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Although significant advancements have been achieved in wireless sensor network (WSN) in the past decades, there is still a strong
need for in-depth analysis on wireless time synchronization and data quality during field testing. In this paper, an academic WSN
is adopted for output-only modal identification of two full-scale bridges in Xiamen, China. This paper first assesses the accuracy of
time synchronization performed by the WSN through a centralized beacon signal and then studies wireless data quality using two
quantitative performance indexes. The relationship between vibration amplitude and quality of wireless sensor data is investigated.
With ambient bridge accelerations acquired by wireless sensing units, modal properties of the two bridges are identified using the
stochastic subspace identification (SSI) method and the enhanced frequency domain decomposition (EFDD) method. Accuracies
of the modal identification results are evaluated through comparison with modal properties identified from tethered sensing data.
The comparison shows close match in natural frequencies and mode shapes, although relatively large difference in damping ratios
exists between results from wireless and tethered sensing data. An overall close match between the wireless and tethered results
demonstrates the feasibility of using WSN for the ambient vibration testing of full-scale bridges.

1. Introduction

Structural monitoring or testing is an important precaution
for the safety of civil structures. Traditional tethered data
acquisition systems (DAS) require extensive lengths of cables
to transfer recorded data from sensors to a centralized data
repository. Installation and maintenance of such tethered
DAS on large scale civil structures is time consuming and
expensive. In addition, tethered DAS would need cables
spread all over the structure, which can disturb everyday
functionality of the structure. Using wireless sensor network
(WSN) to overcome the shortcoming of tethered DAS is
not a recent idea. Early in 1998, Straser and Kiremidjian
[1, 2] proposed to use WSN for monitoring civil structures.
Since then, numerous innovative academic and commercial
wireless sensing systems have been developed [3–11]. WSN is
regarded as a promising technology for structural monitor-
ing or testing, due to its low cost, easy installation, mobility,

and embedded computational capability [12]. This emerg-
ing technology overcomes many drawbacks arising from
traditional tethered DAS, which includes high installation
cost, disturbance to everyday functionality of the structure,
high maintenance cost, and very limited number of sensor
nodes. As a result, WSN can bring significant advantages
to structural health monitoring (SHM). Densely deployed
WSN has been exploited to achieve high spatial resolution for
accurately characterizing structural dynamic behaviors [13–
15]. In this way WSN can provide more accurate structural
damage localization than traditional tethered sensor network
that is usually sparsely deployed. High-density WSN, to
some extent, relieves the fundamental challenge caused
by the sharp contrast between smaller number of sensor
nodes and large number of degree-of-freedoms that is
typical in finite-element models used for SHM. Moreover,
the microprocessor in a wireless sensing unit can perform
embedded computing to achieve on-board and distributed
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system identification and damage detection. Hereby wireless
sensor has evolved into “smart” sensor [3, 6, 12].

Despite significant advancements being achieved in
WSN over the past decade, more validation studies on the
performances of WSN are essential before they can serve
as economical and trustworthy substitutes to traditional
tethered DAS. Field validation is necessary to accurately
assess the performance of WSN within the complex and
harsh environments posed by large-scale civil structures
[6, 16]. Especially, although field experimental studies on
WSN performance in civil structural applications have been
reported [3, 7, 8, 14–18], quantitative research about data
quality is still lacking. In addition, time synchronization
is another major concern for applying WSN on structural
vibration testing. Asynchronous wireless sensing data usually
results in errors in mode shape identification [19]. Lynch et
al. [15] investigated the time synchronization problem of a
single-hop WSN deployed at Geumdang Bridge located in
Icheon, Korea. To assess the time synchronization accuracy
of WSN, the researchers proposed a classical method that
performs time step shifting to achieve the minimum error
norm between wireless and tethered sensor data. Despite this
initial study, time synchronization of wireless sensor data can
be evaluated through more extensive vibration tests using
new analysis methods.

Vibration modal parameters are important dynamic
properties of structures, which are determined by structural
properties (such as mass and stiffness) and may reflect
potential damage [20]. To perform vibration testing on a
large-scale civil structure in the field, it is generally difficult
to excite structural vibrations in a systematic and effective
manner. Therefore, output-only modal identification, which
only requires structural vibration response measurements,
is regarded as a practical way to determine the dynamic
characteristics of civil structures. Benefiting from low cost
and easy installation, WSN has been adopted for dynamic
testing that aims to identify structural modal parameters [8,
14, 15]. However, the accuracy of modal identification results
associated with wireless data quality should be carefully
investigated.

This paper presents field experimental studies using a
dense WSN for the output-only modal identification of
two bridges and evaluates the effect of wireless sensor
data acquisition on modal identification accuracy. Time
synchronization error and data quality of WSN will be
assessed using quantitative indexes, through comparison
with tethered sensing data. Two bridges, Baicheng Footbridge
and Wuyuan Bridge in Xiamen, China, are selected as a
test-bed for short-span and long-span bridges, respectively.
The academic prototype wireless sensing unit developed by
Wang et al. [16] is employed in the field experiments. Since
coaxial cables provide a relatively reliable communication
link, a tethered DAS is also installed on the bridge for
comparison. Time histories of acceleration responses col-
lected by the WSN are compared with those obtained by
the tethered system. Based on the synchronized tethered
sensor data, the accuracy of a wireless beacon-based time
synchronization approach is evaluated using normalized
correlation function. Furthermore, the errors of wireless

sensing data are quantitatively assessed with regard to signal
waveform and magnitude, through two data quality indexes.
Using acceleration data measured by the WSN, the natural
frequencies, damping ratios, and mode shapes of the two
bridges are identified using the stochastic subspace identifi-
cation (SSI) and enhanced frequency domain decomposition
(EFDD) algorithms. The modal parameters identified using
wireless sensing data are compared with these identified
from tethered sensing data. A short discussion is provided
regarding the effect of wireless sensor data quality on modal
identification accuracy.

2. Wireless Sensing Units and
Wireless Sensing Network

Figure 1 shows the academic prototype wireless sensing unit
developed at University of Michigan and Stanford University
[15, 16]. The wireless sensing unit consists of three functional
modules: sensor signal digitizer, computational core, and
wireless communication module. The main component of
the sensor signal digitization module is a 4-channel 16-
bit analog-to-digital (A/D) converter (Texas Instruments
ADS8341), which offers a maximum sampling frequency up
to 100 kHz. Each wireless sensing unit can accommodate
signals from a variety of structural sensors, as long as their
outputs are analog voltages from 0 to 5 V. The wireless
sensing unit can remotely measure various physical param-
eters, such as acceleration, velocity, displacement, stain,
and temperature. In addition, the 16-bit resolution A/D
converter is sufficient for most applications in civil structural
monitoring. However, it is worth noting that the resolution
of A/D converter would only determine data quality if the
smallest measurable voltage is larger than a product between
the sensor noise floor and amplification factor of associated
signal conditioning circuit.

The computational core of the wireless unit is responsible
for executing embedded software instructions for engi-
neering analyses. A low-cost 8-bit microcontroller (Atmel
ATmega128) is selected as the principal component of the
computational core. The wireless sensing unit is designed
to be operable with two wireless transceivers: 900 MHz
MaxStream 9XCite and 2.4 GHz MaxStream 24XStream.
Although the 9XCite module consumes significantly less
amount of power, the 24XStream transceiver is selected as the
wireless communication module in this study according to
public radio frequency regulation in China. The 24XStream
transceiver can offer up to 5 km line-of-sight communication
range [21]. During transmitting, the transceiver consumes
a maximum of 150 mA current and emits a 50 mW electro-
magnetic signal. During receiving, the current consumption
is 80 mA. Consequently, adding the current consumption of
other components in the wireless sensing unit, the overall
current consumption of the unit is about 180 mA while
transmitting, and 110 mA while receiving.

As shown in Figure 1, before feeding the sensing signals
into a wireless sensing unit, a sensor signal conditioning
board can be adopted. Three major functions of the circuit
board are offsetting, filtering, and amplification. Figure 2(a)
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Figure 1: Functional modules of the prototype wireless sensing unit.
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Figure 2: Photos of the prototype wireless sensing unit.
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Figure 3: Single-hop wireless sensor network.

shows printed circuit board (PCB) of the signal conditioning
circuit. The signal conditioning circuit provides a band-pass
filter with the passing frequency band set at 0.014–25 Hz,
which is suitable for modal vibration tests with most civil
structures. Three amplification factors (5, 10, and 20) are

available with the signal conditioning board. Figure 2(b)
shows a fully assembled wireless sensing unit.

As illustrated in Figure 3, a single-hop WSN is employed,
with one central server directly communicating with all
wireless sensing units. Another approach to address the
transmission range issue is through multihopping with
relatively short-range wireless transceivers. Compared with
single-hopping with relatively long-range transceivers, both
approaches have pros and cons. Under scenarios where
significant obstruction cannot be penetrated by the wireless
signal, multi-hopping through relay units can potentially
circumvent the obstruction. On the other hand, reli-
able multi-hopping requires more complicated middleware
implementation on the wireless sensing units; relaying data
through multiple wireless sensing units also causes greater
communication latency. Furthermore, all relaying nodes
along the hopping path have to consume some amount
of battery power for transmitting a single packet. For this
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study, benefiting from the long communication distance of
the 24XStream transceiver, the single-hop WSN is sufficient
for the ambient vibration tests with the two test-bed bridge
structures, particularly when the deployment is divided into
several test setups with the aid of a reference point.

Wireless
sensing
unit

Signal
conditioning
circuit

Connected
to DAS

Figure 7: Tethered and wireless sensors installed on bridge deck.

3. Mathematical Tools

3.1. Time Synchronization Assessment. Time synchronization
for data collected by multiple wireless sensor nodes is an
important concern in wireless sensor network. When the
central server broadcasts a beacon signal to all the wireless
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Figure 8: Side view of Wuyuan Bridge.
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Figure 9: Measurement locations during ambient vibration test at
Wuyuan Bridge.

sensing units, the units would not receive this beacon at
precisely the same time. The timing difference can usually
lead to synchronization error at around tens of microseconds
[16]. Furthermore, the wireless sensing units cannot share
a common data repository clock as tethered DAS, and the
crystal clocks of wireless sensing units gradually diverge
from each other [22]. The unavoidable time shift in the
crystal clocks of wireless sensing units would accumulate to
a large time synchronization error over time. As a result,
time synchronization error should be considered in WSN
application for structural vibration monitoring. The time
synchronization error possesses certain innate randomness,
which makes it challenging to completely eliminate in
data after processing. Although asynchronous data would
oftentimes not affect the identification of damping ratios
and natural frequencies, such data usually result in errors
in identified mode shapes [19, 23]. Therefore, the time syn-
chronization accuracy of WSN should be carefully assessed
through field experimental studies.

In this paper, cross-correlation function is employed for
identifying the time synchronization error of the single-hop
WSN in field experimental studies. The cross-correlation
function quantifies the waveform similarity or correlation
between two time series (or signals) as a function of a time
shift (i.e., the time delay or time-lag) applied to one of
them [24]. It is well known that cross-correlation function
has been employed to estimate the travel time in the time-
of-arrival (TOA) method for GPS positioning or locating
wireless nodes. Typically, the TOA is estimated by the
time shift corresponding to the maximum cross-correlation
value between a received signal and a known transmitted

signal [25]. In a similar way, cross-correlation function
is evaluated between a time-shifted wireless signal and a
reference (benchmark) tethered signal, in order to identify
the actual time-lag between these two signals. The cross-
correlation function between two continuous time series x(t)
and y(t) is defined as

Rxy(τ) = lim
T→∞

1
T

∫ T
0
x(t − τ)y(t)dt

= lim
T→∞

1
T

∫ T
0
x(t)y(t + τ)dt,

(1)

where τ is the lag or time shift. For numerical computation,
the cross-correlation function between two discrete time
series x(i) and y(i) can be estimated by

Rxy(τk) = 1
N

N−k−1∑
i=0

x(i)y(i + k). (2)

In addition, the standard or normalized cross-correlation
function between two time series x(i) and y(i), sampled by
time step Δt, can be estimated by [26] as follows:

rxy(τk)

=
(1/N)

∑N−k
i=1

(
x(i)−μx

)(
y(i + k)−μy

)
[

(1/N)
∑N

i=1

(
x(i)−μx

)2
]1/2

[
(1/N)

∑N
i=1

(
y(i)−μy

)2
]1/2 ,

(3)

where τk = kΔt is the lag or time shift, N is the
number of data point in time series x(i) or y(i), and μx
and μy are the mean values of time series x(i) and y(i),
respectively. Following the definitions above, the normalized
cross-correlation function has a value between −1 and 1.
Figure 4(a) shows an example signal x(t) = 5 cos(1.4πt −
0.25π) + 4 cos(4πt − 0.125π) + 3 cos(5.6πt + 0.125π) +
5 cos(8.4πt − π/12) + 8 cos(10πt + 0.2π). Signal y(t) shares
the same waveform with x(t) and is simply x(t) time-delayed
by 1 second. Figure 4(b) shows the cross-correlation function
between x(t) and y(t), and the peak of rxy clearly identifies
the time lag (100 time-steps with Δt = 0.01 second), which
corresponds to 1 second time delay.

As demonstrated by numerous studies in wireless struc-
tural health monitoring, a well-designed wireless sensing
unit usually provides very close waveform to a reference
tethered signal (collected side-by-side at the same location).
Hence, cross-correlation function between a wireless sensor
signal and the reference tethered signal can be calculated to
find the time lag between them, which is simply identified
from the time shift τk that corresponds to the peak value
of the cross correlation function. In addition, for this study,
tethered sensor signals at different locations can be regarded
as “perfectly” synchronized. Time lags can be calculated for
different pairs of wireless and tethered signals, potentially
measured at different locations and collected by different
wireless and tethered sensing units/nodes. If approximately
the same amount of time lag is identified among different
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Figure 11: Comparisons of acceleration time history and frequency spectra at sensor location number 4 (Baicheng Footbridge Test).
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Figure 14: Percent RMS difference (PRD) index variation with vibration magnitude.
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Figure 17: Identified mode shapes of Baicheng Footbridge based on wireless sensing data (Top view; Side view +X; Side view +Y; 3D view).

pairs, the wireless data collected by different wireless sensing
units are determined to be well synchronized, or to be more
precise, and the time synchronization error is determined
to be less than one sampling time-step. On the contrary, if
different amount of time lags are identified for different pairs
of wireless and tethered signals, the time synchronization
error among wireless data can be estimated using the
different time lags.

3.2. Data Quality Index. Data quality of WSN, to a certain
extent, determines its suitability for ambient vibration tests
and SHM. It can be challenging to obtain high-fidelity and
accurate wireless sensing data in ambient vibration tests and
SHM applications, because of limited capacity of on-board
A/D conversion and on-board signal conditioning [7, 15, 16].
Lynch et al. [15] pointed out that the effective resolution
of an onboard A/D converter is usually slightly lower than
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its nominal value, which poses a significant challenge in
low-magnitude vibration measurement. In addition, the
performance of classical amplifier and passive filter without
power supply is expected to provide performance inferior
to that of more powerful counterparts used in tethered
DAS. Third, data loss during wireless transmission is also
a concern. All these factors would results in data quality
problem, so the data quality of WSN needs to be carefully
investigated by quantitative indexes and through field tests.
As mentioned before, although a number of field tests on
WSN performance in full-scale structural applications have
been reported [3, 7, 8, 14–18], quantitative research about
data quality is rarely found up to date. Therefore, this paper
adopts two data quality indexes for wireless data quality
assessment. The conditions for high data quality and low data
quality are identified, respectively, and a discussion follows
on their influences on output-only modal identification.

The aforementioned cross-correlation function can mea-
sure the waveform similarity between two signals. Because
tethered sensing data are expected to be more accurate than
wireless sensing data, the tethered data is used as a reference
signal to examine the quality of wireless sensing data. This
paper adopts the correlation coefficient as an indicator for
the quality of wireless sensing data, after shifting the wireless
data according to the lag. Correlation coefficient is a special
case of the cross-correlation function when time lag k is equal
to zero. The correlation coefficient (CC) between wireless
data x(i) and tethered data y(i) can be derived by (3), which
is given by

rxy(0) =
∑N

i=1

(
x(i)− μx

)(
y(i)− μy

)
[∑N

i=1

(
x(i)− μx

)2∑N
i=1

(
y(i)− μy

)2
]1/2 . (4)

A correlation coefficient rxy(0) equal to 1 shows that the
two signals share identical waveforms or shapes, but their
magnitudes may be different. Therefore, another index,
the classical percent root-mean-square difference (PRD), is
employed to examine the data quality as a supplement to
correlation coefficient index. The PRD index is given by [27]
as follows:

PRD = 100×
[∑N

i=1

(
x(i)− y(i)

)2

∑N
i=1

(
y(i)

)2

]1/2

. (5)

3.3. Output-Only Modal Identification. Two popular meth-
ods for output-only modal parameter identification are
the enhanced frequency domain decomposition (EFDD)
method in frequency-domain [28] and the stochastic sub-
space identification (SSI) method in time domain [29, 30].
A short and brief summary of the methods is provided
herein. The original references by Brincker et al. [28], van
Overschee and de Moor [29], and Peeters and de Roeck
[30] are strongly recommended for interested readers. In
addition, the modal assurance criterion (MAC) is employed
to examine the consistency of mode shape identification
based on wireless and tethered sensing data.

3.3.1. Enhanced Frequency Domain Decomposition (EFDD).
In the EFDD method, the relationship between the unknown
input x(t) and the measured response y(t) can be expressed
as

Gyy(ω) = H∗(ω)Gxx(ω)HT(ω), (6)

in which Gxx is the input power spectral density (PSD)
matrix, Gyy is the output PSD matrix, H(ω) is frequency
response function (FRF), and superscripts “∗” and “T”
denote the complex conjugate and transpose, respectively. If
assuming the unknown input as white noise, that is, Gxx,
is a constant matrix, the FRF matrix can be solved by the
output PSD matrix based on (6). EFDD method employs
singular value decomposition (SVD) to calculate the singular
values and vectors of Gyy , which correspondingly provides
the natural frequencies and mode shapes [28].

3.3.2. Stochastic Subspace Identification (SSI). In state-space
formulation, the system input vector can be formulated
to contain various white noise vectors, including force
excitation, process errors, and measurement noises. As a
result, a multi-degree-of-freedom linear structure can be
represented as a stochastic state-space model, which is given
by

Xk+1 = AXk + wk,

Yk = CXk + vk,
(7)

where X = [x ẋ]T is the state vector; wk and vk are white-
noise random vectors; C ∈ Rl×n is the output matrix. The
measured data Y is used to identify the system matrix A
using the SSI algorithm [29]. Based on system matrix A, it
is straightforward to solve the natural frequencies, damping
ratios, and mode shapes through eigenvalue decomposition.

3.3.3. Modal Assurance Criterion (MAC). Modal assurance
criterion (MAC) is widely used to provide an additional
confidence evaluation in mode shape identification. The
function of the MAC is to provide a measure of consistency
(degree of linearity) between estimated mode shape vectors
[31]. The MAC between different mode shapes identified
based on wireless and tethered sensing data is given by

MAC
(
ψiw,ψit

) =
∣∣ψiw

T · ψit
∣∣2

(
ψiw

T · ψiw
) · (ψit

T · ψit
) , (8)

in which ψiw,ψit is the mode shape vector identified based on
wireless and tethered sensing data, respectively.

4. Experimental Setup

In order to validate and assess the performance of WSN, two
full-scale bridges located in Xiamen, China, were selected
as the test-beds. The WSN and traditional tethered DAS
were installed in the two test-beds for measuring ambient
vibration.
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4.1. Test-Bed 1: Baicheng Footbridge. Baicheng Footbridge,
a one-side cable-stayed steel footbridge located at Baicheng
beach, is on southeast part of the campus of Xiamen
University in China. Figure 5 shows the picture and elevation
drawing of the footbridge. The total length of Baicheng
Footbridge is 72.2 m, which consists of three spans (12.1 m
+ 48.8 m + 12.1 m). The steel box girder of the bridge
is a space-curved beam, consisting of one circular arc
in elevation and three independent circular arcs in plan
view. Due to its complex shape, the Baicheng Footbridge
possesses somewhat complicated dynamic characteristics.
In addition, this footbridge is susceptible to pedestrian
loading and occasionally suffers excessive vibration. Hence,
this Footbridge was selected as a test-bed for evaluating the
performance of the WSN.

To investigate the performance of the WSN, a traditional
DAS is also installed in parallel. Both the wireless and
tethered systems employ accelerometers to measure the
ambient vibration in the vertical and radial directions of
the bridge deck. Optimal sensor placement is a critical issue
in SHM, many methods have been proposed in the last
decade [32–36]. Some widely accepted methods intrinsically
concentrate on positions with high energy content (or posi-
tions with large vibration magnitude), resulting in sensors
quasi-uniformly spaced and symmetrically deployed [32].
Consequently, a uniform and symmetric sensor placement
scheme is employed. Figure 6 shows that the accelerometers
are mounted in locations marked as #1, 2, . . . , 18 along the
bridge deck. At each measurement point, two accelerometers,
one connected to a wireless sensing unit and one with the
tethered DAS, are aligned side by side (Figure 7).

Table 1 shows the test setups of Baicheng Footbridge
ambient vibration test. Due to the limitation of bandwidth
capacity, three sets of vibration tests (setup number 1∼3)
are first conducted to collect data from the sensors with a
sampling frequency of 50 Hz. For time synchronization error
assessment, another two scenarios (setup numbers 4 and 5)
are deployed with a sampling frequency of 50 Hz and 100 Hz,
respectively. Both WSN system and tethered DAS (INV306)
use the low pass filter with the same cut-off frequency of
25 Hz. Each test setup was repeated several times, depending
on the data quality. The duration of each testing is 300
seconds. Table 2 shows the accelerometers adopted in the
Baicheng ambient vibration test. The 891-II type accelerom-
eter was used to measure vertical accelerations, while the
piezoelectric type accelerometer was adopted to measure
radial accelerations.

4.2. Test-Bed 2: Wuyuan Bridge. Wuyuan Bridge, located in
the island ring road in Xiamen, China, is the first sea-crossing
steel box arch bridge constructed in China (Figure 8). The
bridge construction was finished in 2003. The total length of
Wuyuan Bridge is 810 m and the width of the bridge deck is
34 m. As shown in Figure 8, the 3-span bridge (main span is
210 m long with two 58 m-long side spans) is a half-through
X-style arch bridge consisting of steel-reinforced concrete
girders and steel arch ribs. The arch has a ratio of rise to span
equal to 1/4, with a second-degree parabolic shape. There are

9 strut rails on the arch to enhance the stability of the bridge
in transverse direction.

In the Wuyuan Bridge ambient vibration test, vertical and
transverse responses of the bridge deck and arch ribs were
measured using both wireless and tethered accelerometers.
For comparing the data quality of these two bridges tests,
the same accelerometers were used in the ambient tests,
as shown in Table 2. A signal conditioning circuit board
is included in each wireless sensing unit to offset the
sensor signals to have mean value of 2.5 V and to filter
and amplify the weak and noisy ambient responses of the
bridge. Amplification factor 20x is used for each wireless
sensing unit. Due to the limitation of bandwidth capacity
of 24XStream wireless transceiver, only 12 sensing units can
simultaneously transmit data to the laptop (central server)
when the sampling frequency is set to be 50 Hz. Five sets of
vibration tests are carried out to collect data from the sensors
locations in Figure 9. For assessing the data quality of wireless
sensing data, acceleration responses at the same locations
shown in Figure 9 were simultaneously measured by INV306
DAS with a sampling frequency of 50 Hz also. Different
from the WSN, the tethered DAS used a 100x amplification
factor. The low-pass filter cut-off frequency of tethered DAS
is 25 Hz, which is the same as WSN. Table 3 shows the specific
test setups of the Wuyuan Bridge ambient vibration test. In
each testing, a total of 18,000 data points were measured with
the duration of 360 seconds for both wireless and tethered
systems, and each test setup was repeated several times for
ensuring the quality of modal identification.

5. Results

This section discusses the testing results, with respect to
the time synchronization of wireless sensing units, wireless
sensing data quality assessment, and the output-only modal
identification of Baicheng Footbridge and Wuyuan Bridge.

5.1. Time Synchronization Assessment. A limitation of WSN
is the absence of a centralized clock; therefore, time syn-
chronization is an important issue for WSN. The prototype
wireless sensing unit used in this study is designed to syn-
chronize its internal clock to a beacon signal broadcast from
the centralized data repository. To validate the accuracy of
wireless synchronization within a realistic field environment,
the time lags between wireless sensing data and cable-based
sensing data are investigated.

Three test scenarios for wireless synchronization assess-
ment were carried out in Baicheng Footbridge test, as shown
in Table 4. The sampling frequency is 50 Hz for test 1, and
100 Hz for test 2 and 3. Since the analysis resolution for
time synchronization error is bounded by sampling interval,
the wireless and tethered raw data were first up-sampled
to 1 kHz sampling rate through interpolation. Figure 10(a)
shows the normalized cross-correlation function of the two
acceleration responses (wireless and tethered) recorded at
measurement point number 4 of Baicheng Footbridge. With
the aid of cross-correlation functions, a consistent time
difference around 8.554 seconds (8554 sampling intervals
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Table 1: Setups for ambient vibration tests at Baicheng Footbridge.

Setup Number Vertical measurement point Radial measurement point Objective

1 3, 4, 5, 6, 9, 13, 14, 15, 18 — Modal identification

2 1, 2, 7, 8, 10, 11, 16, 17 — Modal identification

3 — 10, 11, 12, 13, 14, 15, 16, 17, 18 Modal identification

4 3, 4, 5, 7, 8, 12, 14, 16, 17 — Assessment of time synchronization

5 5, 12, 14, 16 — Assessment of time synchronization

Table 2: Parameters of accelerometer.

Sensor type Range (m/s2) Sensitivity (V/(m/s2)) Resolution (m/s2) Bandwidth (Hz), +1
−3dB Application

891-II ±20 0.1 1× 10−5 m/s2 0.5∼80 Vertical measurement

Piezoelectric ±100 0.05 0.0004 m/s2 0.5–2500 Radial measurement

Table 3: Setups for ambient vibration tests at Wuyuan Bridge.

Setup
number

Vertical
measurement

points

Transverse
measurement points

Reference
point

1 2, 3, 10, 11, 12, 13 10, 11, 12, 13 1 (V, T)∗

2 8, 9, 14, 15, 16 14, 15, 16 1 (V, T)

3 4, 5, 6, 7, 8 5, 7 1 (V, T)

4 — 2, 3, 4, 6, 8, 9 1 (V, T)

5
17, 18, 19, 20, 21,

22, 23, 24, 25;
— 1 (V, T)

∗
V: vertical; ∗T: transverse.

at 1 kHz) between wireless and tethered data is identified
at all nodes of test 1. This result illustrates that the time
synchronization error of the single-hop WSN is all less than
one sampling interval (Δt = 1 ms) in test 1. In test 2 and 3 of
Baicheng Footbridge, the time differences among the wireless
sensing nodes have been found as 1 ms∼3 ms, as shown in
Table 4. The maximum time synchronization error of the
single-hop WSN is 3 ms in Baicheng Footbridge ambient
vibration test, for sensor number 14 during Test 3.

Similar experimental results are achieved in Wuyuan
Bridge test. Figure 10(b) shows the normalized cross-
correlation function between wireless and tethered data
recorded at measurement point #1 of Wuyuan Bridge. Again,
a consistent time difference between wireless and tethered
data is observed at all sensor locations except at measurement
point #18 and 23. The time synchronization error among
the wireless sensing nodes is found to be not more than
1 ms, as shown in Table 4. Overall, the two field experimental
studies demonstrate that the time synchronization errors of
the single-hop WSN are bounded by 3 ms, for the entire
duration of the measurement. Therefore, beacon-based time
synchronization algorithm in the single-hop network is
quite effective and can provide highly accurate synchronized
sensing.

Table 4: Estimation of time synchronization error for the entire
measurement duration.

(a)

Sensor
location
(Baicheng)

Test 1
(Baicheng) (ms)

Test 2
(Baicheng) (ms)

Test 3
(Baicheng)

(ms)

#3 <Δt — —

#4 <Δt — —

#5 — <Δt 2

#7 <Δt — —

#8 <Δt — —

#12 <Δt <Δt <Δt

#14 <Δt 1 3

#16 <Δt 1 2

#17 <Δt — —

(b)

Sensor location (Wuyuan) Test 4 (Wuyuan) (ms)

#1 <Δt

#18 1

#19 <Δt

#22 <Δt

#23 1

#24 <Δt

5.2. Quality of Wireless Sensing Data. After being shifted
according to the wireless-tethered time lag shown by correla-
tion function, the acceleration time history collected by WSN
is compared with the tethered baseline signals. Figure 11(a)
shows the acceleration time histories recorded by the wireless
sensing units at location #4 of Baicheng Footbridge, which
matches well with those by the traditional cable-based DAS.
The minor differences between amplitudes of the signals are
due to several factors. Generally, the major error sources
of wireless sensing include the relatively low resolution of
onboard A/D converter, the limited abilities of prototype
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Table 5: Modal identification of Baicheng Footbridge by EFDD.

Mode
Wireless Tethered

Frequency difference (%) Damping difference (%) Descriptions of mode shape MAC
fw (Hz) ξw (%) ft (Hz) ξt (%)

1 2.291 0.620 2.272 0.74 0.84 16.2 Deck 1st vertical and radial bending 0.999

2 4.067 0.88 4.058 0.95 0.22 7.4 Deck bending and bridge tower bending —

3 5.323 0.29 5.320 0.33 0.06 12.1 Deck 2nd vertical bending 0.998

4 7.446 0.89 7.445 0.71 0.01 25.4 Deck 2nd radial bending 0.989

5 9.440 0.88 9.435 0.94 0.05 6.4 Deck 3rd vertical and radial bending 0.999

Table 6: Modal identification of Baicheng Footbridge by SSI.

Mode
Wireless Tethered

Frequency difference (%) Damping difference (%) Descriptions of mode shape MAC
fw (Hz) ξw (%) ft (Hz) ξt (%)

1 2.292 0.54 2.260 1.24 1.42 56.5 Deck 1st vertical and radial bending 0.997

2 4.042 0.53 4.067 0.88 0.61 39.8 Deck bending and bridge tower bending —

3 5.319 0.41 5.323 0.40 0.08 2.5 Deck 2nd vertical bending 0.998

4 7.431 0.95 7.446 0.89 0.20 6.7 Deck 2nd radial bending 0.892

5 9.478 0.67 9.440 0.88 0.40 23.9 Deck 3rd vertical and radial bending 0.999

signal conditioning circuit, imperfect filtering, and variant
sampling interval. Figure 11(b) shows the Fourier spectra of
wireless and tethered sensing data, which are also in good
agreement. Similar close match has also been found in the
Wuyuan Bridge test, as shown in Figure 12.

Furthermore, for assessing the wireless data quality
quantitatively, two data sets (wireless and tethered data,
sampling frequency: 50 Hz) from the Baicheng Footbridge
test and the Wuyuan Bridge test are selected to calculate
the data quality indexes. First, each data set is divided into
many short data segments (5 seconds, i.e., 250 data points
per segment). Then, (4) and (5) are used to calculate the data
quality indexes, including correlation coefficient (CC) and
percent root-mean-square difference (PRD). Figure 13 shows
the CC change with the vibration magnitudes. When the
(root-mean-square) RMS vibration amplitude is larger than
1 mg (accelerometer output voltage changes by 0.98 mV),
the CC index increases from 80% to 97%, which suggests a
high waveform similarity between wireless and cable-based
sensing data. However, the CC index sharply declines when
the RMS vibration amplitude is less than 1 mg in both cases.
Figure 14 shows the relationship between PRD and vibration
amplitude. The PRD is usually in the range from 10% to
22%, when the vibration level is larger than 1 mg RMS
acceleration.

As indicated by the CC and PRD indexes, the wireless
and tethered data do not so “perfectly” match each other
even in high vibration amplitudes, because the wireless
and cable-based sensing both have different noise sources,
that is, different data acquisition systems generate different
measurement noises even their signal-to-noise ratios (SNR)
are identical. Secondly, both CC index and PRD index
are amplitude-dependent. When the vibration amplitude
is larger than 1 mg, or equivalently, the analog sensor
signal change is larger than 1 mV, high quality wireless
sensing data can be expected. However, it is challenging to
guarantee the data quality when the vibration amplitude

is less than 1 mg RMS acceleration, or when the analog
sensor signal change is less than 1 mV. Several factors may
account for the measurement errors of wireless sensing
unit at low vibration amplitude, for instance, resolution
of A/D converter, inaccuracy of amplification and filtering
circuit, circuit noise of sensor board, and the resolution of
accelerometer. Higher resolution of A/D converter and more
powerful signal conditioning circuit are helpful to achieve
better performance with wireless data for extremely low-
magnitude measurement. The prototype wireless sensing
unit can perform well during the ambient vibration test
when average RMS acceleration is larger than 1 mg. The peak
vertical accelerations of the two bridges are 20 mg (Baicheng
Footbridge) and 14 mg (Wuyuan Bridge) in the two field
tests, respectively. Consequently, the data collected by the
single-hop WSN in the two bridges are of high quality and
sufficient for the output-only modal identification.

5.3. Results of Output-Only Modal Identification. The EFDD
and SSI are employed for the identification of Baicheng
Footbridge and Wuyuan Bridge based on the ambient accel-
eration responses collected by the wireless sensing units. In
addition, the modal identification using cable-based sensing
data are also conducted for examining the accuracy of the
modal identification results from wireless measurements.

5.3.1. Modal Identification Results of the Baicheng Footbridge.
Output-only modal identification usually demands lots of
data for more precise analysis. A total length of 780 seconds
of acceleration data, with 39,000 wireless sensing data points
at each channel, are collected for modal identification of
the Baicheng Footbridge. Meanwhile, a total length of 409.6
seconds of acceleration data, with 20,480 data points per
channel, is measured by the cable-based DAS to estimate the
modal parameters.

Figure 15 shows the singular values of the power spectral
density (PSD) matrix based on the acceleration responses
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Table 7: Modal identification of Wuyuan Bridge by EFDD.

Mode
Wireless Tethered Frequency difference (%) Damping difference (%) Descriptions of mode shape

fw (Hz) ξw (%) ft (Hz) ξt (%)

1 0.774 2.14 0.780 1.99 0.77 7.5 1st vertical bending (antisymmetric)

2 1.210 1.03 1.211 0.89 0.08 15.7 1st lateral bending (symmetric)

3 1.255 0.79 1.258 1.05 0.24 24.8 2nd vertical bending (symmetric)

4 1.631 0.27 1.638 0.87 0.43 69.0 1st torsion (anti-symmetric)

5 1.705 0.57 1.699 0.99 0.35 42.4 3rd vertical bending (symmetric)

6 1.897 0.62 1.887 1.29 0.53 51.9 2nd torsion (symmetric)

7 2.440 0.54 2.443 0.69 0.12 21.7 3rd torsion (symmetric)

8 2.700 0.74 2.730 0.65 1.10 13.8 4th vertical bending (anti-symmetric)

9 3.296 0.28 3.317 0.76 0.63 63.2 5th vertical bending (symmetric)

Table 8: Modal identification of Wuyuan Bridge by SSI.

Mode
Wireless Tethered Frequency difference (%) Damping difference (%) Descriptions of mode shape

fw (Hz) ξw (%) ft (Hz) ξt (%)

1 0.775 1.93 0.775 1.56 0 23.7 1st vertical bending (antisymmetric)

2 1.230 1.36 1.232 1.37 0.16 0.7 1st lateral bending (symmetric)

3 1.254 0.64 1.251 1.32 0.24 51.5 2nd vertical bending (symmetric)

4 1.603 1.52 — — — — 1st torsion (anti-symmetric)

5 1.707 0.91 1.712 1.71 0.29 46.8 3rd vertical bending (symmetric)

6 1.898 1.63 1.867 1.06 1.66 53.8 2nd torsion (symmetric)

7 2.429 1.97 2.425 2.31 0.16 14.7 3rd torsion (symmetric)

8 2.872 2.38 2.683 1.50 7.04 58.7 4th vertical bending (anti-symmetric)

9 3.295 1.59 3.313 1.70 0.54 6.5 5th vertical bending (symmetric)

measured by WSN and cable-based DAS, respectively. The
five peaks are very clear and well separated from each other.
The identified natural frequencies and damping ratios of the
first five modes of the footbridge are summarized in Table 5.
For evaluating the accuracy of the modal identification
using wireless sensing data, the results identified by EFDD
using tethered data are also presented in Table 5. It can be
observed that the identified natural frequencies of wireless
system match well with those of tethered system. The relative
differences of natural frequencies identified by the two types
of data vary from 0.01% to 0.84%, with an average value of
0.236%. A close match between wireless and tethered results
is also found in the identified mode shape. MAC values
shown in Table 5 are quite high, from 0.989 to 0.999 with
an average value of 0.996.

Figure 16 shows the SSI stabilization diagrams of the
acceleration responses measured by WSN and cable-based
DAS, respectively. The first five modes are well identified as
shown in Figure 16. Table 6 shows the natural frequencies,
damping ratios and mode shape descriptions, for the first
five modes of the footbridge using SSI algorithm. The relative
difference and MAC values between wireless and tethered
results clearly demonstrate that the WSN can offer suffi-
ciently accurate data for identifying the natural frequencies
and mode shapes. However, the identified damping ratios

are more different between wireless and tethered systems,
with an average value of 13.5% (EFDD) and 25.9% (SSI).
These significant differences in identified damping ratios
may be attributed to the sight difference in acceleration
amplitude measurements by wireless and tethered system, as
shown in Figures 11 and 12. Nevertheless, damping ratios are
notoriously uncertain in modal analysis, even just comparing
among wired measurements. In general, variations up to
200% are commonly encountered [37]. Damping ratio
estimation is constrained by dynamics modeling, identifi-
cation algorithm, and vibration magnitudes, and structural
damping is intrinsically nonlinear. As a result, when the
structural dynamic behavior is represented by a linear
model, such as in EFDD and SSI algorithms, the estimated
equivalent damping ratios unavoidably demonstrate large
variations. Damping ratio identification is still a widely
known challenge in the research community. Consequently,
the large difference in damping ratios listed in Tables 5
and 6 are primarily due to the difficulty of damping ratio
identification in general, rather than being caused by the
difference in wireless and tethered data. A similarly big
difference in identified damping ratios between wireless and
cable-based systems is also reported in the literature [37].

Figure 17 shows the mode shapes of Baicheng Foot-
bridge. The 2nd mode shape is absent because the vibration
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Figure 18: Stabilization diagram of SSI algorithm using data from
wireless setup 1 (vertical axis: system order).

of tower was not fully measured due to sensor installation
difficulties. The modal properties of one-side cable-stayed
steel footbridges are rarely reported in literature. Due to
its special space configuration, its mode shapes also exhibit
some special features. The vertical and radial mode shapes
are coupled in the 1st and 5th modes, as shown in Figure 17.
The fundamental frequency of the Baicheng Footbridge
is 2.292 Hz, which is close to the footfall frequency of
pedestrian walking (typically around 2 Hz) [38]. Therefore,
pedestrians can induce excessive vibrations to the bridge by
“resonance” effect. Overall, the modal identification results
presented in this section illustrate a good performance of
wireless sensor instrumentation at this short-span bridge.

5.3.2. Modal Identification Results of the Wuyuan Bridge.
Although the WSN works well at the Baicheng Footbridge,
the system should also be tested in more complex and harsh
environments posed by long-span bridges. Hence, Wuyuan
Bridge is selected as another test-bed for experimental study
of the prototype wireless sensing system. A total length of 360
seconds acceleration data (18,000 data points per channel)
are measured by the WSN and employed to identify the
modal parameters of the Wuyuan Bridge. Meanwhile, 409.6
seconds of acceleration responses (20,480 data points per
channel) measured by the cable-based DAS are also used to
identify the bridge modal properties.

Table 7 shows the modal identification results by EFDD
algorithm based on wireless and tethered data. The first nine
modes, with very closely spaced resonance frequencies, are
identified. Based on wireless data, the fundamental frequency
and damping ratio of Wuyuan Bridge are identified as
0.774 Hz and 2.14%, respectively. A good agreement is
found between wireless and tethered results, as shown in
Table 7. Average relative difference between identified natural
frequencies is 0.47% and the difference between identified
damping ratios is 34.4%, both about roughly twice of that
from Baicheng Footbridge testing. This is likely because the
vibration amplitude of Baicheng Footbridge is larger than
Wuyuan Bridge and thus the WSN in former test can provide
higher data quality than the latter.

Figure 18 shows the stabilization diagram of SSI algo-
rithm of wireless setup 1. The identified frequencies and

damping ratios of the first nine modes of the Wuyuan
Bridge using SSI are summarized. Excluding the large relative
difference in natural frequency of 8th mode, the other
identified frequencies based on wireless data are overall
consistent with the tethered results. A large relative difference
in identified damping ratios, averaging 32.05%, is also
observed in Table 8. In addition, the fourth mode (1st
torsion) is not identified based on tethered data by SSI
algorithm.

Figure 19 shows the comparisons of identified mode
shapes of Wuyuan Bridge based on wireless and tethered
sensing data. A very good agreement between the identified
mode shapes from wireless and tethered data is found in
Figures 19(a)–19(f), which is also indicated by a set of high
MAC values (averaged 0.956). It is recognized here that the
MAC values are also lower than those of Baicheng Footbridge
test, which may also be attributed to a higher data quality at
Baicheng Footbridge test.

Figure 20 shows the 3D view of identified mode shapes of
Wuyuan Bridge based on wireless sensing data. The identified
first vertical bending mode shape of Wuyuan Bridge has
an antisymmetric waveform, which is similar to the second
mode shape of a simply supported beam. This identified
result is consistent with the theoretical solution of the mode
shape of arch bridges [39] and also consistent with the
experimental results at another arch bridge in China [40].

All the identified results of natural frequencies and
mode shapes based on wireless sensing data are consistent
with those based on conventional tethered data. Larger
differences have been found in the identified damping
ratios from wireless sensing data. Considering the commonly
occurring uncertainty in damping ratio identification, even
using traditional tethered sensing data, the performance of
WSN for output-only modal identification has been well
demonstrated in these two field ambient vibration tests.

6. Conclusion and Discussion

This paper presents the quantitative experimental studies
on time synchronization, data quality, and accuracy for
output-only modal identification using a single-hop WSN
system. Both short-span to long-span bridge applications are
studied. The cross-correlation function between wireless and
tethered signal is employed to assess the time synchroniza-
tion accuracy of the WSN. The field experimental results
illustrate that time synchronization errors are bounded by
3 ms for the entire duration of the data collection. Hence
the time synchronization error of the single-hop WSN is
regarded as negligible in output-only modal identification of
civil structures.

In addition, this paper proposes two data quality indexes,
correlation coefficient (CC) and percent root-mean-square
difference (PRD), for assessing the accuracy of wireless
sensing data. High-quality data (CC: 80% to 97%; PRD: 10%
to 22%) was collected when ambient vibration amplitude
is relatively large (RMS > 1 mg, i.e., accelerometer voltage
change > 0.98 mV). However, the data quality indexes decline
when the vibration amplitude is low (e.g., accelerometer
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(a) 1st vertical bending mode shape (frequency = 0.776 Hz, damping
ratio = 2.57%, by SSI)
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(b) 2nd vertical bending mode shape (frequency = 1.242 Hz, damping
ratio = 0.65%, by SSI)

M
ag

n
it

u
de

0 20 40 60 80 100 120 140 160 180 200

Coordinate of measured point (m)

3

2

1

0

−1
MAC = 0.973

Wireless
Tethered

(c) 3rd vertical bending mode shape (frequency = 1.698 Hz, damping
ratio = 1.26%, by SSI)
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(d) 1st torsional mode shape (frequency = 1.631 Hz, damping ratio =
0.27%, by EFDD)

M
ag

n
it

u
de

0 20 40 60 80 100 120 140 160 180 200

Coordinate of measured point (m)

2.5

1.5

0.5

−0.5

MAC = 0.986

Wireless
Tethered

(e) 2nd torsional mode shape (frequency = 1.837 Hz, damping ratio =
3.97%, by SSI)
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Figure 19: Comparisons of identified mode shapes of Wuyuan Bridge based on wireless and tethered sensing data.

output < 0.98 mV). Potential approaches to further improve
data quality include higher resolution sensors, more pow-
erful signal conditioning circuit with larger amplification
factors [41], and higher resolution A/D converters.

The output-only modal identifications of Baicheng
Footbridge and Wuyuan Bridge were carried out based
on the wireless and cable-based sensing data. The results
demonstrate that the identified natural frequencies using
wireless sensing data are very accurate, where average relative
difference from the tethered results is 0.236% for Baicheng
Footbridge and 0.47% for Wuyuan Bridge. The mode shapes
are also reliably identified. The averaged MAC value between
wireless and tethered data is 0.996 for Baicheng Footbridge,
and 0.956 for Wuyuan Bridge. However, large relative
differences (averaging 13.5% for Baicheng Bridge test and
34.4% for Wuyuan Bridge test) in identified damping ratios
were observed between wireless and tethered data. However,
such difference is primarily due to the difficulty of damping
ratio identification in general, rather than being caused by
the difference in wireless and tethered data. Because the
vibration amplitude of Baicheng Footbridge is larger than
that of Wuyuan Bridge, providing higher signal-to-noise

ratio, modal identification results from the former is overall
more accurate than the latter.

In summary, the field ambient vibration tests demon-
strate the feasibility of output-only modal identification
using WSN. The accuracy can be assured if the ambient
vibration amplitude is larger than RMS 1 mg, or in this case,
when the analog sensor output voltage changes by more than
1 mV. From our experience, in addition to extremely low-
amplitude ambient vibration test, another two challenges
facing WSN in ambient vibration tests are the bandwidth
limitation of wireless communication and the power supply
for wireless sensors. Low power wireless sensors and energy
harvesting technologies [42, 43] should be developed for
next generation wireless sensing systems. Wireless sensors,
with the characteristics of low cost, mobile, easy installation,
and increasingly more powerful embedded computation
capability, are expected to keep evolving and to enable
exciting future applications on civil infrastructure. WSN, a
significantly valuable product from technology revolution in
modern era, is highly promising for widespread deployment
in the vibration testing and safety monitoring of civil
structures.
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(a) Mode 1 (Vertical mode 1) (b) Mode 2 (Lateral mode 1) (c) Mode 3 (Vertical mode 2)

(d) Mode 4 (Torsion mode 1) (e) Mode 5 (Vertical mode 3) (f) Mode 6 (Torsion mode 2)

(g) Mode 7 (Torsion mode 3) (h) Mode 8 (Vertical mode 4)

Figure 20: 3D view of identified mode shapes of Wuyuan Bridge based on wireless sensing data.
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