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ABSTRACT For linear systems, the original Kalman filter under the minimum mean square error (MMSE)
criterion is an optimal filter under a Gaussian assumption. However, when the signals follow non-Gaussian
distributions, the performance of this filter deteriorates significantly. An efficient way to solve this problem
is to use the maximum correntropy criterion (MCC) instead of the MMSE criterion to develop the filters. In a
recent work, the maximum correntropy Kalman filter (MCKF) was derived. The MCKF performs very well
in filtering heavy-tailed non-Gaussian noise, and its performance can be further improved when some prior
information about the system is available (e.g., the system states satisfy some equality constraints). In this
paper, to address the problem of state estimation under equality constraints, we develop a new filter, called
the MCKF with state constraints, which combines the advantages of the MCC and constrained estimation
technology. The performance of the new algorithm is confirmed with two illustrative examples.

INDEX TERMS Kalman filter, robust estimation, maximum correntropy criterion (MCC), state constraints.

I. INTRODUCTION
The well-known Kalman filter (KF) [1]–[3] is a minimum
mean square error (MMSE) criterion-based optimal filter for
linear systems under Gaussian noise. It has been widely used
in many practical applications, including target tracking [4],
dynamic optimization [5], signal denoising [6], wire loss
monitoring [7] and many others. To date many variants of the
Kalman filter have also been proposed to solve the problem of
nonlinear estimation. Typical examples include the extended
Kalman filter (EKF) [8], the second-order extended Kalman
filter (SEKF) [9], the unscented Kalman filter (UKF) [10],
and the cubature Kalman filter (CKF) [11].

However, the MMSE criterion-based Kalman filters may
not perform well when the systems are subject to non-
Gaussian noise [12], which frequently appears in real-
world applications. To address the problem of estimation in
non-Gaussian noise, some optimization criteria beyond the
MMSE have been proposed in the literature. In particular, the
maximum correntropy criterion (MCC) has been successfully
used in adaptive estimation and filtering under heavy-tailed
noise environments [13]–[22]. To improve the performance
of the Kalman filter in heavy-tailed non-Gaussian noise

environments, we developed the maximum correntropy
Kalman filter (MCKF) in [23] by using the MCC instead
of the MMSE as the optimization criterion. The MCKF can
achieve much better performance than the original KF in
many situations.

The performance of the MCKF can be further improved
when some prior information about the system is available.
For example, the system states sometimes may satisfy cer-
tain linear or nonlinear equality constraints. Such systems
often occur in engineering applications, including turbofan
engine health estimation [24], stereo vision systems [25],
hand gesture estimation [26], compartmental models [27]
and so on. Considering such systems, some methods have
been proposed to solve the problem of state estimation
by incorporating the constraints into the estimator. These
techniques include model reduction, perfect measurements,
estimate projection, probability density function truncation,
linear approximation, second-order approximation and so on.
For linear constraints, the model reduction approach [28]
reduces the equality-constrained filtering to the equivalent
unconstrained filtering. The perfect measurements appro-
ach [25], [29], [30] augments the measurement equation by
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treating the state equality constraints as perfect measure-
ments with zero measurement noise. The estimate projection
approach [31] projects the unconstrained estimate onto the
constrained surface. The probability density function (PDF)
truncation approach [24], [26] truncates the PDF of the state
estimate at the constraint edges, and the constrained state
estimate is equal to the mean of the truncated PDF. For the
nonlinear constraints, the linear approximation [31] method
expands the nonlinear state constraints around the current
constrained state estimate and keeps only the first-order
terms. The second-order approximation method [32] keeps
not only the first-order terms but also the second-order terms.

In the present paper, to address the constrained state esti-
mation in non-Gaussian noise environments, a new filtering
algorithm called the maximum correntropy Kalman filter
with state constraints (MCKF-SC) is proposed. By combin-
ing the MCC and constrained estimation technology, which
projects the unconstrained MCKF solution onto the state
constrained surface, this algorithm can further improve the
filtering performance.

The rest of this paper is organized as follows: In Section II,
the correntropy and maximum correntropy Kalman filter are
briefly introduced. In Section III, four approaches are used
to derive the maximum correntropy Kalman filter with state
constraints. In Section IV, illustrative examples are presented
to show the desirable performance of the new algorithm.
Finally, conclusions are given in Section V.

II. PRELIMINARIES
A. CORRENTROPY
Correntropy is a novel concept that can measure the local
similarity between two random variables. Given two random
variables X and Y , the correntropy is defined by [33]–[35]

V (X ,Y ) = E [κ(X ,Y )] =
∫
κ(x, y)dFXY (x, y) (1)

where E is the expectation operator, κ(·, ·) denotes a shift-
invariant Mercer kernel and FXY (x, y) is the joint distribution
function of (X ,Y ). In this paper, unless indicated otherwise,
the kernel function is the Gaussian kernel:

κ(x, y) = Gσ (e) = exp
(
−

e2

2σ 2

)
(2)

where e = x − y, and σ > 0 denotes the kernel bandwidth.
With a Gaussian kernel, the correntropy is insensitive to
large errors and hence can be used as a robust cost function
in estimation related problems. This estimation criterion is
called the maximum correntropy criterion (MCC) [13]–[16],
[18]–[22], [34].

B. MAXIMUM CORRENTROPY KALMAN FILTER
The maximum correntropy Kalman filter (MCKF) is a new
Kalman-type filter for linear systems that takes advantage of
the robustness of correntropy to address impulsive noise.

Consider a linear system with the following state and mea-
surement equations:

x(k) = F(k − 1)x(k − 1)+ q(k − 1), (3)

y(k) = H(k)x(k)+ r(k). (4)

where x(k) ∈ Rn and y(k) ∈ Rm denote the n-dimensional
state vector andm-dimensional measurement vector at time k ,
respectively. F(·) is the known n × n state transition matrix
and H(·) is the known m × n measurement matrix. q(k − 1)
and r(k) are, respectively, the uncorrelated process noise and
measurement noise, with zero mean and covariance matrices
Q(k − 1) and R(k).
Like the original KF, theMCKF also includes the following

two steps [23]:

1) PREDICT
The prior mean and covariance matrix are computed by

x̂(k|k−1) = F(k − 1)̂x(k − 1|k − 1), (5)

P(k|k−1) = F(k−1)P(k−1|k−1)FT(k−1)+Q(k−1). (6)

2) UPDATE
Choose a proper kernel bandwidth σ and a small positive
threshold ε, and set[

P(k|k − 1) 0
0 R(k)

]
=

[
Bp(k|k − 1)BTp (k|k − 1) 0

0 Br (k)BTr (k)

]
= B(k)BT (k) (7)

and construct the following equation

D(k) =W(k)x(k)+ e(k) (8)

where D(k) = B−1(k)
[
x̂(k|k − 1)

y(k)

]
, W(k) = B−1(k)

[
I

H(k)

]
.

The posterior estimation is updated by the fixed-point itera-
tion for x̂(k|k):

x̂(t)(k|k)

= x̂(k|k − 1)+ K̃(t−1)(k)(y(k)−H(k )̂x(k|k − 1))

starting with x̂(0)(k|k)

= x̂(k|k − 1), t = 1 (9)

where

K̃(t−1)(k) = P̃(t−1)(k|k − 1)HT (k)

×

(
H(k )̃P(t−1)(k|k − 1)HT (k)

+̃R(t−1)(k)
)−1

(10)

P̃(t−1)(k|k − 1) = Bp(k|k − 1)
(
C̃(t−1)
x (k)

)−1
×BTp (k|k − 1) (11)

R̃(t−1)(k) = Br (k)
(
C̃(t−1)
y (k)

)−1
BTr (k) (12)

VOLUME 5, 2017 25847



X. Liu et al.: MCKF-SC

C̃(t−1)
x (k) = diag

(
Gσ

(̃
e(t−1)1 (k)

)
, ...,Gσ

(̃
e(t−1)n (k)

))
(13)

C̃(t−1)
y (k) = diag

(
Gσ

(̃
e(t−1)n+1 (k)

)
, ...,Gσ

(̃
e(t−1)n+m (k)

))
(14)

ẽ(t−1)i (k) = di(k)− wi(k )̂x(t−1)(k|k) (15)

in which Bp(k|k − 1) and Br (k) are obtained by Cholesky
decomposition of P(k|k − 1) and R(k), respectively, super-
script (t) denotes the corresponding value, vector or matrix
at the t-th iteration, di(k) is the i-th element of D(k), and
wi(k) is the i-th row of W(k). The iteration stops when∥∥̂x(t)(k|k)−̂x(t−1)(k|k)∥∥
‖̂x(t−1)(k|k)‖

≤ ε, with ε being a small positive value,

or iterative number reaches a preset value. Moreover, the
posterior covariance is updated by

P(k|k) =
(
I− K̃(k)H(k)

)
P(k|k − 1)

(
I− K̃(k)H(k)

)T
+ K̃(k)R(k)K̃T (k) (16)

It should be noted that if the measurements are contami-
nated by some extremely large noises, the MCKF may face
numerical problems since the matrix C̃y(k) will be nearly
singular. Below, we give an approach to solve this problem.
Let

η(k) = y(k)−H(k )̂x(k|k − 1) (17)

A(k) = H(k)P(k|k − 1)HT (k)+ R(k) (18)

v(k) = ηT (k)A−1(k)η(k) (19)

If |v(k)| > δ, where δ > 0 is a preset threshold, we only carry
out the predict step, that is, x̂(k|k) = x̂(k|k − 1), P(k|k) =
P(k|k − 1). If |v(k)| ≤ δ, both the two steps will be carried
out.

III. MAXIMUM CORRENTROPY KALMAN FILTER
WITH STATE CONSTRAINTS
The MCKF can achieve better performance than the con-
ventional MMSE-based Kalman filters, especially when the
underlying dynamic system is disturbed by certain heavy-
tailed (or impulsive) non-Gaussian noise. If some prior infor-
mation about the system is available, the performance of
MCKF can be further improved. In the following, we will
incorporate the linear or nonlinear constraints on the system
states into the MCKF algorithm. For simplicity, we omit the
time step k .

A. LINEAR CONSTRAINT
Assume that the state elements are subject to an additional
linear constraint

Mx = m (20)

where M is an s× n matrix, m is an s× 1 vector, and s ≤ n.
Moreover, we assume that M is of full rank.
Next, two methods are proposed to incorporate this linear

constraint.

1) ESTIMATE PROJECTION
Estimate projection is a common method to address the prob-
lem of constrained filtering. It projects the unconstrained esti-
mate x̂ onto the constrained surface. The constrained estimate
x can be given by the following equation:

x = argmin
x

(x− x̂)TW (x− x̂) (21)

satisfying

Mx = m (22)

where W is a positive definite weighting matrix. Then, the
Lagrangian function is expressed as

L = (x− x̂)TW (x− x̂)+ 2λT (Mx−m) (23)

The optimal solution can be found by solving

∂L
∂x
= 0 (24)

∂L
∂λ
= 0 (25)

Thus, we have

x = x̂−W−1MT
(
MW−1MT

)−1
(Mx̂−m) (26)

Note that we often setW = (P(k|k))−1 orW = I to obtain
the constrained estimate. Table 1 describes all the steps of
the MCKF with estimate projection algorithm. The detailed
descriptions of the other three methods will be omitted due to
the similarity.

2) PROBABILITY DENSITY FUNCTION TRUNCATION
The probability density function (PDF) truncation method
truncates the PDF of the state estimate at the constraint edges.
The constrained state estimate is equal to the mean of the
truncated PDF. The steps of this method are summarized as
follows:

First, we define x(t) as the state estimate after the first
t constraints of (20) have been enforced, and P

(t)
as its

covariance matrix.
Initialize

t = 0, x(t) = x̂,P
(t)
= P(k|k) (27)

Make the following transformation:

z(t) = ρS−1/2UT (x− x(t)) (28)

where ρ is an orthogonal matrix, U is an orthogonal matrix,
and S is a diagonal matrix.

Solve the singular value decomposition (SVD) of P
(t)
,

that is,

P
(t)
= USVT (29)

and obtain the orthogonal matrix ρ by using the
Gram-Schmidt orthogonalization that satisfies

ρS1/2UTMT
t+1 =

[
(Mt+1P

(t)
MT

t+1)
1/2

0 · · · 0
]T

(30)

whereMt+1 denotes the t + 1-th row ofM.

25848 VOLUME 5, 2017



X. Liu et al.: MCKF-SC

TABLE 1. MCKF with estimate projection algorithm.

According to (20), we have

Mt+1US1/2ρT z(t) +Mt+1x(t) = mt+1 (31)

where mt+1 denotes the t + 1-th element of m.
Dividing both sides of (31) by (Mt+1P

(t)
MT

t+1)
1/2 and

rearranging it yields

Mt+1US1/2ρT

(Mt+1P
(t)
MT

t+1)
1/2 z

(t)
=

mt+1 −Mt+1x(t)

(Mt+1P
(t)
MT

t+1)
1/2 (32)

As shown by (28)∼(30), z(t) has a mean of zero and a
covariance matrix of identity. We define

ct+1 =
(mt+1 −Mt+1x(t))

(Mt+1P
(t)
MT

t+1)
1/2 (33)

and have [
1 0 · · · 0

]
z(t) = ct+1 (34)

The mean and variance of z(t+1) are given by

µ = ct+1 (35)

ξ2 = 0 (36)

and the mean and variance of the transformed state esti-
mate after the first t + 1 constraints are enforced can be
written as

z(t+1) =
[
µ 0 · · · 0

]T (37)

Cov(z(t+1)) = diag
(
ξ2 1 · · · 1

)
(38)

Making the inverse transformation of (28), the mean and
variance of the constrained state estimate that match the
t + 1-th constraint can be computed as

x(t+1) = US1/2ρT z(t+1) + x(t) (39)

P
(t+1)
= US1/2ρTCov(z(t+1))ρS1/2UT (40)

The step stops when t + 1 = length(m), where length(m)
denotes the dimension of m.

B. NONLINEAR CONSTRAINT
Now we assume that the states are subject to the following
nonlinear constraint

g(x) = m (41)

where g is a nonlinear function with respect to x and m is an
s× 1 vector.
Below we present two methods to address the nonlinear

constraint (41).

1) LINEAR APPROXIMATION
We expand the nonlinear state constraints around the current
constrained state estimate x, and get

gi(x)− mi = gi(x)+ gi
′(x)T (x− x)

+
1
2!
(x− x)T gi

′′(x)(x− x)+ · · · − mi

= 0 (42)

where gi(·) is the i-th row of g(·), mi is the i-th element of
m, and gi

′(·) and gi
′′(·) represent the first and second partial

derivatives of gi(·).
Retaining only the first-order terms, regardless of whether

there are also higher-order terms, and making some rear-
rangements, we have

g′(x)T x ≈ m− g(x)+ g′(x)T x (43)

which has similar form to (20) by replacing M and m with
g′(x)T and m − g(x) + g′(x)T x. The problem of nonlinear
constraints can thus be solved by a similar process of linear
constraints.
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2) SECOND-ORDER APPROXIMATION
If the state constraint is second-order, it can be viewed as a
second-order approximation of the nonlinearity:

f(x(k)) =
[
x
1

]T [ T t
tT t0

] [
x
1

]
= xTTx+ tT x+ xT t+ t0 = 0 (44)

Like the idea of the constrained Kalman filter of [31],
we can project an unconstrained state estimation onto a non-
linear constrained surface:

x = argmin
x

(z− Sx)T (z− Sx) (45)

such that

f(x) = 0 (46)

Clearly, if we set W = STS and z = Ŝx, equations
(45) and (46) become the same as (21) and (22). The solu-
tion of the constrained optimization problem in (45) and
(46) can be obtained by using the Lagrangian multiplier
technique:

x = g−1v(I+ β6T6)−1a(β) (47)

q(β) =
∑
i

a2i (β)α
2
i

(1+ βα2i )
2 + 2

∑
i

ai(β)cj
1+ βα2i

+ t0 = 0 (48)

where g is an upper right diagonal matrix solved by the
Cholesky decomposition of W = HTH:

W = gT g (49)

v is an orthonormal matrix, and 6 is a diagonal matrix with
diagonal components denoted by αi, which can be found
by the singular value decomposition (SVD) of the matrix
Lg−1 as

Lg−1 = U6vT (50)

where U is the orthonormal matrix of the SVD, L can be
solved by the factorization of T = LTL, and

a(β) = [. . . ai(β) . . .]T = vT (gT )−1(HT z− βt) (51)

c = [. . . ci . . .]T = vT (gT )−1t (52)

It is difficult to obtain a closed-form solution for the nonlinear
equation q(β) = 0 in (48), so one has to solve it using
some numerical root-finding algorithms such as Newton’s
method. Taking the derivative of q(β) with respect to β,
we have

q̇(β) = 2
∑
i

ai(β)ȧi(1+ βα2i )α
2
i − a

2
i (β)α

4
i

(1+ βα2i )
3

+ 2
∑
i

ȧici(1+ βα2i )− ai(β)ciα
2
i

(1+ βα2i )
2 (53)

where

ȧ = [. . . ȧi . . .]T = −vT (gT )−1t (54)

Then, the solution of β with Newton’s method can be
updated by

β(t+1) = β(t) −
q(β(t))
q̇(β(t))

starting with β(0) = 0, t = 0 (55)

The iteration stops when
∣∣β(t+1)−β(t)∣∣
|β(t)|

≤ ε, a given small

value, or the number of iterations reaches a prespecified
number. Substituting the solution of β into (47), one can
obtain the constrained optimal solution.

IV. ILLUSTRATIVE EXAMPLES
A. EXAMPLE 1
First, we consider a navigation problem for a land vehicle
whose velocity is in direction of θ , whichmeasures clockwise
from due east. The state and measurement equations are as
follows:

x(k) =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 x(k − 1)+


0
0

T sin θ
T cos θ

u(k − 1)

+q(k − 1) (56)

y(k) =
[
1 0 0 0
0 1 0 0

]
x(k)+ r(k) (57)

where T is the discrete time interval, u(k) denotes the acceler-
ation input, and the state x(k) =

[
x1(k) x2(k) x3(k) x4(k)

]T
contains the north position, the east position, the north veloc-
ity and the east velocity. If the vehicle is on the road with an
angle θ , we have

tan θ = x1(k)/x2(k) = x3(k)/x4(k) (58)

The constrained matrix M used in our experiments is

M =
[
1 − tan θ 0 0
0 0 1 − tan θ

]
(59)

where θ = π/3. The true initial state is x(0) =[
0 0 10 tan θ 10

]T , and the estimated initial state is x̂(0|0) =[
0 0 10 tan θ 10

]T , and the corresponding covariancematrix
is assumed to be P(0|0) = diag ([900, 900, 4, 4]).
In addition, we consider the following distributions of the
noises:

q1(k − 1) ∼ N (0, 4)

q2(k − 1) ∼ N (0, 4)

q3(k − 1) ∼ N (0, 1)

q4(k − 1) ∼ N (0, 1)

r1(k) ∼ 0.9N (0, 900)+ 0.1N (0, 90000)

r2(k) ∼ 0.9N (0, 900)+ 0.1N (0, 90000)
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The performance is evaluated by using the following
benchmarks:

RMSEp(k)

=
1
M

√√√√ M∑
m=1

(x1(k)−x̂1(k|k))2+
M∑
m=1

(x2(k)−x̂2(k|k))2,

for k = 1 . . .K (60)

ARMSEp

=
1
K

K∑
k=1

RMSEp(k) (61)

whereM is the total number of Monte Carlo runs and K is the
total number of time steps in every Monte Carlo run. Clearly,
RMSEp (k) denotes the root MSE between the true position
and the estimated position at time step k .

FIGURE 1. RMSEp for different filters.

TABLE 2. ARMSEp of different filters.

In the simulation, the discrete time interval is T = 3 s and
the lasting time is 300 s, and we carry out 100 independent
Monte Carlo runs. The kernel bandwidth is set to σ = 2.
Fig. 1 shows the RMSEp for different filters, including the
Kalman filter (KF), the maximum correntropy Kalman filter
(MCKF), the Kalman filter with estimate projection (KF-EP),
themaximum correntropyKalman filter with estimate projec-
tion (MCKF-EP), the Kalman filter with probability density
function truncation (KF-PDFT), and the maximum corren-
tropy Kalman filter with probability density function trun-
cation (MCKF-PDFT). The values of ARMSEp for different
filters are given in Table 2. Since the measurement noises are

non-Gaussian, theMCKF family filters are superior to the KF
family filters. It can also be seen that the constrained filters
can significantly outperform the unconstrained counterparts.
The filters that combine the correntropy and constrained
estimation technology can achieve excellent performance.

B. EXAMPLE 2
Second, we consider a ground vehicle that travels along a
circular road [36]. The turn center is assumed to be the origin
of the coordinate system and the turn radius is r = 100m. The
angular turn rate of the vehicle is a constant 5.7 deg/s with
an equivalent linear speed of 10 m/s. The true initial state is

x(0) =
[
x1 x2 x3 x4

]T
=
[
100 m 0 m/s 0 m 10 m/s

]T
the estimated initial state is assumed to be the same as the true
initial state, and corresponding covariance matrix is P(0|0) =
diag

([
52 12 52 12

])
. The vehicle is tracked by a sensor

located at the origin with a sampling interval of T = 1 s.
The measurement equation is

y(k) =
[
1 0 0 0
0 0 1 0

]
x(k)+ r(k) (62)

where the measurement noises are assumed to follow the
following distributions

r1(k) ∼ 0.8N (0, 9)+ 0.2N (0, 900)

r2(k) ∼ 0.8N (0, 9)+ 0.2N (0, 900)

Moreover, the state equation is a discrete-time
second-order kinematic model, given by

x(k + 1) =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 x(k)+


1
2T

2 0
T 0
0 1

2T
2

0 T

q(k) (63)

where the process noises are assumed to be Gaussian, with
zero mean and covariance Q = diag

([
2 2

])
.

In this example, the performance is evaluated by using the
following benchmarks:

RMSEp(k)

=
1
M

√√√√ M∑
m=1

(x1(k)−x̂1(k|k))2+
M∑
m=1

(x3(k)−x̂3(k|k))2,

for k = 1 . . .K (64)

RMSEv(k)

=
1
M

√√√√M∑
m=1

(x2(k)−x̂2(k|k))2+
M∑
m=1

(x4(k)−x̂4(k|k))2,

for k = 1 . . .K (65)

ARMSEp

=
1
K

K∑
k=1

RMSEp(k) (66)
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FIGURE 2. Trajectories of different filters.

TABLE 3. ARMSEp and ARMSEv of different filters.

ARMSEv

=
1
K

K∑
k=1

RMSEv(k) (67)

where M is the total number of Monte Carlo runs and K is
the total number of time steps in every Monte Carlo run.

In the simulation, we carry out 100 independent Monte
Carlo runs each lasting 60 s. Linear1 denotes the case where
a linearizing point at θ = 45◦ is selected to cover the entire
curved road, and the linearized state constraint at θ is given by[

cos θ 0 sin θ 0
0 cos θ 0 sin θ

]
x =

[
r
0

]
(68)

Linear2 denotes the case in which four linearized points at
θ1 = 45◦, θ2 = 135◦, θ3 = 225◦, θ4 = 315◦ are selected to
cover the entire curved road with four linear segments. The
switching points are θ5 = 90◦, θ6 = 180◦ and θ7 = 270◦,
respectively. Nonlinear1 denotes a nonlinear constraint with
respect to the position estimate, given by

f1(x(k)) = x21 (k)+ x
2
3 (k) = r2 (69)

Nonlinear2 denotes the constraint with respect to both the
position and velocity, and the constrained velocity estimate
is obtained by the following projection

v = (̂vτ )τ (70)

where v =
[
x2 x4

]T is the constrained velocity estimate,
v̂ =

[
x̂2 x̂4

]
is the unconstrained velocity estimate, and

τ =
[
− sin θ cos θ

]T is the constrained unit direction vec-
tor associated with the constrained position estimate p =[
x1 x3

]T at θ = tan−1 (x3/x1).

Fig. 2 shows the trajectories of different MCKF family
filters, and Table 3 summarizes the ARMSEp and ARMSEv
of different filters. In the simulation, the kernel bandwidth is
set to σ = 2.0. Again, the MCKF family filters achieve better
performance than the KF family filters, and the constrained
filters outperform the unconstrained ones. In addition, the
second-order nonlinear-approximation-based filters are supe-
rior to the linear-approximation-based filters.

V. CONCLUSION
In this paper, in order to address the problem of constrained
state estimation in non-Gaussian noise environments, we pro-
pose a new filtering algorithm, called MCKF-SC, by com-
bining the MCC and constrained estimation technology. Both
linear and nonlinear state constraints are taken into account.
Simulation results confirm the superior performance of the
proposed algorithm.
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