parameters.

FIGURE 7. Variation of turbine blisk radial deformation within time
domain [0 s, 215 s].

probabilistic failure analysis of turbine blisk radial deforma-
tion. Moreover, the distribution contour plots for the pres-
sure of FTSI surface, temperature and radial deformation of
turbine blisk at this study point are displayed in Fig. 8 and
Fig. 9, respectively. Herein, P is pressure value in FTSI
surface; Tb denotes temperature on surface of turbine blisk;
ub and ud are the radial deformations of turbine blade and
disk.

B. DYNAMIC PROBABILISTIC FAILURE
ANALYSIS OF TURBINE BLISK
For the dynamic probabilistic failure analyses of turbine blisk
radial deformation with E2K-DCF, a pool of 150 input sam-
ples was firstly gained with the linkage sampling method in
line with the distribution features of input variables in Table 1,
and then the output responses (the radial deformation of blade
and disk) corresponding to the extracted input samples were
computed in respect of dynamic deterministic analyses intro-
duced in Part B of Section III. The acquired 150 input samples

FIGURE 8. Pressure and temperature distribution at t = 200 s.

FIGURE 9. Radial deformation of turbine blisk at t = 200 s.

and 150 output samples were integrated as the 150 samples
for dynamic probabilistic failure analyses later. In the pool
of 150 samples, 50 sampleswere opted as training samples for
E2K modeling for decomposed- and coordinated-surrogate
models, and the remaining 100 samples were regarded as
testing samples for validating the fitted models. In this case
study, we divide the training samples into 5 groups, namely
S = 5, to establish the surrogate models of study objec-
tives, by using the E2K-DCF, ERSM-based DC strategy
(DCERSM) and improved extremum Kriging (IEK)-based
DC strategy (DCIEKS) [33], [42]. Here, the DCERSM was
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TABLE 2. The results of 5 cross validations with 50 training samples
using DCERSM, DCIEKS and E2K-DCF.

developed by integrating DC strategy and ERSM in respect of
quadratic polynomials; the DCIEKSwas proposed by absorb-
ing DC strategy and IEK method, in which GA is employed
to seek for the hyperparameters θ in the IEK model. For the
E2K-DCF, using these different training samples, the optimal
hyperparameters for blade and disk were firstly searched by
adopting MPGA, and then these decomposed E2K models
for blade and disk deformations are derived with different
groups of training samples. The SF-CV was thus applied
to compute the values of RMSEs for the models of blade
and disk deformations. The results of 5 cross validations
with 50 training samples, by using DCERSM, DCIEKS and
E2K-DCF, are listed in Table 2, in which the average values
of RMSEb and RMSEd for 5 groups of samples are employed
to assess the performance of the derived decomposed-
surrogate models of blade and disk deformations, and the unit
is 10−5 m.
From Table 2, we see that the E2K-DCF has the best

modeling accuracy among these three surrogatemodels based
on the analytical results of SF-CV. The reason is that the
mean values of RMSEs of blade and disk deformations
(0.82×10−5 m and 0.81×10−5 m) are less than those of the
DCERSM (1.17× 10−5 m and 1.26× 10−5 m) and DCIEKS
(0.86 × 10−5 m and 0.93 × 10−5 m) as shown in last line
in Table 2. Therefore, we use the training set of 50 samples
to establish the decomposed and coordinated E2K models
for blade and disk deformations in this case study. The
optimal hyperparameters are computed by adopting MPGA,
namely θ

(b)
MPGA = (0.2337, 0.1083, 1.1033, 0.2406, 0.1362),

and θ
(d)
MPGA = (0.1644, 0.1708, 0.6432, 12.9791, 0.2354),

corresponding to the minimum values of ϕ
(
θ
(b)
MPGA

)
=

6.9618 × 10−6 and ϕ
(
θ
(d)
MPGA

)
= 7.8589 × 10−6. The

optimizing process of hyperparameters with MPGA is drawn
in Fig. 10.

Based on the hyperparameters θ
(b)
MPGA and θ

(d)
MPGA,

the decomposed E2K models of turbine blade and disk
deformations are built as

ub
(
v,Pout ,Tg, ρ,w

)
= 9.9501× 10−2 − 6.0311× 10−2v

− 7.8219× 10−3Pout + 0.9979Tg
+ 0.1165ρ + 0.1484w+ 7.2883× 10−2v2

FIGURE 10. Optimizing process of the hyperparameter θ in E2K models of
blade and disk with MPGA.

− 1.7592× 10−2vPout − 1.6441× 10−2vTg
+ 5.4348× 10−2vρ + 5.6029× 10−2vw

− 2.6252× 10−3P2out + 5.4222× 10−3PoutTg
− 1.6418× 10−2Poutρ + 1.0957× 10−2Poutw

− 7.4779× 10−2T 2
g + 4.1041× 10−4Tgρ

−8.0127× 10−3Tgw− 2.7084× 10−2ρ2

+ 4.8085× 10−2ρw− 1.9793× 10−3w2

+ zMPGA,b
(
v,Pout , ρ,Tg,w

)
zMPGA,b

(
v,Pout ,Tg, ρ,w

)
= [0.0307, 0.2158, · · · ,−0.1945]1×50 (18)

ud
(
v,Pout ,Tg, ρ,w

)
= −8.3635× 10−2 − 6.6654× 10−3v

+ 1.4127× 10−4Pout + 0.7716Tg
+ 0.3853ρ + 0.4750w+ 6.4689× 10−2v2

− 4.0442× 10−2vPout − 1.2955× 10−2vTg
+ 1.1280× 10−2vρ + 6.9179× 10−2vw

+ 1.6609× 10−2P2out + 1.8619× 10−2PoutTg
− 1.4573× 10−3Poutρ − 2.5632× 10−2Poutw

− 4.4458× 10−2T 2
g − 1.1164× 10−2Tgρ

+ 5.8452× 10−3Tgw+ 9.8042× 10−3ρ2

+ 1.6087× 10−2ρw+ 7.8391× 10−2w2

+ zMPGA,d
(
v,Pout , ρ,Tg,w

)
zMPGA,d

(
v,Pout ,Tg, ρ,w

)
= [0.0755, 0.0680, · · · ,−0.1696]1×50 (19)

where ub and ud are the radial deformations of blade and disk,
respectively.

Regarding the radial deformation of turbine blisk is defined
as the total radial deformation of blade and disk, the
coordinated surrogate model is gained as

u
(
v,Pout ,Tg, ρ,w

)
= ub

(
v,Pout ,Tg, ρ,w

)
+ ud

(
v,Pout ,Tg, ρ,w

)
(20)

where u is the radial deformation of turbine blisk.
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FIGURE 11. The results of convergence analysis with different MC
simulations.

In light of Eqs. (11) and (20), the limit state function of
turbine blisk radial deformation is derived as

h
(
v,Pout ,Tg, ρ,w

)
= uallow −

(
v,Pout ,Tg, ρ,w

)
= uallow − ub

(
v,Pout ,Tg, ρ,w

)
− ud

(
v,Pout ,Tg, ρ,w

)
(21)

here, uallow denotes the allowance value of turbine blisk radial
deformation selected in term of engineering practice, which
is commonly determined by 3 sigma levels.

To investigate the probabilistic failure of turbine blisk,
we first conduct different times of MC simulations
(103, 104, 105, 3 × 105, 5 × 105, 106, 2 × 106) with the
derived limit state function Eq. (21) for the convergence
assessment [47]. Herein, some sampling methods can be
used in MC simulation for structural probabilistic failure
analysis, e.g., random sampling, stratified sampling, Sobol
sampling, and so forth [49]–[51]. In this paper, we employ
MC simulation with purely random sampling to complete the
probabilistic failure of turbine blisk radial deformation. The
results of convergence analysis with differentMC simulations
are drawn in Fig. 11.

As shown in Fig. 11, we discover that the failure
probabilities of turbine blisk radial deformation are fluctu-
ating when the number of MC simulations is less than 106,
and these failure probabilities gradually converge to a certain
value (i.e., 0.0023) when the number of MC simulations is
larger than 106. Therefore, we select 106 MC simulations to
obtain the failure probability of turbine blisk radial deforma-
tion. The simulation history diagram and frequency distribu-
tion histogram for turbine blisk radial deformation are drawn
in Fig. 12.

As revealed in Fig. 12, turbine blisk radial deformation
obeys a normal distribution with the mean 2.2884× 10−3 m
and the standard deviation 1.0627 × 10−4 m. In addition,
we find 2 300 failures occur in 106 MC simulations, so that
the failure probability is 0.0023 and the reliability degree is
0.9977 as the allowance value is 2.6072× 10−3 m.

IV. E2K-DCF VALIDATION
The aim of this section is to validate the modeling and
simulation performances of the proposed E2K-DCF by
comparing with different surrogate models, which include

FIGURE 12. Simulation history diagram and frequency distribution
histogram of turbine blisk radial deformation.

the DCERSM and DCIEKS. The modeling performance
includes learning ability and generalization ability, and the
simulation performance involves simulation efficiency and
simulation accuracy in dynamic probabilistic analysis of
multicomponent structure.

A. MODELING PERFORMANCE
To validate the learning ability of the E2K-DCFmodel, the 50
input training samples shown in Part C of Section III were
inputted in the established E2K models, and then the SF-CV
with 5 iterations was used to illustrate the effectiveness by
using the mean value of RMSEs for turbine blisk deforma-
tion. The results show that the mean value of RMSE of E2K-
DCF for turbine blisk deformation (1.63 × 10−5 m) is less
than those of the DCERSM and DCIEKS (2.43×10−5 m and
1.79× 10−5 m), which reveals that the developed E2K-DCF
has good learning ability and thus high modeling accuracy
to some extent. The reason is that (1) the MPGA can avoid
the influence of the plateau-like function profile of MLE by
flexible and adaptive design space exploration, and breaks the
lenition of single population evolution of GA in premature
problem by adopting multi populations with different control
parameters in parameters optimization and iteration; (2) the
ERSM can skillfully process the dynamic response problem
by simplifying the response process as one extreme value,
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TABLE 3. Simulation performance of E2K-DCF compared with the other methods (including direct simulation, DCERSM and DCIEKS).

FIGURE 13. The curves of absolute errors of three surrogate models with
testing samples.

and make the acquired samples more efficiently reflect the
real features of structural dynamic analysis, to improve mod-
eling accuracy; (3) the Kriging model has the capability
of global positioning (i.e., yERSM(x)) and local optimiza-
tion (i.e., z(x)) in the process modeling, which enhance the
accuracy of Kriging modeling to some extent; (4) the DC
strategy decomposes the entire multicomponent model into
many component-models involving decomposed models and
coordinatedmodels, in which a high-nonlinear complex ques-
tion are divided into numerous sample question with low
nonlinearity. The low nonlinearity is easier described and
reflected to more precise modeling. The four cases ensure the
high-accurate modeling of the proposed E2K-DCF.

To support the generalization ability of E2K-DCF, the test-
ing set of 100 samples is then applied to investigate the
prediction performance (generalization ability) with the three
surrogate models. The curves of absolute errors of three sur-
rogate models with testing samples are displayed in Fig. 13,
in which the results from the direct simulation-based full FE
models are regarded as the reference.

As revealed in Fig. 13, the absolute errors of the devel-
oped E2K-DCF for 100 testing samples holds the least
fluctuating among these three surrogate models. And these
errors of the proposed E2K-DCF are close to the true val-
ues obtained by the direct simulation-based full FE models,
and are smaller than those of other two methods, since the
points of absolute errors are closer to the horizontal axis
than DCERSM and DCIEKS. Besides, the average abso-
lute error of E2K-DCF is only 2.4862 × 10−6 m which
is less than 5.1036× 10−6 m for DCIEKS and 8.1147 ×
10−6 m for DCERSM, and is reduced by 51.29% to that of
DCIEKS and 69.36% to that of DCERSM.We can see that (1)
relative to DCERSM, the DCIEKS has higher prediction
accuracy (better learning ability), which demonstrate that the

Kriging model has higher modeling accuracy resulting from
its global positioning and local optimization abilities than
quadratic polynomials and the hyperparameters in Kriging
model can be optimally searched by resolving MLE using
the GA rather than gradient descent optimizer; (2) comparing
to the DCIEKS, the prediction accuracy of the proposed
E2K-DCF is higher due to the strengths of MPGA avoid-
ing the premature problem of single GA in the solution
of MLE.

In sum, the proposed E2K-DCF is fully demonstrated
to hold high modeling and prediction accuracy, i.e., good
learning ability and strong generalization ability.

B. SIMULATION PERFORMANCE
In this section, the simulation performance of the E2K-DCF
is assessed from simulation time and accuracy perspectives,
in respect of the dynamic reliability evaluation of turbine
blisk radial deformation, which is compared to DCERSM
and DCIEKS. Herein, the average time for each of these
four methods to complete one MC simulation is applied
to assess the simulation time, which are shown in col-
umn 2 in Table 3. In addition, the failure probability of
E2K-DCF with 106 MC simulations is treated as the ref-
erence to compute the simulation accuracies of DCERSM
and DCIEKS, since the prediction accuracy of E2K-DCF is
best among the three surrogate models. The simulation accu-
racy is evaluated by reliability percentage difference, which
is determined using the absolute error value of reliability
degree between E2K-DCF and other two methods, and is
displayed in column 5 in Table 3. It should be noted that
all the simulations are finished in the same computational
environment (the computer with Processor of Intel R©CoreTM

i5-4590 @ 3.30GHz and RAM (Random Access Memory)
of 8 G), and parallel computing was adopted in the com-
putation for the three surrogate models such as DCERSM,
DCIEKS and E2K-DCF.

As shown in column 2 in Table 3, using surrogate mod-
els such as DCERSM, DCIEKS and E2K-DCF can greatly
lighten computing burden, since the surrogate models need
less simulations time than the direct simulation method,
which can significantly improve the probabilistic simulation
of the turbine blisk in efficiency. Among three surrogate mod-
els, obviously, the developed E2K-DCF has the highest stim-
ulatingly efficient, owing to the minimum simulation time
naturally resulting from the hyperparameters θ optimized by
MPGA and avoiding excessive iterations. As indicated in
column 5 Table 3, we find that the simulation accuracy of
the proposed E2K-DCF is higher than those of DCERSM
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(99.88%) andDCIEKS (99.92%). Themajor reason is that the
MPGA can more precisely find the optimal hyperparameters
θ and make E2K modeling more accurate thanks to avoiding
the premature problem of single GA in the solution of MLE.
Therefore, the E2K-DCF is verified to hold excellent simula-
tion performance in accuracy and efficiency, which gives us
high confidence to apply this method to address the dynamic
probabilistic failure analyses of multicomponent structures
like turbine blisk in this paper.

V. CONCLUSION
The objective of this paper is to present a novel sur-
rogate modeling approach, enhanced extremum Kriging-
based decomposed-coordinated framework (E2K-DCF), for
the dynamic probabilistic failure analyses of multicompo-
nent structures with multiple population genetic algorithm
(MPGA). In this framework, extremum response surface
method (ERSM) is introduced into Kriging model to address
the dynamic problem by simplifying the response pro-
cess as the extreme value in time domain [0, T ], which
can shorten computational burden and enhance approximate
accuracy. MPGA is used to resolve the maximum likelihood
equation (MLE) to determine the optimal hyperparameter
θ , instead of the gradient descent method. Decomposed-
coordinated (DC) strategy is to coordinate the relationship
of many analytical objectives in multicomponent structure
analyses. The dynamic probabilistic failure of aeroengine tur-
bine blisk radial deformation is evaluated considering fluid-
thermal-structural interaction, by running 106 Monte Carlo
(MC) simulations with purely random sampling, to reveal
the advantages of the proposed E2K-DCF from modeling
performance and simulation performance by the comparison
of methods.

We first implemented the dynamic deterministic analy-
ses of turbine blisk radial deformation to acquire a pool
of 150 samples using the close-coupling analysis method,
in which 50 samples were treated as the training set to
derive surrogate models by using the S-Fold Cross Validation
(SF-CV), while the remaining samples were applied to testing
the learning ability of these methods. Through the investiga-
tion results, we obtain the reliability degree of 0.9977 when
the allowance value of turbine blisk radial deformation is
2.6072× 10−3 m, and discover that the proposed E2K-DCF
is superior to the other surrogate models, since the predicted
values of this method are closest to those of the direct sim-
ulation with the least average absolute error. Furthermore,
the E2K-DCF is the most computationally efficient method,
owing to its minimum simulation time, as well as has higher
analytical accuracy than DCERSM and DCIEKS. Therefore,
the E2K-DCF is fully validated to be high modeling perfor-
mance (modeling and prediction accuracy) and simulation
performance (highly-computational efficiency and highly-
computational accuracy).

The efforts of this study will provide a useful
technique, E2K-DCF, for the probabilistic analysis of
multicomponent structures, and also offer a promising insight

for handling more engineering problems related to complex
structures.
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