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Abstract
The stochastic variational inequality (SVI) provides a unified form of optimality con-
ditions of stochastic optimization and stochastic games which have wide applications
in science, engineering, economics and finance. In the recent two decades, one-stage
SVI has been studied extensively and widely used in modeling equilibrium problems
under uncertainty. Moreover, the recently proposed two-stage SVI and multistage
SVI can be applied to the case when the decision makers want to make decisions at
different stages in a stochastic environment. The two-stage SVI is a foundation of
multistage SVI, which is to find a pair of “here-and-now” solution and “wait-and-see”
solution. This paper provides a survey of recent developments in analysis, algorithms
and applications of the two-stage SVI.
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1 Introduction

The variational inequality (VI) represents the first-order optimality conditions of
optimization problems and models equilibrium problems, which plays a key role in
optimization and operations research. The definition of VI is as follows.

Definition 1 (Deterministic VI) Given a nonempty closed convex set X ⊂ R
n and a

single-valued mapping F : X → R
n , the variational inequality problem, denoted by

VI(X , F), is to find an x∗ ∈ X such that

0 ∈ F(x∗) + NX (x∗), (1.1)

where NX (x∗) denotes the normal cone of X at x∗. Furthermore, if X is a cone and
X∗ is its dual, defined as X∗ := {h : hTv � 0,∀v ∈ X}, then the complementarity
problem, denoted by CP(X , F), requires an x∗ ∈ X such that X � x∗ ⊥ F(x∗) ∈ X∗,
where u ⊥ v means that uTv = 0.

In the case when X = R
n , (1.1) reduces to the system of nonlinear equations

0 = F(x∗).

When X = R
n+, (1.1) reduces to the nonlinear complementarity problem (NCP)

0 � x∗ ⊥ F(x∗) � 0.

The deterministic VI has wide applications in the operations research, including
convex optimization problems, convex Nash games over continuous strategy sets and
economic equilibrium problems. For more details, see [1,2].

However, in many real applications in finance, management, engineering and
science, the decision makers have to make sequential decisions in an uncertain envi-
ronment. In such situations, the deterministic VI may not be suitable. Motivated by
those applications, one-stage, two-stage and multistage SVIs arouse the attention of
scholars. One-stage SVI has been investigated for many years [3,4]. But the investi-
gation of multistage SVI and even two-stage SVI has just begun [5]. In this paper,
starting from one-stage SVI, we will introduce the model, the motivation and recent
progress of two-stage SVI (and extend tomultistage SVI), including theoretical results,
algorithms and applications.

The organization of the paper is as follows. Starting from one-stage SVI, the moti-
vations, the models and the properties of the two-stage SVI (the multistage SVI) are
introduced in Sect. 2. In Sect. 3, we introduce several approximation methods and
algorithms for different models of two-stage SVI (multistage SVI). Two applications
of two-stage SVI are shown in Sect. 4. Section 5 gives several final remarks about the
challenge of this research area.

Throughout this paper,weuse ξ : Ω → R
d to denote a randomvector in probability

space (Ω,F , P) with support set Ξ ⊂ R
d . For function f (·, ·) : R

n × R
m → R,

∂x f (x, y) denotes the Clarke subdifferential of f w.r.t. x .
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2 Two-Stage Stochastic Variational Inequalities: Modeling and
Analysis

In this section, we will give the motivation and model of two-stage stochastic
variational inequalities and introduce the analysis in the literature. We will start the
model of one-stage SVI firstly and then turn to two-stage SVI.

2.1 FromOne-Stage SVI to Two-Stage SVI

As a stochastic generalization of the deterministic VI under uncertainties, one-stage
SVI has been investigated deeply and applied widely. However, a good formulation of
a VI in a stochastic environment is not straightforward.We use the following one-stage
stochastic game to introduce the motivation of different one-stage SVI formulations
firstly.

Example 1 (Motivation of one-stage SVI) We consider a duopoly market where two
firms compete to supply a homogeneous product (or service) noncooperatively in
future. They need to make a decision on the quantity of production based on the other
firm’s decision in an uncertain environment.

The market demand in future is characterized by a random inverse demand function
p(q, ξ(ω)), where p(q, ξ(ω)) is the market price and q is the total supply to the
market. Specifically, for each realization of the random vector ξ , we obtain a different
inverse demand function p(·, ξ). The uncertainty in the inverse demand function is
then characterized by the distribution of the random variable ξ . Firm i’s cost function
for producing (supplying) a quantity of yi in future is Hi (yi , ξ), i = 1, 2 with limit
capacity ci . We assume Hi (yi , ξ) is twice continuously differentiable, H ′

i (yi , ξ) � 0
and H ′′

i (yi , ξ) � 0 for yi � 0, p(q, ξ) is twice continuously differentiable in q and
p′
q(q, ξ) < 0 and p′

q(q, ξ) + qp′′
qq(q, ξ) � 0 for q � 0 and ξ ∈ Ξ.

We further assume each firm aims to maximize their profit and consider two sit-
uations: 1. The decision makers can make decision after they observe the further
uncertainty; 2. the decision makers make decision before they observe the further
uncertainty.

– For situation 1, to maximize each firm’s profit, they need to find (y∗
1 (·), y∗

2 (·)) such
that it solves the following problem:

max
yi (ξ)

p(yi (ξ) + y∗−i (ξ), ξ)yi (ξ) − Hi (yi (ξ), ξ)

s.t. 0 � yi (ξ) � ci ,
(2.1)

for almost every (a.e.) ξ ∈ Ξ , where y−i is for decision variable of the firm(s) other
than i . Moreover, we can write down the Karush–Kuhn–Tucker (KKT) conditions
for (2.1) as follows: for a.e. ξ ∈ Ξ

0 �
(
yi (ξ)

μi (ξ)

)

⊥
(−p(yi (ξ) + y−i (ξ), ξ) − yi (ξ)p′

q (yi (ξ) + y−i (ξ), ξ) + H ′
i (yi (ξ), ξ) + μi (ξ)

ci − yi (ξ)

)
� 0, (2.2)
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and (2.2) is a “wait-and-see” model.
– For situation 2, we consider the expected residual minimization (ERM) formula-
tion firstly. To maximize each firm’s profit in ERM formulation, they need to find
(y∗

1 , y
∗
2 ) such that it solves the following problem:

min
0�y1�c1,y2�c2

E[φ(y, μ, ξ)], (2.3)

where y = (y1, y2), μ = (μ1, μ2) φ is a residual function of one-stage SVI in
“wait-and-see” model (2.2), e.g.,

φ(y, μ, ξ)

:=

∥∥∥∥∥∥∥∥
min

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
y1
μ1

y2
μ2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−p(y1 + y2, ξ) − y1 p′
q (y1 + y2, ξ) + H ′

1(y1, ξ) + μ1

c1 − y1
−p(y2 + y1, ξ) − y2 p′

q (y2 + y1, ξ) + H ′
2(y2, ξ) + μ2

c2 − y2

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

∥∥∥∥∥∥∥∥

2

2

and (2.3) is a one-stage SVI in ERM formulation.
– We then consider the expected-value (EV) formulation. To maximize each firm’s
profit in EV formulation, they need to find (y∗

1 , y
∗
2 ) such that it solves the following

problem:

max
yi

E[p(yi + y∗−i , ξ)yi − Hi (yi , ξ)]
s.t. 0 � yi � ci ,

(2.4)

for almost every ξ ∈ Ξ . Moreover, we can write down the KKT conditions for
(2.4) as follows:

0 �
(
yi
μi

)
⊥

(
E[−p(yi + y−i , ξ) − yi p′

q(yi + y−i , ξ) + H ′
i (yi , ξ) + μi ]

ci − yi

)

� 0, for a.e. ξ ∈ Ξ, (2.5)

and (2.5) is a one-stage SVI in EV formulation.

By the three formulations of the two-stage stochastic game, we can give the def-
inition of three kinds of one-stage SVI. Let f : R

n × Ξ → R
n be a continuous

function.

1. “wait-and-see” model: find x : Ξ → R
n such that

0 ∈ f (x(ξ), ξ) + NX (x(ξ), ξ), for a.e. ξ ∈ Ξ.

In this model, for every scenario ξ in the further, we have x(ξ) as the solution and
x(·) is a measurable function on Ξ . Since the solution x(ξ) depends on the further
uncertain scenario, we call it “wait-and-see” solution and the model “wait-and-
see” model. Although the model can give perfect solution for every scenario in
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the further, in many real-world applications when the decision needs to be made
before we observe the uncertain scenario, it is unworkable.

2. The expected residual minimization (ERM) formulation [6–10]: Find x ∈ R
n such

that it is a solution of

min
x∈X E[φ(x, ξ)],

where φ(·, ξ) : X → R is a residual function of the VI(X , f (·, ξ)) for a.e. ξ ∈ Ξ ,
that is,

φ(·, ξ) � 0, and φ(x, ξ) = 0 ⇔ 0 ∈ f (x, ξ) + NX (x), for a.e. ξ ∈ Ξ.

Different with the “wait-and-see model,” the solutions of the ERM formulation do
not depend on the further uncertain scenario and the decision makers can make
decisions before they observe further uncertainty. We call the solutions “here-and-
now” solutions. Moreover, the ERM formulation can quantify the quality of the
“here-and-now” solution. The value of φ(x, ξ) can be considered as the “loss”
due to failure of the equilibrium and hence can measure the quality of the “here-
and-now” solution at scenario ξ . Then, the expect value of φ(x, ξ) measures the
quality of the “here-and-now” solution in the sense of expectation. In [11], Chen
et al. further investigated the ERM in the case when X depends on random vector
ξ .

3. The expected-value (EV) formulation [12–15]: Find x ∈ R
n such that

0 ∈ E[ f (x, ξ)] + NX (x). (2.6)

The solutions of EV formulation are also “here-and-now” solutions. Similar as
deterministic VI, the EV formulation can be used to represent the first-order
optimality conditions of one-stage stochastic optimization and describe one-stage
stochastic Nash equilibrium. But the “here-and-now” solution of the EV formu-
lation is made in the sense of expectation, for different scenarios in the further,
the “here-and-now” solution may not be a good solution. Moreover, when we set
G(x) := E[ f (x, ξ)], then the EV formulation is the same as the deterministic VI:
0 ∈ G(x) +NX (x). Similar as the ERM formulation, we can also reformulate the
EV formulation as a minimization problem

min
x∈X θ(x),

where θ : X → R+ is a residual function of the deterministic VI, that is,

θ(·) � 0, and θ(x) = 0 ⇔ 0 ∈ G(x) + NX (x).

One popular residual function is the regularized gap function [16] as follows:

θ(x) = max
v∈X 〈x − v,G(x)〉 − α

2
‖x − v‖2. (2.7)
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Moreover, let g : R
n × Ξ → R be a Lipschitz continuous function w.r.t. x and

f (x, ξ) ∈ ∂x g(x, ξ), where ∂ denotes the Clarke subdifferential. Consider one-stage
stochastic program

min
x∈X E[g(x, ξ)]. (2.8)

Then, E[ f (x, ξ)] ∈ E[∂x g(x, ξ)] and (2.6) is the first-order necessary optimal con-
dition of (2.8). Moreover, (2.8) has wide applications in a lot of areas. For example,
in risk management

min
x∈X CVaRα(l(x, ξ))

with some α ∈ (0, 1] and the loss function l : R
n × Ξ → R can be reformulated as

(2.8), where CVaR denotes “conditional value of risk” [17]. For another example, in
machine learning and compressed sensing, the formulation of Lasso [18]

min
x∈Rn

E[(a(ξ)Tx − b(ξ))2] + λ‖x‖1

can also be formulated as (2.8), where a : Ξ → R
n and b : Ξ → R

n are given
functions.

Since the solutions of the EV formulation and ERM formulation are all “here-and-
now” solutions, we can call the two formulations “here-and-now” model.

In the case when we consider two-stage decisions under uncertain environment,
the mathematical tools of one-stage SVI are not enough. To elicit two-stage SVI, we
consider an extension of Example 1:

Example 2 (Motivation of two-stage SVI) Similar as Example 1, we consider a
duopoly market where two firms compete to supply a homogeneous product (or ser-
vice) noncooperatively in future. The only difference with Example 1 is that neither of
the firms has an existing capacity, and thus, they must make a decision at the present
time on their capacity for future supply of quantities in order to have enough time to
build the necessary facilities.

For i = 1, 2, firm i’s cost function for building up capacity xi is Ci (xi ) and the
other settings are the same as in the situation 1 of Example 1. Assuming each firm
aims to maximize the expected profit, we can then develop a mathematical model for
their decision making: For i = 1, 2, find (x∗

i , y∗
i (·)) such that it solves the following

two-stage stochastic programming problem:

max
xi ,yi (·)

E[p(yi (ξ) + y∗−i (ξ), ξ)yi (ξ) − Hi (yi (ξ), ξ)] − Ci (xi )

s.t. 0 � yi (ξ) � xi , for a.e. ξ ∈ Ξ.
(2.9)

Note that when we know (or fix) the first-stage decision variables xi , the problem
becomes: for i = 1, 2, find y∗

i such that
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y∗
i (ξ) ∈ argmax

yi
p(yi + y∗−i , ξ)yi − Hi (yi , ξ)

s.t. 0 � yi � xi , for a.e. ξ ∈ Ξ,
(2.10)

and this is exactly the “wait-and-see” model in Example 1.
In this situation, we fix xi , i = 1, 2 and handle the second-stage game problem

firstly. Then, the second-stage SVI representation of (2.9) is (2.10) and we denote
ȳ(x, ξ) the solution of (2.10). With the second-stage equilibrium ȳ(x, ξ), we are
ready to write down the first-stage decision-making problem for player i :

max
xi

E[vi (x, ξ)] − Ci (xi )

s.t. xi � 0,
(2.11)

where

vi (x, ξ) := p(ȳi (x, ξ) + ȳ−i (x, ξ), ξ)ȳi (x, ξ) − Hi (ȳi (x, ξ), ξ).

A 4-tuple (x∗
1 , x

∗
2 , y

∗
1 (·), y∗

2 (·)) with (y∗
1 (·), y∗

2 (·)) = (ȳ1(x∗, ·), ȳ2(x∗, ·)) is called
a two-stage stochastic equilibrium if (x∗

i , x∗−i ) solves (2.11). Then, the first-stage
equilibrium (x∗

i , x∗−i ) satisfies

x∗
i ∈ argmax

xi�0
E[vi (xi , x∗−i , ξ)] − Ci (xi ), i = 1, 2. (2.12)

Assuming that Ci (·) is continuously differentiable, we may write down the first-order
optimality condition of (2.12):

0 ∈ C ′
i (xi ) − ∂xi E[vi (x, ξ)] + N[0,∞)(xi ), i = 1, 2. (2.13)

In the case when the inverse demand function p(q, ξ) satisfies the following condi-
tions:

(i) p(q, ξ) is twice continuously differentiable in q and p′
q(q, ξ) < 0 for q � 0 and

ξ ∈ Ξ ;
(ii) p′

q(q, ξ) + qp′′
qq(q, ξ) � 0, for q � 0 and ξ ∈ Ξ .

It follows by Ralph and Xu [19, Lemma 5.2] that the KKT system of second-stage
problem (2.10) has a unique solution; v(x, ξ) is continuously differentiable w.r.t. xi
for xi > 0 and

∇xi vi (x, ξ) = L(yi (ξ), λi (ξ), μi (ξ), xi )

dxi
= μi (ξ),

where

L(yi (ξ), λi (ξ), μi (ξ), xi ) := p(y1(ξ) + y2(ξ), ξ)yi (ξ)

−Hi (yi (ξ), ξ) + λi (ξ)yi (ξ) − μi (ξ)(yi (ξ) − xi ).
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Note that in the case when xi = 0, yi (ξ) ≡ 0, we have

∂xi vi (x, ξ) = {μi (ξ) : μi (ξ) � (−gi (0, 0, ξ))+,∀ξ ∈ Ξ and E[μi (ξ)] � C ′
i (xi )}.

Summarizing the discussions above, we can rewrite (2.13) as

0 � xi ⊥ C ′
i (xi ) − E[μi (ξ)] � 0, i = 1, 2, (2.14)

and derive the following two-stage stochastic linear complementarity problem:

⎧⎨
⎩
0 � xi ⊥ C ′

i (xi ) − E[μi (ξ)] � 0, i = 1, 2,

0 �
(
yi (ξ)

μi (ξ)

)
⊥

(
gi (yi (ξ), y−i (ξ), ξ) + μi (ξ)

xi − yi (ξ)

)
� 0, for a.e. ξ ∈ Ξ, i = 1, 2,

(2.15)

where

gi (yi (ξ), y−i (ξ), ξ) = −p(yi (ξ) + y−i (ξ), ξ) − yi (ξ)p′
q(yi (ξ)

+y−i (ξ), ξ) + H ′
i (yi (ξ), ξ)

and (2.15) can be considered as an example of two-stage SVI.

In what follows, we give the definition of two-stage SVI.

Definition 2 (Two-stage SVI) Let ξ be a random vector defined as above and Y be the
measurable function space defined onΞ . The two-stage SVI is to find an (x∗, y∗(·)) ∈
D × Y such that

0 ∈ E[Φ(x, y(ξ), ξ)] + ND(x), (2.16)

0 ∈ Ψ (x, y(ξ), ξ) + NC(ξ)(y(ξ)), for a.e. ξ ∈ Ξ, (2.17)

where D ⊂ R
n and C(ξ) ⊂ R

m , a.e. ξ ∈ Ξ are nonempty closed convex sets,
Φ : R

n × R
m × R

d → R
n and Ψ : R

n × R
m × R

d → R
m , and 1 : R

n ⇒ R
n , 2 :

R
m × Ξ ⇒ R

m are multifunctions (point-to-set mappings). We assume throughout
the paper that y(·) ∈ Y with Y being the space of measurable functions from Ξ to R

m

such that the expected value in (2.16) is well defined.

Moreover, if the sets D and C(ξ), ξ ∈ Ξ , are closed convex cones, then

ND(x) = {x∗ ∈ D∗ : x�x∗ = 0}, x ∈ D,

where D∗ = {x∗ : x�x∗ � 0, ∀x ∈ D} is the (negative) dual of cone D. In that case,
SVI (2.16)–(2.17) reduces to the following two-stage stochastic cone VI:

D � x ⊥ E[Φ(x, y(ξ), ξ)] ∈ −D∗,
C(ξ) � y(ξ) ⊥ Ψ (x, y(ξ), ξ) ∈ −C∗(ξ), for a.e. ξ ∈ Ξ.
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In particular when D := R
n+ with D∗ = −R

n+, and C(ξ) := R
m+ with C∗(ξ) =

−R
m+ for all ξ ∈ Ξ , SVI (2.16)–(2.17) reduces to the two-stage stochastic nonlinear

complementarity problem (SNCP):

0 � x ⊥ E[Φ(x, y(ξ), ξ)] � 0,

0 � y(ξ) ⊥ Ψ (x, y(ξ), ξ) � 0, for a.e. ξ ∈ Ξ,

which is a generalization of the two-stage stochastic linear complementarity problem
(SLCP):

0 � x ⊥ Ax + E[B(ξ)y(ξ)] + q1 � 0, (2.18)

0 � y(ξ) ⊥ N (ξ)x + M(ξ)y(ξ) + q2(ξ) � 0, for a.e. ξ ∈ Ξ, (2.19)

where A ∈ R
n×n , B : Ξ → R

n×m, N : Ξ → R
m×n, M : Ξ → R

m×m, q1 ∈
R
n, q2 : Ξ → R

m . More specifically, when D := R
n and C(ξ) := R

m for all ξ ∈ Ξ ,
SVI (2.16)–(2.17) reduces to the two-stage stochastic equations:

E[Φ(x, y(ξ), ξ)] = 0,

Ψ (x, y(ξ), ξ) = 0, for a.e. ξ ∈ Ξ.

The two-stage SVI is basically an infinite dimension VI and not easy to handle. In
[20], Chen et. al. proposed the two-stage SVI model to deal with random variables in
VI and formulate this model as a two-stage stochastic programming with recourse by
using an ERM solution procedure.Wewill introduce the procedure in the next section.

In [20], Chen et. al. considered a two-stage SVI as follows:

0 ∈ G(x) + ND(x), (2.20)

0 ∈ F(ȳ(x, ξ), ξ) + NC(ξ)(ȳ(x, ξ)), for a.e. ξ ∈ Ξ, (2.21)

where G : R
n → R

n , F : R
n × Ξ → R

m , ȳ : D × Ξ → R
m , D and C(ξ), ∀ξ ∈ Ξ

are nonempty closed convex subsets of R
n and R

m . Formulations (2.20)–(2.21) are
special cases of two-stage SVI.

Moreover, Chen et. al. [20] also considered a special case of two-stage SVI (2.20)–
(2.21) as follows:

0 ∈ G(x) + ND(x), (2.22)

0 ∈ F(uξ , ξ) + NC(ξ)(uξ ), for a.e. ξ ∈ Ξ, (2.23)

where the first-stage problem (2.22) is an EV form of the one-stage SVI and the
second-stage problem (2.23) is the “wait-and-see” model of the one-stage SVI. In
general, the solution sets of the variational inequalities (2.22) and (2.23) can have
multiple solutions. Naturally, a “here-and-now” solution x should have minimum total
distances to the solution set of (2.23) for almost all observations ξ ∈ Ξ . Then, the
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problem can be written as a mathematical programming with equilibrium constraints
(MPEC) [21] as the following:

min E[‖uξ − x‖2]
s.t. 0 ∈ G(x) + ND(x), 0 ∈ F(uξ , ξ) + NC(ξ)(uξ ), for a.e. ξ ∈ Ξ.

(2.24)

2.2 Multistage SVI

In [22], Rockafellar and Wets first proposed the formwork of the multistage SVI.
The multistage SVI is an extension of the two-stage SVI and can deal with multistage
problems of optimization and equilibrium in a stochastic settingwhich involves actions
that respond to increasing levels of information. Moreover, Rockafellar and Sun [23,
24] extended the progressive hedging method to solve multistage SVIs.

We begin with two-stage SVI setting in (2.16)–(2.17) and explain the equivalence
between the formulations in [22] and in the previous section. Let Ln+m = Ln × Lm ,
where Ln and Lm are function spaces of all functions x(·) : Ξ → R

n and y(·) : Ξ →
R
m . Let

C := {(x(·), y(·)) ∈ Ln+m | x(ξ) ∈ D, y(ξ) ∈ C(ξ) for a.e. ξ ∈ Ξ}

and

N := {(x(·), y(·)) ∈ Ln+m | x(ξ) is the same for all ξ ∈ Ξ}

be nonanticipativity subspaces of Ln+m . Consider a mixed case of nonanticipativity:
The solution pair (x, y) with two-stage variables x (here-and-now) and y (wait-and-
see) is in the function space Ln+m with x(·) : Ξ → R

n and y(·) : Ξ → R
m and

(x, y) ∈ C ∩ N . Then, the basic form of the two-stage SVI introduced in [22] is

0 ∈ F(x(·), y(·)) + NC∩N (x(·), y(·)), (2.25)

where F : Ln+m → Ln+m is a continuous mapping such that for (x(·), y(·)) ∈
Ln+m , F(x(·), y(·)) is the function in Ln+m that takes ξ ∈ Ξ to (Φ(x(ξ), y(ξ), ξ),

Ψ (x(ξ), y(ξ), ξ)) ∈ R
n+m .

Moreover, let

M = {w(·) = (w1(·), w2(·)) ∈ Ln+m | w1(·) ∈ Ln,

w2(·) ∈ Lm, E[w1(ξ)] = 0, w2(ξ) = 0, a.e. ξ ∈ Ξ}.

It is easy to verify thatM is the orthogonal complement ofN and can be considered
as the space of nonanticipativity multipliers. Then, the extensive form of the two-stage
SVI in [22] is:

(x(·), y(·)) ∈ N and there exists w(·) ∈ M such that

−
(

Φ(x(ξ), y(ξ), ξ)

Ψ (x(ξ), y(ξ), ξ))

)
−

(
w1(ξ)

w2(ξ)

)
∈

(
ND(x(ξ))

NC(ξ)(y(ξ))

)
, a.e. ξ ∈ Ξ. (2.26)
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Under the constraints qualification (CQ):

there exists some x̂(·) ∈ N such that x̂(ξ) ∈ riC(ξ) a.e. ξ ∈ Ξ, (2.27)

the equivalence between (2.25) and (2.26) has been proved in [22, Theorem 3.2] for
multistage SVI. Now we consider the equivalence between (2.26) and (2.16)–(2.17).

Under (2.27), suppose (x∗(ξ), y∗(ξ), w∗
1(ξ)) (w2(ξ) ≡ 0) is a solution of (2.26)

with x∗(ξ) = x∗ for all ξ ∈ Ξ and E[w∗
1(ξ)] = 0. Then, taking expectation at

first line of (2.26), we have (2.16)–(2.17). Conversely, suppose (x∗, y∗(ξ)) is a solu-
tion of (2.16)–(2.17). By (2.16), −E[Φ(x∗, y∗(ξ), ξ)] ∈ ND(x∗), there exists w∗

1(ξ)

such that −Φ(x∗, y∗(ξ), ξ) − w∗
1(ξ) ∈ ND(x∗) and E[w∗

1(ξ)] = 0, which implies
(x∗(ξ), y∗(ξ), w∗

1(ξ)) with x∗(ξ) = x∗ and E[w∗
1(ξ)] = 0 is a solution of (2.26).

Then, (2.16)–(2.17) and (2.26) are equivalence.
Then, we consider the multistage SVI. We adopt an N -stage pattern

x1, ξ1, x2, ξ2, · · · , xN , ξN ,

where xk ∈ R
nk , n = n1 + · · · + nN and ξk ∈ Ξk , xk is the decision to be taken at the

kth stage before we observe the information ξi , i � k and ξk stands for the information
revealed after that decision, but before the next. Let

ξ = (ξ1, · · · , ξN ) ∈ Ξ = Ξ1 × · · · × ΞN

and

x̃(ξ) = (x1, x2(ξ1), x3(ξ1, ξ2), · · · , xN (ξ1, · · · , ξN−1)) ∈ R
n = R

n1 × · · · × R
nN .

Similar as in two-stage SVI case, we use x(·) : ξ → (x1(ξ), · · · , xN (ξ)) in Ln to
replace x̃(ξ) and restrict it to nonanticipativity subspace of Ln :

N = {x(·) = (x1(·), · · · , xN (·))| xk(ξ) does not depend on ξk, · · · , ξN }. (2.28)

Corresponding nonantipativity multipliers will again come from a subspaceM of Ln

as follows

M = {w(·) = (w1(·), · · · , wN (·))| Eξk ,··· ,ξN [wk(ξ1, · · · , ξk−1, ξk, · · · , ξN )] = 0},
(2.29)

where the expectation is the conditional expectation knowing the initial components
ξ1, · · · , ξk−1. Note also that N and M are orthogonal complement of each other,
that is, N ⊥ = M . Moreover, let C(ξ) be a nonempty closed convex subset of R

n ,
a.e. ξ ∈ Ξ ,

C = {x(·) ∈ Ln| x(ξ) ∈ C(ξ), a.e. ξ ∈ Ξ}
be a nonempty closed convex subset of Ln , F(x, ξ) = (F1(x, ξ), · · · , FN (x, ξ)) be a
continuous vector valued function w.r.t. x ∈ R

n with Fk(x, ξ) ∈ R
nk and F from Ln

to Ln such that
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F(x(·)) : ξ → F(x(ξ), ξ) = (F1(x(ξ), ξ), · · · , FN (x(ξ), ξ)).

Then, the basic and extensive forms of multistage SVI are as follows:

Definition 3 The basic form of multistage SVI is to find x(·) ∈ Ln such that

0 ∈ F(x(·)) + NC∩N (x(·)), (2.30)

where the extensive form of multistage SVI is
x(·) ∈ N and there exists w(·) ∈ M such that

0 ∈ F(x(ξ), ξ) + w(ξ) + NC(ξ)(x(ξ)), a.e. ξ ∈ Ξ. (2.31)

[22, Theorem 3.2] gives the proof of equivalence between (2.30) and (2.31) under the
CQ (2.27). Moreover, if

C(ξ) = C1 × C2(ξ1) × · · · × CN (ξ1, · · · , ξN−1),

(2.31) can be written as

0 ∈ Eξ1,··· ,ξN [F1(x1, x2(ξ1), · · · , xN (ξ1, · · · , ξN−1), ξ)] + NC1(x1), (2.32)

0 ∈ Eξ2,··· ,ξN [F2(x1, x2(ξ1), · · · , xN (ξ1, · · · , ξN−1), ξ)]
+ NC2(ξ1)(x2(ξ1)), for a.e. ξ1 ∈ Ξ1, (2.33)

0 ∈ Eξ3,··· ,ξN [F3(x1, x2(ξ1), · · · , xN (ξ1, · · · , ξN−1), ξ)]
+ NC3(ξ1,ξ2)(x3(ξ1, ξ2)), (2.34)

for a.e. (ξ1, ξ2) ∈ Ξ1 × Ξ2,

. . .

0 ∈ EξN [FN (x1, x2(ξ1), · · · , xN (ξ1, · · · , ξN−1), ξ)]
+ NCN (ξ1,··· ,ξN−1)(xN (ξ1, · · · , ξN−1)),

for a.e. (ξ1, · · · , ξN−1) ∈ Ξ1 × · · · × ΞN−1. (2.35)

The equivalence between (2.31) and (2.32)–(2.35) is proved in [22, Theorem 3.4]
Moreover, if, in (2.30), the sets C(ξ) are specified by

x ∈ C(ξ) ⇐⇒ x ∈ B(ξ) and fi (x, ξ)

{
� 0, for i = 1, · · · , r ,
= 0, for i = r + 1, · · · ,m,

where B(ξ) is a nonempty closed convex set and fi (x, ξ) is differentiable and convex
in x for i = 1, · · · , r and affine in x for i = r + 1, · · · ,m, then under the CQ

there exists x̂(·) ∈ N such that x̂(ξ) ∈ riB(ξ) and

fi (x̂(ξ), ξ)

{
< 0, i � r ,
= 0, i > r ,

a.e. ξ ∈ Ξ. (2.36)
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The representation of NC(x(·)) ( [22, Theorem 3.7]) is

∃y(·) ∈ Lm, z(·) ∈ Ln, such that

v(ξ) = ∑m
i=1 yi (ξ)∇x fi (x(ξ), ξ) + z(ξ) with

f (x(ξ), ξ) ∈ NY (y(ξ)), z(ξ) ∈ NB(ξ)(x(ξ)),
(2.37)

where Y = [0,+∞]r ×(−∞,∞)m−r and the Lagrangian basic form of the associated
SVI is

x(·) ∈ N , y(·) ∈ Lm, and ∃w(·) ∈ M such that

0 ∈
(
F(x(ξ), ξ) +

s∑
i=1

yi (ξ)∇x fi (x(ξ), ξ) − f (x(ξ), ξ)

)

+ (w(ξ), 0) + NB(ξ)×Y (x(ξ), y(ξ)). (2.38)

3 Algorithms and ApproximationMethods

In this section, we consider the algorithms and approximation methods for two-
stage and multistage SVI. We first introduced the ERM formulation of (2.20)–(2.21)
as follows.

3.1 ERM Solution Procedure

As we introduced in Sect. 2.1, the ERM formulation is one of three important
formulations of one-stage SVI. Chen et. al. [11] first introduced second-stage recourse
variables into SVI, that is, find x and u(x, ξ) such that

0 ∈ f (u(x, ξ), ξ) + NC(ξ)(u(x, ξ)).

In [20], Chen et. al. extended the ERM formulation from one-stage SVI to two-stage
SVI (2.20)–(2.21). For this propose, they need an extension of residual function as
follows.

Definition 4 (SVI-residual function) Given a closed, convex set D ∈ R
n and the

random vector ξ , let us consider the following collection of VI (SVI):

find x̄ ∈ R
n, u : D × X → R

m,P-measurable in ξ such that
0 ∈ F(ū(x, ξ), ξ) + NC(ξ)(ū(x, ξ)).

A function r : R
m ×Ξ → R is a residual function for these inclusions if the following

conditions are satisfied:

1. r(u, ξ) � 0 for all u ∈ C(ξ), a.e. ξ ∈ Ξ ;

123



H.-L. Sun, X.-J. Chen

2. For any u : C × Ξ → R
n , it holds that

0 ∈ F(ū(x, ξ), ξ) + NC(ξ)(ū(x, ξ))

⇔ r(ū(x, ξ), ξ) = 0 and ū(x, ξ) ∈ C(ξ), for a.e. ξ ∈ Ξ.

One popular SVI-residual function which used in [20] is the regularized gap function
[16]

r(u, ξ) := max
z∈C(ξ)

{
〈u − z, F(u, ξ)〉 − α

2
‖u − z‖2

}
. (3.1)

The use of residual functions θ defined in (2.7) and r above for two-stage SVI (2.20)-
(2.21) leads us to seeking a solution of the stochastic program

min
x∈X θ(x) + λE[r(ū(x, ξ), ξ) + Q(x, ξ)],

where ū(x, ξ) = x + Wu∗
ξ , Q(x, ξ) = 1

2
〈u∗

ξ , Hu∗
ξ 〉, for a.e. ξ ∈ Ξ,

u∗
ξ = argmin{1

2
〈u, Hu〉|x + Wu ∈ C(ξ)}. (3.2)

Assumption 1 Assume (i) W has full row rank and (ii) C(ξ) ⊆ K , a compact convex
set for all ξ .

Theorem 1 Suppose Assumption 1 holds and r is a residual function defined in Defi-
nition 4. Then for any x ∈ D and a.e. ξ ∈ Ξ , the function r(ȳ(x, ξ), ξ) + Q(x, ξ) in
(3.2) is finite, nonnegative with

v(ȳ(x, ξ), ξ) = prjC(ξ)(ȳ(x, ξ) − 1

α
F(ȳ(x, ξ), ξ))

as the unique maximizer of the maximization problem in (3.1).

Theorem 1 means that problem (3.2) is a two-stage stochastic program with complete
recourse. However, the objective function of problem (3.2) involves minimizers of
constrained quadratic programs for ξ ∈ Ξ and is not necessarily differentiable even
when the sample is finite.

Assumption 2 The functions F(·, ξ) and G(·) are continuously differentiable for all
ξ ∈ Ξ . Moreover, for any compact set Y ⊂ R

m , there are functions d, ρ : Ξ → R+
such that ‖F(y, ξ)‖ � dξ and ‖∇F(y, ξ)‖ � ρξ for all y ∈ Y , where d ∈ L∞

1 and
ρ ∈ L1

1.

Lemma 1 Suppose Assumptions 1–2 hold. Then for a.e. ξ , r(·, ξ) is continuously
differentiable and its gradient is given by

∇yr(y, ξ) = F(y, ξ) − (∇y F(y, ξ) − α I )(v(y, ξ) − y).
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Moreover, for any measurable y(ξ) ∈a.e. C(ξ), both ξ → r(y(ξ), ξ) and ξ →
∇yr(y(ξ), ξ) are not only measurable but actually summable uniformly in y(ξ). In
particular, this means that the objective function in (3.2) is well defined at any x ∈ D,
and the optimal value of (3.2) is finite.

By the idea of the L-shaped algorithm [25], they lead to the following problem,
whose objective is smooth when the sample is finite:

min
x∈D θ(x) + λE

[
r(y(ξ), ξ) + 1

2
〈y(ξ) − x, B(y(ξ) − x)〉

]

s.t.y(ξ) ∈a.e. C(ξ), (3.3)

and equivalent to

min
x∈D θ(x) + λE

[
r(y(ξ), ξ) + 1

2
〈y(ξ) − x, B(y(ξ) − x)〉 + δC(ξ)(y(ξ))

]
,(3.4)

where B = (WH−1WT )−1, δC(ξ)(·) is the indicator function of the set C(ξ) which
is zero in the inside of the set and is infinity otherwise. It is not hard to see that the
optimal value of (3.4) is smaller than that of (3.2) since fewer restrictions are imposed
on y(ξ). Hence, it follows from Lemma 1 that the optimal value of (3.4) is also finite.
Moreover, by the interchange of minimization and integration [20, Lemma 3.6] and
[26, Theorem 14.60], problem (3.4) is equivalent to

min
x∈D φ(x) := θ(x) + λE[ψ(x, ξ)]

s.t.ψ(x, ξ) := min
y(ξ)∈C(ξ)

r(y(ξ), ξ) + 1

2
〈y(ξ) − x, B(y(ξ) − x)〉. (3.5)

Theorem 2 Suppose Assumptions 1–2 hold. Then, problems (3.2) and (3.4) are solv-
able. Let v1 and v2 be the optimal values of (3.2) and (3.4), respectively. Then, v1 � v2.
Moreover, if for any x ∈ D and x + Wy, x + Wz ∈ C(ξ), we have

|r(x + Wy, ξ) − r(x + Wz, ξ)| � 1

2
|〈y, Hy〉 − 〈z, Hz〉|, for a.e. ξ ∈ Ξ,

then the two problems have the same optimal value.

Note that since problem (3.4) is equivalent to (3.5), we can replace (3.4) by (3.5) in
Theorem 2.

Under Assumptions 1-2, similar as Lemma 1, Chen et. al. [20] proved the smooth-
ness of the objective function in the second-stage problem of (3.5) ([20, Proposition
3.8]). Moreover, they also considered the convexity of (3.5) ([20, Proposition 3.9 and
Corollary 3.11]).
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Let {ξ1, · · · , ξN } be the independent and identically distributed (i.i.d.) samples of
ξ and

GN (x) = 1
N

∑N
i=1 f (x, ξi ),

θN = maxv∈C 〈x − v,GN (x)〉 − α
2 ‖x − v‖2,

ψ(x, ξi ) = miny∈C(ξ) r(ξ, y) + 1
2 〈y − x, B(y − x)〉.

Then, the SAA problem of (3.5) is

min
x∈D φN (x) := θN (x) + λ

N

N∑
i=1

ψ(x, ξi ). (3.6)

In [20] , Chen et. al. gave the following convergence result.

Theorem 3 (Convergence theorem) Suppose Assumptions 1–2 hold. Then, φN con-
verges to φ a.s.-uniformly on the compact set D̄ such that S, S∗ ⊆ D̄. Let {xN } be
a sequence of minimizers of problem (3.6) generated by iid samples. Then, {xN } is
P-a.e. bounded and any accumulation point x∗ of {xN } as v → ∞ isP-a.e. a solution
of (3.5).

Chen et. al. [20] also considered an ERM formulation to solve the MPEC reformu-
lation (2.24) of the two-stage SVI (2.22)–(2.23) as follows:

min 1
λρ

θ(x) + 1
ρ
E[r(uξ , ξ)] + E[‖uξ − x‖2]

s.t. x ∈ D, uξ ∈ C(ξ), for a.e. ξ ∈ Ξ,
(3.7)

where θ(·) and r(·, ξ) are residual functions of 0 ∈ G(x) + ND(x) and 0 ∈a.e.

F(uξ , ξ) + NC(ξ)(uξ ), respectively. They then propose a nonconvex Douglas–
Rachford splitting method [27,28] to solve problem (3.7). The detailed model and
the algorithm are given in [20, Section 5].

3.2 Progressive Hedging Algorithm for SVI

In the case when the random vectors follow a discrete distribution, for solving
two-stage SVI (2.16)–(2.17) and multistage SVI (2.31), Rockafellar and Sun [23,24]
extended the progressive hedging algorithm (PHA) [29] for multistage stochastic opti-
mization problem to multistage SVI and multistage stochastic Lagrangian variational
inequalities. With the notation in Sect. 2.2, the progressive hedging algorithm for SVI
is as follows:

The convergence of Algorithm 1 is given in [23] as follows:

Theorem 4 [23, Theorem 2] As long as the (monotone) variational inequality (2.30)
has at least one solution, the sequence of pairs (xν(·), wν(·)) generated by Algorithm
1will converge to pair (x̄(·), w̄(·)) satisfying (2.31) and thus furnish x̄(·) as a solution
to (2.30). The decrease will surely be at a linear rate if, in particular, the sets C(ξ)

are polyhedral and functions F(·, ξ) are affine.
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Algorithm 1 Progressive Hedging Algorithm
Initialization: Set iteration ν = 0, x0 ∈ N and w0 ∈ M , where N and M are
defined in (2.28) and (2.29).
Step 1: Determining x̂ν(·) ∈ L by solving a separate problem for each scenario ξ to
get x̂ν(ξ):

x̂ν(ξ) = the unique x(ξ) such that
−F(x(ξ), ξ) − wν(ξ) − r [x(ξ) − xν(ξ)] ∈ NC(ξ)(x(ξ)).

(3.8)

Step 2: Set

xν+1(·) = PN (x̂ν(·)) and wν+1(·) = wν(·) + r PM (x̂ν(·)),
where PN and PM denote the projection mapping.
Step 3: ν = ν + 1, go to Step 1.

Moreover, in [24], Rockefallar and Sun considered the multistage Lagrangian
stochastic variational inequality (LSVI) problem. With the notation in Sect. 2.2, con-
sider an N stage problem. Let X(ξ) ⊂ R

n and Y (ξ) ⊂ R
m be a pair of nonempty

closed convex sets and

X = {x(·) ∈ Ln|x(ξ) ∈ X(ξ),∀ξ}, Y = {y(·) ∈ Lm |y(ξ) ∈ Y (ξ),∀ξ},
where, similar as x(·), y(·) : ξ → y(ξ) = (y1(ξ), · · · , yN (ξ)) ∈ R

m1 ×· · ·×R
mN =

R
m . Likewise Nn ⊂ Ln and its complement Mn , we define the nonanticipativity

subspace Nm ⊂ Lm and its complement Mm . Then, we introduce continuously dif-
ferentiable functions

L(·, ·, ξ) on X(ξ) × Y (ξ) such that L(x, y, ξ) is convex in x and concave in y

and define

Λ(x(·), y(·)) = Eξ [L(x(ξ), y(ξ), ξ)]
=

∑
ξ∈Ξ

π(ξ)L(x(ξ), y(ξ), ξ) for x(·) ∈ X , y(·) ∈ Y

and

F(x(·), y(·)) = (∇x(·)Λ(x̄(·), ȳ(·)),−∇y(·)Λ(x(·), y(·)))
arises from component mappings

F(x, y, ξ) = (−∇x L(x, y, ξ),∇y L(x, y, ξ)).

Then, the multistage LSVI is as follows

find x(·) ∈ Nn, y(·) ∈ Nm, for which ∃w̄ ∈ Mn, z̄(·) ∈ Mm, such that

−∇xΛ(x̄, ȳ) − w̄(·) ∈ NX (x̄),∇yΛ(x̄, ȳ) + z̄(·) ∈ NY (ȳ), (3.9)
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which is equivalent to having, for all scenarios ξ ∈ Ξ ,

−∇x L(x̄(ξ), ȳ(ξ), ξ) − w̄(ξ) ∈ NX(ξ)(x̄(ξ)),

∇y L(x̄(ξ), ȳ(ξ), ξ) + z̄(ξ) ∈ NY (ξ)(ȳ(ξ)).

The related progressive hedging algorithm is given in [24] as follows.

Algorithm 2 Progressive Hedging Algorithm for Lagrangian Stochastic Variational
Inequalities
Initialization: Set iteration ν = 0, x0 ∈ Nn , y0 ∈ Nm , w0 ∈ Mn and z0 ∈ Mm .
Step 1: Determining (x̂ν(·), ŷν) ∈ Ln ×Lm by solving a separate problem for each
scenario ξ to get (x̂ν(ξ), ŷν(ξ)):

− ∇x L
ν(x̂ν(ξ), ŷν(ξ), ξ)∈NX(ξ)(x̂

ν(ξ)),

∇y L
ν(x̂ν(ξ), ŷν(ξ), ξ) ∈ NY (ξ)(ŷ

ν(ξ)), (3.10)

where

Lν(x, y, ξ) = L(x, y, ξ) + wν(ξ)x + r

2
‖x − xν(ξ)‖2 − zν(ξ)y − r

2
‖y − yν(ξ)‖2.

Step 2: Set

xν+1(·) = PNn (x̂
ν(·)), wν+1(·) = wν(·) + r PMn (x̂

ν(·)), (3.11)

yν+1(·) := PNm (ŷν(·)), zν+1(·) = zν(·) + r PMm (ŷν(·)). (3.12)

Step 3: ν := ν + 1, go to Step 1.

This version of progressive hedging inherits from the one for general stochastic
variational inequalities in the preceding section the property that, as long as a solution
exists, the sequence of iterates (xν(·), yν(·), wν(·), zν(·))will converge to a particular
solution (x̄(·), ȳ(·), w̄(·), z̄(·)). They also consider the variant version of the algorithm
when the parameters r are different in the x part and y part and apply Algorithm 2 to
multistage stochastic optimization problem.

3.3 Discrete ApproximationMethods

When random vectors follow a continuous distribution, the PHA cannot be applied
to the two-stage SVI. In this case, Chen et al. [30] proposed a discrete approximation
method for two-stage SLCP and Chen et al. [31] investigated the sample average
approximation (SAA) method for two-stage stochastic generalized equation (SGE).
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Discrete approximation for two-stage SLCP For the two-stage SLCP (2.18)–(2.19),
Chen et al. [30] firstly investigated the existence and uniqueness of a solution under
the assumptions as follows.

Assumption 3 There exists a positive continuous function κ(ξ) such that E[κ(ξ)] <

+∞ and for a.e. ξ ,

(
zT, uT

) ( A B(ξ)

N (ξ) M(ξ)

)(
z
u

)
� κ(ξ)(‖z‖2 + ‖u‖2), ∀z ∈ R

n, u ∈ R
m .(3.13)

Moreover, E[‖B(ξ)‖] < ∞, E[‖M(ξ)‖] < ∞, E[‖N (ξ)‖] < ∞ and E[‖q(ξ)‖] <

∞.

Under Assumption 3, some properties of the two-stage SLCP are given in [30] as
follows:

Proposition 1 Let Assumption 3 hold. For any given x and ξ ∈ Ξ , let D(x, ξ) be an
m-dimensional diagonal matrix with

D j j (x, ξ) :=
{
1, if

(
M(ξ)y(ξ) + N (ξ)x + q2(ξ)

)
j � y j (ξ),

0, otherwise.

Let

W (x, ξ) := [I − D(x, ξ)(I − M(ξ))]−1D(x, ξ) (3.14)

and

J (x, ξ) := { j : (M(ξ)y(ξ) + N (ξ)x + q2(ξ)) j � y j (ξ)}.

Then, the following assertions hold.

(i) The two-stage SLCP (2.18)–(2.19) has a unique solution (x∗, y∗(·)) ∈ R
n × Y .

(ii) The solution to the second stage of SLCP (2.18)–(2.19) can be written as

ȳ(x, ξ) = −W (x, ξ)(N (ξ)x + q2(ξ)) (3.15)

and ȳ(·, ξ) is globally Lipschitz continuous w.r.t x.
(iii) The first equation of SLCP (2.18)–(2.19) can be reformulated as

0 � x ⊥ (A − E[B(ξ)W (x, ξ)N (ξ)])x
−E[B(ξ)W (x, ξ)q2(ξ)] + q1 � 0, (3.16)

where

‖(A − E[B(ξ)W (x, ξ)N (ξ)])−1‖ � 1

E[κ(ξ)] < +∞.
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(iv) Let

F(x) := min
(
x, (A − E[B(ξ)W (x, ξ)N (ξ)])x

−E[B(ξ)W (x, ξ)q2(ξ)] + q1
)
. (3.17)

Then, F is Lipschitz continuous and every matrix Vx in the Clarke generalized
Jacobian ∂F(x) (see definition in [32, Section 2.6]) is nonsingular with ‖V−1

x ‖ �
d̄ for some constant d̄ > 0 which is independent of x.

Besides the existence and uniqueness of the two-stage SVI, the globally Lipschitz
continuity and formulation (3.15) of ȳ(·, ξ) allow us to substitute ȳ(·, ξ) into the first-
stage stochastic function Ax + E[B(ξ)y(ξ)] + q1 and rewrite the two-stage SVI as
one-stage SVI (3.16). Then, they proposed their discrete approximation method in
[30] as follows.

Suppose Ξ is a compact and convex set. Let {Ξ K
i } be a partition of the support set

Ξ , where Ξ K
i is a compact and convex subset of Ξ such that

K⋃
i=1

Ξ K
i = Ξ, intΞ K

i ∩ intΞ K
j = ∅, ∀ i �= j, i, j = 1, . . . , K ,

where intS denotes the interior of S and K denotes the number of partitions. Note that
since Ξ is assumed to be a compact set, each Ξ K

i is also a compact set. Let

EΞ K
i

[H(ξ)] := 1

pKi

∫
ξ∈Ξ K

i

H(ξ)P(dξ) with pKi = P(Ξ K
i ) (3.18)

for H(ξ) = M(ξ), N (ξ), B(ξ) or q2(ξ). Let

Δ(Ξ K
i ) := max

ξ1,ξ2∈Ξ K
i

‖ξ1 − ξ2‖ (3.19)

denote the diameter of Ξ K
i . We require maxi∈K̄ Δ(Ξ K

i ) → 0 as K → ∞. Let
pKi := P(Ξ K

i ). Then, a discrete approximation of two-stage SLCP (2.18)–(2.19) is

0 � x ⊥ Ax +
K∑
i=1

pKi EΞ K
i

[B(ξ)]yi + q1 � 0, (3.20)

0 � yi ⊥ EΞ K
i

[M(ξ)]yi + EΞ K
i

[N (ξ)]x + EΞ K
i

[q2(ξ)] � 0,

i ∈ 1, . . . , K . (3.21)

Moreover, let (xK , yK ) denote the solution of (3.20)–(3.21) whereby we write yK for

(yK1 , · · · , yKK ). Let

yK (ξ) :=
K∑
i=1

yKi 1Ξ K
i

(ξ). (3.22)
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The following theorem states the convergence of (xK , yK (ξ)) to (x∗, y∗(ξ)), the true
solution of the two-stage SLCP (2.18)–(2.19), as K → ∞.

Theorem 5 Under Assumption 3, the following assertions hold.

(i) The complementarity problem (3.20)–(3.21) has a unique solution (xK , yK ).

(ii) If, in addition, maxi∈{1,...,K } Δ(Ξ K
i ) → 0, then {(xK , yK (·))} is bounded on

R
n ×Y , where the boundedness of yK (·) is in the sense of the norm topology of

L1(Y).
(iii) {xK , yK (·)} converges to the true solution (x∗, y∗(·)) of problem (2.18)–(2.19),

where the convergence of {yK (·)} → y∗(·) is in the sense of the norm topology
of L2(Y).

To establish the quantitative convergence analysis, we need more assumptions.

Assumption 4 M(·), N (·), q2(·) and B(·) are Lipschitz continuous over a compact set
containing Ξ with Lipschitz constant L .

Theorem 6 Under Assumptions 3 and 4, there exists a positive number γ � 0 and
nonnegative integrably bounded functions c(ξ) and h(ξ) such that

‖xK − x∗‖ � γ E[‖B(ξ)‖c(ξ)]L max
i∈K̄

Δ(Ξ K
i ) (3.23)

and

‖yK (ξ) − y∗(ξ)‖ � h(ξ)L max
i∈K̄

Δ(Ξ K
i ), for a.e. ξ ∈ Ξ. (3.24)

Sample average approximation method for two-stage SGE. In Chen et al. [31] , the
authors considered the following two-stage (SGE):

0 ∈ E[Φ(x, y(ξ), ξ)] + 1(x), x ∈ X , (3.25)

0 ∈ Ψ (x, y(ξ), ξ) + 2(y(ξ), ξ), for a.e. ξ ∈ Ξ, (3.26)

where X ⊆ R
n is a nonempty closed convex set, ξ is a random vector with support set

Ξ ⊂ R
d defined as above, Φ : R

n × R
m × R

d → R
n and Ψ : R

n × R
m × R

d → R
m

such that Φ(·, ·, ξ) and Ψ (·, ·, ξ) are Lipschitz continuous with Lipschitz modulus
κΦ(ξ) and κΨ (ξ), respectively,1 : R

n ⇒ R
n ,2 : R

m×Ξ ⇒ R
m aremultifunctions

(point-to-set mappings) and y(·) ∈ Y with Y being the space of measurable functions
from Ξ to R

m such that the expected value in (3.25) is well defined.
Without assuming relatively complete recourse, the authors of [31] studied conver-

gence and the exponential rate of convergence of the SAA

0 ∈ N−1
N∑
j=1

Φ(x, y j , ξ
j ) + 1(x), x ∈ X , (3.27)

0 ∈ Ψ (x, y j , ξ
j ) + 2(y j , ξ

j ), j = 1, ..., N (3.28)
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of the two-stage SGE (2.16)–(2.17) with y j being a copy of the second-stage vector
for ξ = ξ j , j = 1, · · · , N , where N denotes the sample size, ξ1, · · · , ξ N is an
independent identically distributed (iid) sample of random vector ξ .

To investigate the convergence analysis without assuming relatively complete
recourse, some notations and assumptions are needed. Denote by X the set of x ∈ X
such that the second-stage generalized equation (3.26) has a solution. For every ξ ∈ Ξ ,
by X̄ (ξ), we denote the set of x ∈ X such that the second-stage problem

0 ∈ Ψ (x, y, ξ) + 2(y, ξ) (3.29)

has a solution, ∩ξ∈Ξ X̄ (ξ) = X and X̄N := ∩N
j=1X̄ (ξ j ) the set of x such that problem

(3.28) has a solution. The condition of relatively complete recourse means that X =
X̄N .

Assumption 5 For a.e. ξ ∈ Ξ , problem (3.29) has a unique solution for any x ∈ X .

Assumption 6 For every ξ and x ∈ X̄ (ξ), there is a neighborhood V of x and a
measurable function v(ξ) such that ‖ŷ(x ′, ξ)‖ � v(ξ) for all x ′ ∈ V ∩ X̄ (ξ).

Lemma 2 Suppose that Assumptions 5 and 6 hold, and for a.e. ξ ∈ Ξ themultifunction
2(·, ξ) is closed. Then for a.e. ξ ∈ Ξ , the solution ŷ(x, ξ) is a continuous function
of x ∈ X .

By Lemma 2, the first-stage problem (3.25) can be written as the following gener-
alized equation:

0 ∈ φ(x) + 1(x), x ∈ X , (3.30)

where
Φ̂(x, ξ) := Φ(x, ŷ(x, ξ), ξ) and φ(x) := E[Φ̂(x, ξ)] (3.31)

are continuous functions. Then, consider the SAA problem (3.27)–(3.28). Similar as
(3.30), by Lemma 2 the SAA problem (3.27)–(3.28) can be written as

0 ∈ φ̂N (x) + 1(x), x ∈ X̄N , (3.32)

where φ̂N (x) := N−1 ∑N
j=1 Φ̂(x, ξ j ) with Φ̂(x, ξ) defined in (3.31). Denote by S∗

the set of solutions of the first-stage problem (3.30) and by ŜN the solution set of the
SAA problem (3.32).

For δ ∈ (0, 1), consider a compact set Ξ̄δ ⊂ Ξ such that P(Ξ̄δ) � 1 − δ, and the
multifunction Δδ : X ⇒ Ξ̄δ defined as

Δδ(x) := {ξ ∈ Ξ̄δ : x ∈ X̄ (ξ)}. (3.33)

Assumption 7 For any δ ∈ (0, 1), the multifunction Δδ(·) is outer semicontinuous.

The following lemma shows that this assumption holds under mild conditions.

Lemma 3 Suppose Ψ (·, ·, ·) is continuous, 2(·, ·) is closed and Assumption 6 holds.
Then, the multifunction Δδ(·) is outer semicontinuous.
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Then, the almost sure convergence result is given as follows:

Theorem 7 Suppose that: (i) Assumptions 5–7 hold, (ii) the multifunctions 1(·) and
2(·, ξ), ξ ∈ Ξ , are closed, (iii) there is a compact subset X ′ of X such that S∗ ⊂ X ′
and w.p.1 for all N large enough the set ŜN is nonempty and is contained in X ′, (iv)
‖Φ̂(x, ξ)‖x∈X is dominated by an integrable function, (v) the set X is nonempty. Let
dN := D

(X̄N ∩ X ′,X ∩ X ′). Then, S∗ is nonempty and the following statements hold.

(a) dN → 0 and D(ŜN ,S∗) → 0 w.p.1 as N → ∞.
(b) In addition, assume that: (vi) for any δ > 0, τ > 0 and a.e. ω ∈ Ω , there exist

γ > 0 and N0 such that for any x ∈ X ∩ X ′ + γ B and N � N0, there exists
zx ∈ X ∩ X ′ such that1

‖zx − x‖ � τ, 1(x) ⊆ 1(zx ) + δB, and ‖φ̂N (zx ) − φ̂N (x)‖ � δ. (3.34)

Then, w.p.1 for N large enough it follows that

D(ŜN ,S∗) � τ + R−1
(

sup
x∈X∩X ′

‖φ(x) − φ̂N (x)‖
)

, (3.35)

where for ε � 0 and t � 0,

R(ε) := inf
x∈X∩X ′, d(x,S∗)�ε

d
(
0, φ(x) + 1(x)

)
,

R−1(t) := inf{ε ∈ R+ : R(ε) � t}.

Note that in the case when 1(·) := ND(·) with a nonempty polyhedral convex set D,
the first and second inequalities of (3.34) hold automatically.

To drive the exponential rate of convergence based on uniform large deviations
theorem (cf., [33–35]), more assumptions are needed.

Assumption 8 For a.e. ξ ∈ Ξ , there exists a unique, parametrically CD-regular [36]
solution ȳ = ŷ(x̄, ξ) of the second-stage generalized equation (2.17) for all x̄ ∈ X .

Assumption 9 The set X is convex, its interior int(X ) �= ∅, and for a.e. ξ ∈ Ξ , the
generalized equation,

0 ∈ Gx̄ (y) = Ψ (x̄, ȳ, ξ) + J (y − ȳ) + 2(y, ξ), for which Gx̄ (ȳ) � 0,

has a locally Lipschitz continuous solution function at 0 for ȳ with Lipschitz constant
κG(x̄, ξ) for any x̄ ∈ X and there exists a measurable function κ̄G : Ξ → R+ such
that κG(x̄, ξ) � κ̄G(ξ) and E[κ̄G(ξ)κΨ (ξ)] < ∞.

Let

Mi
x (t) := E

{
exp

(
t[Φ̂i (x, ξ) − φi (x)]

)}

1 Recall that φ̂N (x) = φ̂N (x, ω) are random functions defined on the probability space (Ω,F ,P).
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be the moment generating function of the random variable Φ̂i (x, ξ) − φi (x), i =
1, . . . , n, and

Mκ(t) := E
{
exp

(
t
[
κΦ(ξ) + κΦ(ξ)κ(ξ) − E

[
κΦ(ξ) + κΦ(ξ)κ(ξ)

]])}
.

Assumption 10 For every x ∈ X and i = 1, · · · , n, the moment generating functions
Mi

x (t) and Mκ(t) have finite values for all t in a neighborhood of zero.

Theorem 8 Suppose: (i) Assumptions 5, 7–10 hold, (ii) S∗ is nonempty and w.p.1 for
N large enough, ŜN are nonempty, (iii) the multifunctions 1(·) and 2(·, ξ), ξ ∈ Ξ ,
are closed and monotone. Then, the following statements hold.

(a) For sufficiently small ε > 0, there exist positive constants � = �(ε) and ς = ς(ε),
independent of N , such that

P

{
sup
x∈X

∥∥φ̂N (x) − φ(x)
∥∥ � ε

}
� �(ε)e−Nς(ε). (3.36)

(b) Assume in addition: (iv) the condition of part (b) in Theorem 7 holds and w.p.1 for
N sufficiently large,

S∗ ∩ cl
(
bd(X ) ∩ int(X̄N )

) = ∅. (3.37)

(v) φ(·) has the following strong monotonicity property for every x∗ ∈ S∗:

(x − x∗)�(φ(x) − φ(x∗)) � g(‖x − x∗‖), ∀x ∈ X , (3.38)

where g : R+ → R+ is such a function that function r(τ ) := g(τ )/τ is monoton-
ically increasing for τ > 0.
Then, S∗ = {x∗} is a singleton, and for any sufficiently small ε > 0, there exists
N sufficiently large such that

P
{
D(ŜN ,S∗) � ε

}
� �

(
r−1(ε)

)
exp

(
−Nς

(
r−1(ε)

))
, (3.39)

where �(·) and ς(·) are defined in (3.36), and r−1(ε) := inf{τ > 0 : r(τ ) � ε} is
the inverse of r(τ ).

Moreover, Chen et al. [31] investigated the convergence properties of the two-stage
SGE (2.16)–(2.17) when Φ(x, y, ξ) and Ψ (x, y, ξ) are continuously differentiable
w.r.t. (x, y) for a.e. ξ ∈ Ξ and 1(x) := ND(x) and 2(y) := NR

m+(y) with D ⊆ R
n

being a nonempty, polyhedral, convex set. That is, they considered themixed two-stage
SVI-NCP

0 ∈ E[Φ(x, y(ξ), ξ)] + ND(x), (3.40)

0 � y(ξ) ⊥ Ψ (x, y(ξ), ξ) � 0, for a.e. ξ ∈ Ξ, (3.41)
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and studied convergence analysis of its SAA problem

0 ∈ N−1
N∑
j=1

Φ(x, y(ξ j ), ξ j ) + ND(x), (3.42)

0 � y(ξ j ) ⊥ Ψ (x, y(ξ j ), ξ j ) � 0, j = 1, ..., N . (3.43)

They first investigated the properties of the second-stage problems.

Assumption 11 For a.e. ξ ∈ Ξ and all x ∈ X ∩ D, Ψ (x, ·, ξ) is strongly monotone,
that is, there exists a positive-valued measurable κy(ξ) such that for all y, u ∈ R

m ,

〈Ψ (x, y, ξ) − Ψ (x, u, ξ), y − u〉 � κy(ξ)‖y − u‖2

with E[κy(ξ)] < +∞.

Theorem 9 Let Ψ : R
n × R

m × Ξ → R
m be Lipschitz continuous and continuously

differentiable over R
n × R

m for a.e. ξ ∈ Ξ . Suppose Assumption 11 holds and
Φ(x, y, ξ) is continuously differentiable w.r.t. (x, y) for a.e. ξ ∈ Ξ . Then, for a.e.
ξ ∈ Ξ and x ∈ X , the following holds.

(a) The second-stage SNCP (3.41) has a unique solution ŷ(x, ξ) which is paramet-
rically CD-regular and the mapping x �→ ŷ(x, ξ) is Lipschitz continuous over
X ∩ X ′, where X ′ is a compact subset of R

n.
(b) The Clarke Jacobian of ŷ(x, ξ) w.r.t. x is as follows

∂ ŷ(x, ξ) = conv

{
lim
z→x

∇z ŷ(z, ξ) : ∇z ŷ(z, ξ)

= −[I − Jα(I − M(z, ŷ(z, ξ), ξ))]−1DαL(z, ŷ(z, ξ), ξ)
}
,

where M(x, y, ξ) = ∇yΨ (x, y, ξ), L(x, ŷ(x, ξ), ξ) = ∇xΨ (x, ŷ(x, ξ), ξ),

α = {i : (ŷ(x, ξ))i > (Ψ (x, ŷ(x, ξ), ξ))i },

Jα is an m-dimensional diagonal matrix and

(Jα) j j :=
{
1, if j ∈ α,

0, otherwise.
(3.44)

Under Assumption 11, the two-stage SVI-NCP can be reformulated as a single-stage
SVI with Φ̂(x, ξ) = Φ(x, ŷ(x, ξ), ξ) and φ(x) = E[Φ̂(x, ξ)] as follows

0 ∈ φ(x) + NC (x). (3.45)

To investigate the properties of two-stage SVI-NCP, more assumptions are needed.
Let

�(x, y(ξ), ξ) =
(

Φ(x, y(ξ), ξ)

Ψ (x, y(ξ), ξ)

)
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and ∇�(x, y, ξ) be the Jacobian of �. Then,

∇�(x, y, ξ) =
(
A(x, y, ξ) B(x, y, ξ)

L(x, y, ξ) M(x, y, ξ)

)
,

where A(x, y, ξ) = ∇xΦ(x, y, ξ), B(x, y, ξ) = ∇yΦ(x, y, ξ), L(x, y, ξ) =
∇xΨ (x, y, ξ) and M(x, y, ξ) = ∇yΨ (x, y, ξ).

Assumption 12 For a.e. ξ ∈ Ξ , �(x, y(ξ), ξ) is strongly monotone with parameter
κ(ξ) at (x, y(·)) ∈ C × Y , where E[κ(ξ)] < +∞.

Theorem 10 Let Sol∗ be the solution set of the mixed SVI-NCP (3.40)–(3.41). Suppose
(i) there exists a compact set X ′ such that Sol∗ ∩ X ′ ×Y is nonempty, (ii) Assumption
12 holds over Sol∗ ∩ X ′ × Y and (iii) assume

E[‖A(x, ŷ(x, ξ), ξ) − B(x, ŷ(x, ξ), ξ)M(x, ŷ(x, ξ), ξ)−1L(x, ŷ(x, ξ), ξ)‖]
< +∞ (3.46)

over X ∩ X ′. Then,
(a) For any (x, y(·)) ∈ Sol∗, every matrix in ∂Φ̂(x) is positive definite, and Φ̂ and φ

are strongly monotone at x.
(b) Any solution x∗ ∈ S∗ ∩ X ′ of SVI (3.45) is CD-regular and an isolate solution.
(c) Moreover, if replacing conditions (i) and (ii) by (iv) Assumption 12 holds over

R
n ×Y , then SVI (3.45) has a unique solution x∗ and the solution is CD-regular.

Here the definition of CD-regular can be found in [36].
Then, the properties and the convergence analysis of SAA problem can be investi-

gated. Define

GN (x, y(·)) :=

⎛
⎜⎜⎜⎝
N−1 ∑N

j=1 Φ(x, y(ξ j ), ξ j )

Ψ (x, y(ξ1), ξ1)
...

Ψ (x, y(ξ N ), ξ N )

⎞
⎟⎟⎟⎠ .

Theorem 11 Suppose Assumption 12 holds over C×Y andΦ(x, y, ξ), andΨ (x, y, ξ)

are continuously differentiable w.r.t. (x, y) for a.e. ξ ∈ Ξ . Then,

(a) GN : C ×Y → C ×Y is strongly monotone with N−1 ∑N
j=1 κ(ξ j ) and hemicon-

tinuous.
(b) The SAA two-stage SVI (3.42)–(3.43) has a unique solution.

Note that function Φ̂(x, ξ) = Φ(x, ŷ(x, ξ), ξ), where ŷ(x, ξ) is a solution of the
second-stage problem (3.41). Then, the first stage of SAA problem with second-stage
solution can be written as

0 ∈ N−1
N∑
j=1

Φ̂(x, ξ j ) + ND(x). (3.47)
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In what follows, the almost sure and exponential rate of convergence are established
in [31] as follows.

Theorem 12 Suppose conditions (i)–(iii) of Theorem 10 hold. Let x∗ be a solution of
SVI (3.45) and X ′ be a compact set such that x∗ ∈ int(X ′). Assume there exists ε > 0
such that for N sufficiently large,

x∗ /∈ cl(bd(X ) ∩ int(X̄N ∩ X ′)). (3.48)

Then, there exists a solution x̂N of the SAA problem (3.47) and a positive scalar δ such
that ‖x̂N − x∗‖ → 0 as N → ∞ w.p.1 and for N sufficiently large w.p.1

‖x̂N − x∗‖ � δ sup
x∈X∩X ′

‖φ̂N (x) − φ(x)‖. (3.49)

Theorem 13 Let X ′ ⊂ D be a convex compact subset such thatBδ(x∗) ⊂ X ′. Suppose
the conditions in Theorem 12 and Assumption 10 hold. Then for any ε > 0, there exist
positive constants δ > 0 (independent of ε), � = �(ε) and ς = ς(ε) (independent of
N ) such that

P

{
sup
x∈X

∥∥φ̂N (x) − φ(x)
∥∥ � ε

}
� �(ε)e−Nς(ε), (3.50)

and
P

{‖xN − x∗‖ � ε
}

� �(ε/δ)e−Nς(ε/δ). (3.51)

4 Applications

Two-stage SVI has wide applications in economics, traffic network, electricity mar-
kets, supply chain problems, finance, risk management under uncertain environment.
One type of two-stage SVI involves making a “here-and-now” decisions at the present
time to meet the uncertainty that are revealed at a later time. This is one of a motivation
of both two-stage stochastic optimization and two-stage stochastic Nash equilib-
rium problem (SNEP), such as Example 2. [37] discussed a scenario-based dynamic
oligopolistic problem under uncertainty. In electricity market, [15,38–40] consid-
ered capacity expansion problem under uncertain environment. [41] investigated
the supply-side risk in uncertainty power market. [42,43] discussed two-settlement
markets consisting of a deterministic (first-stage) spotmarket and a stochastic (second-
stage) market known as the forward. [44] presented a stochastic complementarity
model of equilibrium in an electric power market with uncertainty power demand.
[45] presented Nash equilibrium models of perfectly competitive capacity expansion
involving risk-averse participants in the presence of discrete state uncertainties and
pricing mechanisms of different kinds. [46] modeled a production and supply com-
petition of a homogenous product under uncertainty in an oligopolistic market by a
two-stage SVI, and used the model to describe the market share observation in the
world market of crude oil. Here we introduce two important applications which form
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traffic equilibrium problems and noncooperative multi-agent games under uncertain
environment.
Traffic equilibrium problemsRecently, Chen et al. [20] considered a traffic equilibrium
problem under uncertain environment (uncertain capacity and demand) by following
the Ferris–Pang multicommodity formulation [47] which associates a (different) com-
modity with each destination node d ∈ D ⊂ G. Let N (G,A) be an oriented network,
the randomvectors c jξ := ((c jξ )1, . . . , (c

j
ξ )|A|)T with (c jξ )a themaximumflowcapacity

for each commodity j arc a and demand d j
ξ = ((d j

ξ )1, (d
j
ξ )2, . . . , (d

j
ξ )|G|) with (d j

ξ )i
the demand for each commodity j at each node i , a = 1, · · · , |A|, j = 1, · · · , |D|,
i = 1, · · · , |G|. Let hodξ be the demand for each origin(O)-destination(D) pairs. Rod

ξ

are all (acyclic) routes r connecting o to d with V being the arcs(a)/routes(r) incidence
matrix, i.e., Va,r = 1 if arc a ∈ r . A route flow fξ = { f rξ , r ∈ ∪od Rod

ξ } results in an

arc flow uaξ = 〈Va, fξ 〉. Then, Vu j
ξ = d j

ξ , u
j
ξ � 0, j ∈ D. Let

A =
⎛
⎜⎝
V

. . .

V

⎞
⎟⎠ ∈ R

|D||N |×|D||A|, uξ =

⎛
⎜⎜⎝

u1ξ
...

u|D|
ξ

⎞
⎟⎟⎠ ∈ R

|D||A|,

bξ =

⎛
⎜⎜⎝

d1ξ
...

d |D|
ξ .

⎞
⎟⎟⎠ ∈ R

|D||N |, cξ =

⎛
⎜⎜⎝

c1ξ
...

c|A|
ξ

⎞
⎟⎟⎠ ∈ R

|D||A|.

Then, the flow conservation constraints for each realization ξ can be written as

C(ξ) := {Auξ = bξ , 0 � uξ , Puξ � cξ },

where P = (I , · · · , I ) ∈ R
|A|×|D||A| and I is the |A| × |A| identity matrix. We

then consider the cost of the traffic equilibrium problem. The arc travel time function
h(ξ, ·) : R|D||A| → R|A| is a stochastic vector and each of its entries ha(uξ , ξ) is
assumed to follow a generalized Bureau of Public Roads (GBPR) function,

ha(ξ, uξ ) =
(

ηa + τa

(
(Puξ )a

(γξ )a

)na)
, a = 1, . . . , |A|,

where ηa, τa, (γξ )
a are given positive parameters. Let F(uξ , ξ) = PT h(ξ, uξ ). Then

for na = 1

∇u F(uξ , ξ) = PTdiag

(
τa

(γξ )a

)
P

is symmetric positive semi-definite for any uξ ∈ R
|D||A|
+ ⊇ C(ξ). Then, the stochastic

VI formulation for Wardrop’s user equilibrium seeks an equilibrium arc flow uξ ∈
C(ξ) for a known event ξ ∈ Ξ , such that
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− F(ξ, uξ ) ∈a.s. NC(ξ)(uξ ). (3.1)

Moreover, let

x =
⎛
⎜⎝

x1

...

x |D|

⎞
⎟⎠ ∈ R

|D||A|, b̄ =
⎛
⎜⎝

d̄1

...

d̄ |D|.

⎞
⎟⎠ ∈ R

|D||N |, c̄ξ =
⎛
⎜⎝

c̄1

...

c̄|A|

⎞
⎟⎠ ∈ R

|D||A|,

and

D := {Ax = b̄, 0 � x, Px � c̄}, G(x) = PTh̄(x),

where d̄i = E[diξ ], i = 1, . . . , |D|, c̄a = E[caξ ], a = 1, . . . , |A| and h̄ is defined by

h̄a(x) = ηa + τ(Px)naa E[(γξ )
−na
a ], a = 1, . . . , |A|.

Then, the deterministic VI formulation forWardrop’s user equilibrium seeks a forecast
arc flows x ∈ D satisfying

− G(x) ∈ ND(x). (3.2)

Similar as (2.22)–(2.23), we can consider (3.1)–(3.2) as a two-stage SVI and refor-
mulate it as a stochastic MPEC:

min E[‖uξ − x‖2]
s.t. 0 ∈ G(x) + ND(x), 0 ∈a.e. F(uξ , ξ) + NC(ξ)(uξ ), ξ ∈ Ξ,

(3.3)

and then, by ERM approach, reformulate it as

min 1
λρ

θ(x) + 1
ρ
E[r(uξ , ξ)] + E[‖uξ − x‖2]

s.t. x ∈ D, μξ ∈a.s. C(ξ), ξ ∈ Ξ,
(3.4)

where θ(·) and r(·, ξ) are residual functions of 0 ∈ G(x) + ND(x) and 0 ∈a.e.

F(uξ , ξ) + NC(ξ)(uξ ), respectively.
Noncooperative multi-agent games In [48], Pang et al. formally introduced and studied
a noncooperative multi-agent game under uncertainty and focused mainly on a two-
stage setting of the game where each agent is risk-averse as follows.

Consider a noncooperative gamewith N risk-averse players, each of whom, labeled
i = 1, · · · , n, has a private strategy set Xi ⊂ R

si that is closed and convex, a (deter-
ministic) first-stage objective function θi that depends on all players’ strategies x :=
{xi }ni=1 and a second-stage risk-averse recourse function φi (x) = Ri (ψi (xi , x−i , ω))

with a kind of risk measureRi and a realization of a random vector ξ defined as above.
Then, the two-stage noncooperative games with risk-averse players is

min
xi∈Xi

θi (xi , x−i ) + Ri (ψi (xi , x−i , ξ) (3.5)
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and

ψi (x, ω) := min
yi∈Yi

fi (yi , x, ξ), (3.6)

for i = 1, · · · , n.
When the risk measure Ri = E , the players are risk-neutral. Moreover, the risk

measureRi , i = 1, · · · , n can be considered as several deviationmeasures include the
standard deviation, lower and upper semideviations, mean absolute (semi)deviations,
absolute (semi)deviations, the median and deviations derived from the CVaR. They
then investigated several properties ofmean-deviation composite gameswith quadratic
recourse, such as the continuity, regularization and differentiability of the second-stage
optimal value function, and the reformulation of mean-deviation composite game.

Pang et al. [48] bypassed the SVI framework and dealt with the risk-averse SNEP
based largely on smoothing, regularization, sampled solution approach and the best-
response scheme. But now, by [23,24] and the sample average approximation method
[31], we can solve the two-stage SVI by the progressive hedging method.

5 Final Remarks

Although the two-stage stochastic optimization has been investigated deeply and
two-stage SNEP has been appliedwidely, the research of two-stage SVI andmultistage
SVI has just begun. There are several important questions have to be investigated, e.g.,

– Can we solve non-monotone two-stage SVI using PHM?
– How could we achieve better convergence rate by using sampling technology?
– How to extend the discrete approximation methods to multistage SVI when The
random vector follows a continuous distribution?

– How to extend the SIV to dynamic two-stage SVI?
– How could we solve the two-stage or even multistage SVI more effectively?
– In the casewhenwe only have limited information about the distribution of random
vectors, could we model the two-stage variational inequalities in the sense of
distributional robustness or even robustness?

In summary, there are many challenges and opportunities for developing both theo-
retical analysis and numerical algorithms when we handle the two-stage (multistage)
VI in an uncertain environment.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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