
Received August 3, 2020, accepted August 13, 2020, date of publication August 25, 2020, date of current version September 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3019323

Task Parameters Analysis in Schedule-Based
Timing Side-Channel Attack
SONGRAN LIU 1,2 AND WANG YI1
1Department of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
2Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Corresponding author: Songran Liu (liusongran@stumail.neu.edu.cn)

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 61532007.

ABSTRACT Recent work has shown that the timing behavior of a real-time system can be utilized
by attackers for various adverse purposes via schedule-based timing side-channel attacks. An important
assumption in this type of attacks is the prior knowledge of attackers about the task parameter information,
including the number of tasks in the system and the period and execution time of each task. The attackers
can use such information, together with the execution sequence of the task system, to reconstruct the exact
schedule of the tasks and perform various subsequent attacks. In this paper, we show that the schedule-based
timing side channel attacks can actually be performed even without knowing the task parameter information
in prior. We develop methods to infer the number of tasks in the system and the period and execution
time of each task directly from the execution sequence. This removes the task parameter prior knowledge
requirement of the attackers and shows greater threats of the schedule-based timing side channel attacks.
Both simulation experiments with synthetic task sets and a Zedboard-based evaluation with control system
for a 3DOF helicopter are conducted to evaluate the proposed task parameter analysis method.

INDEX TERMS Real-time systems, side-channel attacks, task parameters analysis, signal analysis.

I. INTRODUCTION
A significant trend in computing systems is that they are
more and more closely integrated into the surrounding
physical environment, resulting in an emerging application
paradigm, cyber-physical systems (CPS). Mis-operations of
a cyber-physical system may lead to serious consequences,
e.g., damage of devices and even loss of human lives.
Therefore, cyber-physical systems must be designed with
high security insurance. On the other hand, the real-time
capability is a typical requirement in many cyber-physical
systems, where the computing results must be delivered
timely tomatch the inherent dynamics of the physical objects.

In traditional design methods for embedded real-time
systems, the real-time capability and security are treated as
two orthogonal issues. However, recent work showed that
these issues in many cases are related [1]–[7], [9] and [10].
For example, a recent work [8] identifies a new type of
side-channel attack to real-time systems, the schedule-based
timing side-channel attack, where the exact schedule of
a periodic task system can be reconstructed by analyzing

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

the execution sequence (the schedule contains information
of which task executes at each time point, while the
execution sequence contains information of whether the CPU
is idle or not at each time point), as depicted in Figure 1.
After accomplishing the reconstruction of task schedule,
the attackers could pinpoint the arrival instant and start instant
of any task in the victim system, thereby carrying out some
further attacks. We should note that, the precise schedule
information can assist attackers to filter out more noise, thus
leading the attack harder to be detected. In the cache-based
side-channel attack proposed in [8], the target of attackers
is to observe the cache usage of an image encoding task in
a UAV system. The results (Figure 13(a) in [8]) show that,
with assistance of the schedule information the attacker can
effectively catch the cache usage behavior of the victim task
compared with the ones with no such information. As another
example in a stealthy attack against robotic vehicles [12],
the precondition of such attacks is to insert artificial sensor
data just before the control task execution.

An important assumption in [8] is that the task parameters
are known in prior by the attackers. More specifically,
it assumed that the attackers know information about the
number of tasks in the system, the period and execution time

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 157103

https://orcid.org/0000-0002-9234-5799
https://orcid.org/0000-0003-3181-4480

S. Liu, W. Yi: Task Parameters Analysis in Schedule-Based Timing Side-Channel Attack

FIGURE 1. The analysis flow of the schedule-based timing side channel attack proposed in [8].

of each task. The authors argued that the above information
can be obtained by social engineering or hacking into task
scheduler of the real-time operating system at run-time.
Although this may be possible in some cases, in general,
obtaining such information may not be easy. For example,
to get such information from the task scheduler requires the
attackers to hack into the operating system kernel, which is
usually protected by high-level security mechanisms.

Side-channels and covert-channels have been well studied
in many research domains. Typical side-channels such as
cache access time [26], power consumption traces [27],
electromagnetic emanations [25], temperature [28], etc., may
also be seen against real-time system (RTS). In this paper,
we focus on scheduler-based channels. Son et al. [29]
demonstrated that the covert channel will not be closed
completely due to the RM scheduling. Then they proposed a
modified scheduler that use idle thread to replace the unsafe
threads [30]. They also considered the share-resource covert
channels and gave a kind of transformed resource locking
protocols [31]. Kadloor et al. [32] considered the timing
side channel attack in the context switch of shared scheduler
and two feasible schedulers (first-come-first-serve and time-
division-multiple-access) are given to solve this kind of
problem. There also has been other work on covert channels
and side-channels in real-time system [31], [33], [34].
In contrast to the above side-channels and the existing covert-
channels, this paper focuses on the study of scheduler-based
side-channels which can assist stealthy attacks.

There exists a line of work that focus on the scheduler
side-channels in RTS. Chen et al. [8] first introduced the
scheduler side-channels in preemptive fixed-priority RTS
and proposed the ScheduLeak algorithms that can infer the
exact execution information of each task from the system
schedules at run-time with using an unprivileged user-space
task. But a fundamental assumption is that the adversary
has full knowledge of the real-time task set information
(e.g., period, execution time), which reduces the threat and
practicality of such a schedule-based side-channel attack. Our
work aims to fill this gap. Liu et al. [35] proposed a method
to trace the engine speed variation based on information
leakage through scheduler side-channels. However, their
method is hard to fit into a static task model considered
in this work. Yoon et al. [36] and [37] attempted to close
the scheduler side-channels by introducing a randomization

protocol that obfuscates the schedules in the FP RTS.
Based on this idea, Kruger et al. [38] proposed a combined
online\offline randomization scheme to reduce deterministic
for time-triggered systems. Nasri et al. [39] conducted a
comprehensive study on the schedule randomization protocol
and argued that such techniques can expose the FP RTS to
more risks. Nevertheless, these solutions are not applicable to
most real-time systems in which a preemptive, fixed-priority
scheduler supports both periodic and sporadic real-time tasks.
This leaves those systems still vulnerable to schedule-based
side-channel attack.

Another class of work is about utilizing timing property of
a RTS to assist system testing and validation. Iegorov et al.
in [40] use scheduling sequences to assist the understanding
of runtime behavior of the a RTS. They utilize the sequences
to classify all the tasks into two categories: periodic task or
sporadic task, then estimates the period value and execution
time interval of each periodic task. However, similar to the
work in ScheduLeak [8], the prior knowledge of their work
are, the exact time point of each task context switch and
the task ID (or thread ID) of each sub-busy interval. While
we remove these assumptions in this work, all we need in
our method is a pure scheduling sequence composed of busy
interval and idle interval.

The integration of security into real-time schedulers is a
developing area of research. Most of the work focused on
defence techniques against general attacks. Mohan et al. [41]
offered a consideration of real-time system security require-
ments as a set of scheduling constraints and introduced a
modified fixed-priority scheduling algorithm that integrates
security levels into scheduling decisions. There exist another
group of works focused on hardening RTS from the
architecture perspective. Yoon et al.et al. [10] created the
SecureCore framework that utilizes one of the cores in a
multi-core processor as a trusted entity to carry out various
security checks for the activities observed from other cores.
Abdi et al. [42], [43] developed a restart-based approach
that uses a root-of-trust (i.e., a piece of hardware circuit)
and the trust zone technology to enforce the system reboot
process to evict any malicious dwellers when necessary.
While some of the techniques are useful for detecting
anomalies and mitigating the impact of the attacks, they
do not close the scheduler side-channels discussed in this
paper.

157104 VOLUME 8, 2020

S. Liu, W. Yi: Task Parameters Analysis in Schedule-Based Timing Side-Channel Attack

FIGURE 2. The analysis flow of the schedule-based timing side channel attack using the task parameter analysis
proposed in this work.

In this paper, we will show that actually the schedule-based
timing side-channel attack can be done even without
prior knowledge about the task parameters. Instead, such
information can be obtained from the execution sequence,
as shown in Figure 2. The technical contribution of this
work is developing methods to extract such task parameter
information (number of tasks and the execution time and
period of each task) from the execution sequence.

Note that it is not always possible to correctly infer
task parameters from the execution sequence. Consider an
extreme case where the total utilization of a periodic task set
is 1, and thus the processor is always busy. Such an execution
sequence does not provide any useful information about each
individual task. Even for task sets with utilization smaller
than 1, there are cases where different task parameters
leading to exactly the same execution sequences and thus
it is impossible to distinguish among the different possible
task parameters. Therefore, the target of this paper is not to
design a method that guarantees to always correctly derive
the task parameter information from execution sequence (this
is indeed impossible as witnessed by the above examples).
Instead, our target is to design a method that can successfully
do this for as many task sets as possible. The experimental
evaluation in Section IV shows that our method can correctly
obtain the desired information inmost cases. The result of this
paper shows that in a large portion of cases the attacker can
successfully launch the schedule-based timing side-channel
attack without knowing the task parameter information, and
the threat of the schedule-based timing side-channel attack is
actually even greater than that is stated in [8].

Obtaining the task parameters from the execution sequence
is technically challenging. This paper developed a two-step
method to solve this problem: (1) select a set of possible can-
didates for task periods and (2) derive the computation time
for each task corresponding to each period candidate. The
first step is done by analyzing the spectrum features of the
execution sequence. The second step is bymodeling the target
problem as amixed-integer nonlinear programming (MINLP)
problem. If the resulting execution time corresponding to a
period candidate is zero, then we know the task set does not
contain a task with this period value, and thus the number of
tasks in the system is also clear. We conduct both experiments

with synthetic task sets and a control system of a 3DOF
helicopter to evaluate the proposed task parameter analysis
methods.

II. MODEL
A. SYSTEM MODEL
We consider a task system composed of a set of N periodic
tasks 0 = {τ1, τ2, . . . τN }. Each task τi, 1 ≤ i ≤ N ,
is characterized by a tuple {ci, pi}, in which ci is the execution
time and pi is the period. The tasks have implicit deadlines,
i.e., pi is also the relative deadline of task τi.
We assume the system is scheduled by the Rate Mono-

tonic (RM) scheduling algorithm [11], which is the most
widely used scheduling algorithm in industrial real-time
systems. In RM, task priorities are decided by their periods:
the smaller period, the higher priority. We further assume
each task has a unique period, and consequently a unique
priority. A task is schedulable if all of its released instances
can finish execution before the next release time, and a task
set is schedulable if all of its tasks are schedulable.

FIGURE 3. A piece of scheduling sequence of length 24.

B. ADVERSARY AND ATTACK MODEL
As shown in Figure 2, we assume the attacker has obtained
a sufficiently long execution sequence of the task system.
The execution sequence may be any arbitrary segment of the
whole execution trace. The execution sequence is represented
by a binary sequence x. Each binary x(n) represents whether
the processor is busy or idle at the nth time unit. For example,
Figure 3 shows an execution sequence example, the binary
representation of which is 11011010110011011010110.
There are many ways to obtain the scheduling sequences,
including software-based approaches such as hacking into the
idle task and hardware-based approaches such as monitoring

VOLUME 8, 2020 157105

S. Liu, W. Yi: Task Parameters Analysis in Schedule-Based Timing Side-Channel Attack

the electromagnetic radiation of the processor or the signal
of the wires or pins. In Section IV-A we will discuss how to
obtain the execution sequence in detail.

The target of the attacker is to obtain the following task
parameter information from the execution sequence:
• the number of tasks in the system
• the execution time ci and period pi of each task τi

After obtaining the above information, the execution
sequence and the task parameter information can be
combined to reconstruct the schedule by the method in [8],
and perform subsequent adversarial attacks as discussed
in [8].

III. METHOD
This section presents methods to obtain the task parameters
from the execution sequence. The method consists of two
major steps:

1) Identify a set of candidate values for task periods.
We first compute the hyper-period of all tasks, which
provides important information to limit the range of
possible task periods. Then we present two methods to
select candidate values for task periods. The first one is
based on the Discrete Fourier Transform (DFT), and
the second one is our new design that guarantees to
include all the task periods in the candidate set.

2) Infer ci of each task τi. This is modeled as a series
of optimization problems, each giving ci for the task
corresponding to one task period candidate pi (ci = 0
implies there is no task with this candidate period in the
task system).

We design such a two-step strategy for better scalability.
If we also consider the number of tasks and task periods
as unknown variables and model everything into a unified
MINLP problem, the search space will be significantly larger.
In the following sections we will introduce each step in detail.

A. SELECT PERIOD CANDIDATES
First of all, we determine the hyper-period of all the tasks
in the system, denoted by H . Since the tasks are periodic,
the execution sequence repeats in every hyper-period.
We will use Circular Autocorrelation based method [13],
a widely used technique in signal processing, to decide the
hyper-period of all the tasks.

The circular autocorrelation ACC(φ) is a metric to describe
that how similar a sequence is to its φ circular shift:

ACC(φ) =
1
N

N−1∑
n=0

x(φ)x(n+ φ) (1)

where x() is the binary execution sequence. Since the
execution sequence repeats in every hyper-period, the value
of ACC(φ) with φ being the multiple of the hyper-period is
clearly larger than with other values of φ. Figure 4 shows
the resulting ACC() of an execution sequence where the
hyper-period is 45. We can see that the value ACC(φ) reaches
a peak when φ is the multiple of the hyper-period 45.

FIGURE 4. ACC result of a 520-length scheduling sequence generated by
task set {(2,9), (3,15)}.

The computation of ACC can be realized by inverse
discrete fourier transformation with a time complexity of
O(NlogN) (N is the length of the execution sequence x) [14]:

ACC = DFT −1(x ⊗ xT) (2)

where xT is the complex conjugation of x and ⊗ denotes
the inner product operation. The details about DFT −1 are
provided in the appendix.

Since the execution sequence repeats with the period H ,
we only need to consider a subsequence of the execution
sequence with lengthH . Therefore, for the sake of simplicity,
we use x to represent a subsequence of the original execution
sequence in the remaining of this section.

The hyper-period obtained above is useful for selecting
the candidates for task periods: only the divisors of the
hyper-period are eligible to be task periods. However, this
may result in a large number of period candidates. In the
following, we present two methods to further select period
candidates among the divisors of the hyper-period. The first
method uses the classical discrete fourier transform (DFT),
and the second method is our new method that outperforms
the first method.

1) THE FIRST METHOD
The execution sequence can be viewed as a kind of
combination of multiple sub-sequences, each sub-sequence
corresponding to the released workload (i.e. released job)
of one periodic task. Our target is to analyze the period of
the sub-sequences. This is similar to the frequency of signal
sequences in signal processing. Any signal wave sequence
can be reconstructed as the summation of sinusoids with
different frequencies. The Discrete Fourier Transform (DFT)
is used to analyze the amplitude of the sinusoid of each
frequency for each discrete signal sequences. The details
about DFT are provided in the appendix.

Inspired by the similarity between our problem and the
frequency analysis of discrete signal sequences, we use
DFT to transfer the execution sequence into the frequency
domain, with which we can select the periods corresponding
frequency components with larger amplitudes as the desired

157106 VOLUME 8, 2020

S. Liu, W. Yi: Task Parameters Analysis in Schedule-Based Timing Side-Channel Attack

candidates. We set a threshold on the amplitude to select the
candidates. An overly large thresholdmay exclude real period
from our consideration, while an overly small threshold may
include too many false candidates so that the following
steps will be more difficult to solve. In this subsection, after
our experimental comparison, we assume the threshold to
be 0.05.

FIGURE 5. DFT results of task sets in different utilization.

Figure 5 presents the resulting amplitude spectrum of
several execution sequences. The upper figure in Figure 5-(a)
is an execution sequence of three tasks with total utilization
of 0.26, and the lower figure is the resulting amplitude
spectrum. We can see there are seven frequency components
with significantly larger amplitude than others, among which
three corresponds to task periods. However, in this example,
the task period do not all correspond to the frequency
components with the largest amplitudes: the second largest
frequency component actually does not correspond to any
task period.

If we increase the execution time of the second and the
third task and get a task set with larger total utilization (0.48),
the accuracy of the analysis is even better: the three largest

frequency components exactly correspond to the three task
period, as shown in Figure 5-(b).

If we further increase the execution time (and thus the total
utilization), the accuracy will drop again. Figure 5-(c) shows
the execution sequence and the amplitude spectrum of a task
set with total utilization of 0.89. This time the amplitude
of the frequency component corresponding to period 13 is
smaller than other noisy frequencies.

In summary, the amplitude spectrum obtained by DFT
indeed provides useful information about possible periods,
but these information are not always precise. In general,
it works better for task sets with medium utilization, but
relatively worse with small or large utilization (which will
be discussed in detail in Section III-B).

There are two major reasons why the amplitude spectrum
may not correctly reflect the task periods. First, while in a
signal wave is a direct summation of component sinusoids,
the binary execution sequence is not a direct summation of
the released workload but a combination with shifting. For
example, if two tasks both release one unit workload at time
t , x(t) is 1 not 2 and one of them is shifted to be executed
at time t + 1, i.e., reflected by x(t + 1) = 1. Second, DFT
uses sinusoids to fit the square waves in the binary execution
sequence, which may incur significant errors. Figure 6 shows
the best fit of a square wave sequence with sinusoids, where
the red line is the summation of the sinusoids. We can see that
the square waves are only approximately fit by the sinusoids,
with many extra noisy sinusoids that correspond to neither
of the two tasks. In general, there is no provable quality
guarantee of this DFT-based method. It sometimes includes a
significant number of useless candidates, but sometimes may
contain real task periods.

FIGURE 6. A series of sinusoids generated by DFT to task set
{(2,4), (1,9)}.

2) THE SECOND METHOD
Now we present a new method that can address the
shortcomings of the first method based on DFT and thus
better select period candidates. The complexity of the second
method is higher, but guarantees to include all task periods
in the candidate set. We first discuss the rationale behind
the proposed method, and then exemplify the workflow of
Algorithm 1.

VOLUME 8, 2020 157107

S. Liu, W. Yi: Task Parameters Analysis in Schedule-Based Timing Side-Channel Attack

The pseudo-code of our new period candidate selection
algorithm is shown in Algorithm 1. x is the execution
sequence of length H (recall that we only need to consider
a sub-sequence of the original execution sequence with
length H). We use Lmax to indicate the maximal length of
continuous idle interval of the execution sequence, i.e., the
maximal number of consecutive 0 in x. First, we can draw
the following lemma about Lmax :
Lemma 1: In a feasible scheduling sequence of a periodic

task set, the maximal length of idle interval of the execution
sequence, denoted by Lmax , is smaller than the period of any
task.

Proof: Suppose a task τi’s period pi ≤ Lmax . Without
loss of generality, we assume [t, t + Lmax − 1] is an idle
interval. Since pi ≤ Lmax , there exists at least one time point t ′

in [t, t+Lmax−2] at which τi releases a job but the processor
is idle during the following time unit [t ′, t ′ + 1)], which
contradicts the work-conserving property of fixed-priority
scheduling. �
By the above lemma we know the period candidates must

be at least Lmax . On the other hand, they must be below
H/2 (except that H may also be a task period). Therefore,
the algorithm will check each divisor of H in the range
[p, . . . ,H/2] and H to see if they are valid candidate for task
periods (the for loop in line 3 of Algorithm 1).

To decide whether a value is a valid candidate, we apply
function �(x, i) to binary sequences x and a number i, which
is a divisor of |x| (the length of x), as defined in the following:

�(x, i) = x1&x2& . . .&x |x|
i

(3)

where xm is the mth sub-sequence of x of length i, and &
is the bit-wise AND operation of two binary sequences. For
example, given a sequence x = 111010100010 and i = 4.

�(x, 4) = 1110&1010&0110 = 0010 (4)

Algorithm 1 Period Candidates Selection
Input: execution sequence x and hyper-period H .
Output: period candidate set P = {p1, p2, . . .}.

1 P = ∅
2 p = Lmax + 1
3 for ρ = each divisor of H in [p, . . . ,H/2] and ρ = H
do

4 if �(x, ρ) is not an all-zero sequence then
5 put ρ in the period candidate set P;
6 end
7 end

Theorem 1: The output P of Algorithm 1 includes the
periods of all tasks in the system.

Proof: We consider an arbitrary task τi with period
pi in the system. First, pi is a divisor of the hyper-period
H , and in the range [p,H/2] or is H as discussed above.
So the algorithm executes the condition checking in line 4
with ρ = pi.

We look into the �(x, pi) operation. �(x, pi) first divide x
into several subsequences, each of length pi. So we know a
job of τi must be released exactly once in each subsequence
with exactly the same offset relative to the beginning of each
subsequence. When a job of τi is released, the following time
unit must be busy (with a bit 1 in the binary sequence) due
to the work-conserving property of fixed-priority scheduling.
Therefore, the bit correspond to the job releases of τi in each
subsequence must be 1, and thus�(x, pi) must not be all-zero
sequence. �
To illustrate how Algorithm 1 works, we use a scheduler

sequence x = 111010101000, generated by task set
{(1, 4), (1, 6), (1, 12)}. First, we have Lmax = 3. Then,
the available divisor set of 12 is {4, 6, 12}. After applying
function �(x, 4), �(x, 6) and �(x, 12) to sequence x,
the corresponding results are all positive. So divisor {4, 6, 12}
are all treated as period candidates.

B. DECIDE EXECUTION TIMES
In this section we will decide the execution time of
each potential task corresponding to a period candidate.
If the resulting execution time corresponds to some period
candidate is 0, it means there is no task in the system having
this period value, by which the number of tasks in the system
is also decided.

The decision of execution times is modeled as a mixed
integer non-linear programming (MINLP) problem, with the
optimization target:

Minimize

(
M∑
i=1

ci/pi−util

)2

(5)

util is a known constant representing the total utilization of
the task set obtained from the execution sequence, which
equals the ratio between number of bits 1 in the execution
sequence and the total length of the execution sequence
(which is H). M is the size of P, i.e., the number of period
candidate. All period candidates pi are known. Each ci is an
open variable representing the execution time of the potential
task corresponding to period candidate pi. The target of the
MINLP problem is to find assignments of each ci so that
the total utilization of the task system calculated by task
parameters is as close as possible to util.

There are three groups of constraints as listed in the
following:

∀i ∈ [1,M] : 0 ≤ ci ≤ cmaxi (6)

∀i ∈ [1,M] : φmini ≤ φi ≤ φ
max
i (7)

∀s ∈ [1, S] :
M∑
i=1

⌈
δ(s, i)
pi

⌉
× ci = Ls (8)

where δ(s, i) = Ls + αs − φi −
⌈
αs − φi

pi

⌉
× pi (9)

In the following we explain each group of constraints.

157108 VOLUME 8, 2020

S. Liu, W. Yi: Task Parameters Analysis in Schedule-Based Timing Side-Channel Attack

FIGURE 7. Example of reducing interval of offset φi .

1) EXECUTION TIME CONSTRAINTS
Constraint (6) restricts the range of ci for each potential task i,
where cmaxi is a constant pre-calculated by bpi × utilc.

2) OFFSET CONSTRAINTS
Each φi in is an auxiliary variable representing the offset
of the first release of this task relative to the beginning of
the considered execution sequence. Constraint (7) limits the
range of φi of each task. A naive lower bound and upper
bound of φi is 0 and pi, respectively. We can calculate tighter
upper and lower bounds for φi using the �(x, pi) function
(introduced in last subsection). �(x, pi) divide the execution
sequence x into H/pi subsequences, and returns the results
of the bit-wise AND of all these subsequences. Only the
locations of the 1 bits in this resulting subsequence can be
possible values of φi, or alternatively, the the location of the
first 1 and the last 1 in this resulting subsequence is the lower
and upper bound of φi, respectively, as shown in Figure 7.

3) WORKLOAD CONSTRAINTS
The execution sequence contains multiple busy periods (the
subsequence with all bits being 1). S is the number of busy
periods in the execution sequence, Ls is the length of the sth

busy period, and αs is the start time of the sth busy period
(relative to the beginning of the execution sequence).

The intuition of Constraint (8) is that the total workload
released by all tasks in each busy period should be equal to
the length of this busy period. δ(s, i) calculates the distance
between the first release time of task i in the sth busy period
and the end of the sth busy period, as illustrated in Figure 8.
Therefore, dδ(s, i)/pie× ci is the total amount of workload of
task i in the sth busy period, and the LHS of the equation in
Constraint (8) is the total workload of all tasks to be executed
in the sth busy period, which equals the length of this busy
period.

The ceiling operator in Constraint (8) can be handled by a
simple technique: replacing dze = y (where z is a real number
and y is an integer) by y−1 < z ≤ y. Then the overall MINLP

FIGURE 8. Illustrating the calculation of δ(s, i).

problem can be solved by common solvers such as SCIP [15],
NOMAD [16] and CPLEX [17].

IV. EVALUATION
In this section we first discuss how to obtain the execution
sequence in realistic systems. In what follows, we empirically
evaluate our proposed analysis method to infer the task
parameters from the execution sequences. Finally we present
a case study utilizing a Zedboard-based 3DOF helicopter
control system.

A. OBTAIN THE EXECUTION SEQUENCES
Alternative 1: A software-based method was introduced

in [8] to obtain execution sequences from realistic systems.
More specifically, as most embedded systems(e.g., FreeR-
TOS) adopt a flat memory model (and no virtual memory
or other protection mechanisms such as address-space layout
randomization) [18], attackers could hijack the idle task
of the operating system by exploiting memory corruption
vulnerabilities(e.g., buffer overflow [19] or return-oriented
programming [20]). For instance, by replacing the pointer of
function ApplicationIdleHook() called by idle task
in FreeRTOS with our malicious function which records
the preemption points of idle task in the victim system,
the adversary could obtain the execution sequences with the
resolution of the Global Timer. Note that, as this paper aims
to complement the work in [8], we capture the execution
sequences utilizing above software-based method to keep
consistency and fair comparison.
Alternative 2: When standard interfaces, e.g., network

interfaces and debug interfaces [21] of the victim embedded
system, are su?ciently protected or it is hard to hack into the
software system, an non-intrusive approach is indispensable
to capture the execution sequences. Actually, in order for
a side-channel attack to be effective in practical scenarios
for a security breach, it has to be applicable without
having physical access to the device being attacked [22].
Electromagnetic (EM) side-channel is one approach that
has shown promising results. It requires minimum physical
manipulations to the device being inspected [23]. EM emis-
sions of a device can be passively observed to infer both
the internal operations being performed and the data being
handled [24].

In what follows, we show it is possible to utilize an
EM side-channel to obtain the execution sequence of a
MSP430 board. Thismethod1 utilizes the spectrum difference

1As state before, we use the method in Alterative 1 to keep consistency
with the work [8]. And we will perfect the EM-based approach in our future
work.

VOLUME 8, 2020 157109

S. Liu, W. Yi: Task Parameters Analysis in Schedule-Based Timing Side-Channel Attack

FIGURE 9. The signal analyzer and hardware board.

FIGURE 10. Electromagnetic radiation spectrum in the idling and running
modes.

in the electromagnetic emissions of the hardware board
between the running and idling modes. To illustrate the
feasibility of this approach, we use the Agilent N9030A
signal analyzer [44] (Figure 9-(a)) to record and analyze
the electromagnetic radiation of an MSP430 (working at
25MHz) [45] hardware board (Figure 9-(b)). We program
the MSP430 ECU to switch between the running and idle
modes. Then we use ROHDE & SCHWARZH(HZ-15) near
field probes [46] to measure the electromagnetic radiation in
both modes, and use the Agilent N9030A signal analyzer to
obtain the electromagnetic radiation spectrum in the running
and idle modes. As shown in Figure 10, we can see that
the spectrum of two modes are substantially different. More
specifically, the EM signal at Running mode has larger
frequency component at 25MHz and 50MHz when compared
with its counterpart at Idling mode. Note that, 25MHz here
corresponds to the main frequency of MSP430 MCU, while
50MHz is its harmonic. Therefore, it is easy to develop
classification algorithms (e.g., neural network-based [25]) to
automatically distinguish them, then constructing execution
sequences.

B. SIMULATION-BASED EVALUATION
1) SIMULATION SETUP
The simulation experiments were used to test the scalability
of our proposed methods, also to test with a more diverse set
of real-time task combinations.

a: TASK SET GENERATION
We use the randomly generated synthetic task sets to evaluate
the performance of the proposed analysis method under
different settings. We generated 10000 schedulable synthetic

task sets randomly and divided them into groups according
to their total utilizations: the ith group contains task sets
with total utilization in the range of [0.1i, 0.1i + 0.1). The
number of tasks in each task set is randomly chosen in
the range of [5, 15]. The task periods are randomly drawn
from [100, 1000] and the execution time of a task is limited
to be integers between 1 and half of its period, i.e., ci ∈
[1, pi/2). We use the constraint solver SCIP [15], which can
solve MINLP problem with up to hundreds of variables. The
experiments are executed on a desktop PC with a dual-core
Intel i5-2450M processor, with 2.5G frequency, 3M caches
and 12G DDR3 1333 MHZ memory.

b: SCHEDULE ALGORITHM
We use the commonly used rate-monotonic algorithm [11]
to assign the priorities of tasks, i.e., a task with a shorter
period is assigned a higher priority. When generating task
sets according to the above setting, we discard those are not
schedulable by RM scheduling and only keep the schedulable
ones for the experiments.

2) SIMULATION RESULTS
In Section III.A, we present two period candidate selection
methods. The first method, denoted by pcs-DFT, is based
on DFT as presented in Section III.A.1. The second method,
denoted by pcs-NEW, is our new design in Section III.A.2 that
overcomes the shortcomings of pcs-DFT and guarantees to
include all the task periods in the candidate set. The capability
of pcs-DFT to successfully include the task periods into the
candidate set depends on the threshold value. If the threshold
is too large, the possibility for pcs-DFT to exclude some real
task periods from the candidate set P is high, and thus will
lead to poor analysis precision. On the other hand, if the
threshold is too low, too many negative candidates will be
included in P, which will lead to very large MINLP problems
in the execution time decision phase. In the experiments of
this subsection, we set the threshold to be 0.01 to limit the
size of period candidate set so that the subsequent execution
time decision problem can be solved in acceptable time
(in 10 hours).

a: INFLUENCE OF TASK SET UTILIZATION
Figure 11 shows the analysis precision of our overall method
with these two different period candidate selection methods.
The x-axis of the figure represents different range of total
utilizations of the generated task sets. The y-axis represents
the analysis precision, in terms of the ratio between the
number of task sets whose parameters are correctly obtained
(the ci and pi for every task τi are correctly obtained). From
Figure 11 we can see that pcs-NEW can achieve nearly
100% analysis precision except for task sets with large total
utilizations. pcs-DFT also performs well for task sets with
medium total utilizations, but the quality drops for task sets
with large or small total utilizations.

In general, the task sets with large total utilizations are
difficult to analyze since the processor is in most time busy

157110 VOLUME 8, 2020

S. Liu, W. Yi: Task Parameters Analysis in Schedule-Based Timing Side-Channel Attack

FIGURE 11. Precision comparison between pcs-DFT and pcs-NEW.

and the periodic pattern is less obvious. An extreme case is
a task set with total utilization 1, for which the execution
sequence are all 1 and it is impossible to infer the task
parameters. Figure 12 shows another example where two task
sets with different parameters results in exactly the same
execution sequence, and thus no method can guarantee to
correctly infer the task parameters. In general, the task sets
with large total utilizations are inherently more difficult to
analyze, and thus both pcs-DFT and pcs-NEW perform worst
with them.

FIGURE 12. An example to show two different task sets (with total
utilization smaller than 1) can lead to exactly the same execution
sequence.

The pcs-DFT method also performs worse for task sets
with small total utilizations. As discussed in Section III.A.1,
the principle of DFT is to use sinusoids to fit the square
waves. Due to the symmetry of sinusoids, there is no
difference between using sinusoids to fit a sequence of square
waves and its dual sequence (obtained by replacing all 1 by
0 and also the other way around). The dual sequences of the
execution sequences of task sets with low total utilization can
are similar to the execution sequences of task sets with high
utilizations. Therefore, for the pcs-DFT method the task sets
with low total utilization are equally difficult to analyze.

Although the performance of pcs-DFT in terms of analysis
precision is in general worse than pcs-NEW, the efficiency

FIGURE 13. Time consumption comparison between pcs-DFT and
pcs-NEW.

of pcs-DFT is higher than pcs-NEW. Figure 13 shows
the comparison of the running time of pcs-DFT and pcs-
NEW. Nevertheless, as will be shown later, the step to
decide execution times (by solving the MINLP problems)
is the real bottleneck of the efficiency of the overall
approach. Comparing with the running time to solve the
MINLP problems, the overhead incurred by both pcs-DFT
and pcs-NEW are neglectable. Therefore, in the following
experiments we use pcs-NEW to select the period candidates.

b: RECOGNITION OF LOW-UTILIZATION TASK
We also want to know the recognition ratio of a single
task with different proportion of utilization in total task set.
Intuitively, the less utilization occupied of a individual task,
the harder it can be recognized. Figure 14 shows analysis
precision of our approach in different ranges of individual
task utilization. The x-axis represents the range of task
utilization, and the y-axis represents the analysis precision,
in terms of the ratio between the number of tasks whose
parameters are correctly obtained and the total number of
tasks in this utilization range. From 14, we can see that tasks
with lower utilization are more difficult to be recognized.

FIGURE 14. Analysis precision of individual tasks with different ranges of
utilization.

c: ANALYSIS OF CALCULATION TIME
In the following we evaluate the analysis efficiency of the
overall approach. In Figure 15-(a), the x-axis represents the
range of hyper-periods of the task sets, and the y-axis is

VOLUME 8, 2020 157111

S. Liu, W. Yi: Task Parameters Analysis in Schedule-Based Timing Side-Channel Attack

the average time consumption to perform the overall task
parameter analysis, including both the first step pcs-NEW
that selects period candidates and the second step using
the solver SCIP to solve the MINLP problem to determine
the execution times. As we can see from Figure 15-(a),
the time consumption increases exponentially with respect
to the hyper-periods. Figure 15-(b) shows the average time
consumption increases (almost linearly) with respect to the
total utilization.

FIGURE 15. Time consumption for task sets with different ranges of
hyper-period and utilization.

The above results indicate that our proposed task parameter
analysis method can be quite expensive, especially when the
task set has a large parameter scale. Therefore, our method is
only suitable for attacks that are not performed in real-time,
i.e., the attacker first obtains the execution sequence, and then
spends time to analyze the task parameters, after which the
task parameter information can be used to launch subsequent
adversary actions. With our proposed task parameter analysis
method, the schedule-based timing side channel attack are
more threatening to static real-time embedded systems where
the task characteristics do not change over time.

d: INFLUENCE OF EXECUTION TIME VARIATION
In the methods introduced in Section III, we assume the
execution time of each task to be constant. However,
in realistic systems the execution time of different jobs have
certain variance. In this case, the workload constraint (8) will

lead to no feasible solution. To deal with this issue, we can
replace the constraint LHS = Ls by constraints LHS ≤
Ls + ε and LHS ≥ Ls − ε to get better robustness, where
ε is a constant reflecting the allowed errors. In the following
experiments, we set ε1 = 10%·Ls and ε2 = 20%·Ls based on
µ which will be introduced in the following paragraph, and
use pcs-NEW as the period candidates selection method.
Task set generation: We use normal distribution to

simulate execution time variation. The task sets generated
in Section IV-B are reused in this experiment to guarantee
schedulability and coherency. First, we treat the fixed
execution time ci in the original task sets as worst execution
time (wceti) of each task τi in this experiment. Then,
for the each release of task τi, the specific execution
time is sampled from normal distribution N (µ, δ2), where
µ = wceti · 80% and 80% is chosen empirically and the
standard deviation δ is calculated with which the cumulative
probability P(X ≤ wceti) is 99.9%. As a result, such a
normal distribution produces variation of 95% are within
±10% ·wceti. To guarantee the schedulability of the task set,
each specific execution time value is enforced to be WCET if
it exceeds WCET.
Performance metric: The purpose of this work is to infer

the exact task parameters based on schedule sequences to
service for the next step attack behavior as [9] does. One way
to evaluate the performance of such algorithm is to compare
the task set parameters {wceti, pi} with the estimated values
{ci, pi}. Specifically, for each task τi in task set 0, if ci falls
into the interval [wceti · 80%,wceti] and [wceti · 60%,wceti]
and pi equals to pi, we treat it as a successful inference.
Simulation results:To understand the impact that execution

time variation brings to the inference precision of our
proposed method, we take the simulation results without
execution time variation (shown in Figure 11) as the
baseline. The results presented in Figure 16, suggest that
our proposed method is very sensitive to execution time
variation. Specifically, it yields nearly 60% precision ratio
decrease when ε1 = 10% · Ls and nearly 70% precision
ratio decrease when ε1 = 20% · Ls, in all the task sets. The
main reason can be two-fold. i.) The execution time variation
will bring diversity to each execution sequence with length
of hyper-period. In detail, two adjacent schedule sequence
will not be exactly the same with each other, thereby causing
more interference in finding the hyper-period value. ii.) As
mentioned before, relax of workload constrain will increase
the complexity of the MINLP problem. In some worse cases,
it is hard for the toolbox (e.g. SCIP, NOMAD) to find a
feasible solution.

C. ZEDBOARD-BASED EVALUATION
To test the performance of the proposed method in realistic
real-time system, we captured a few execution sequences
generated by a Zedboard-based 3DOF helicopter control
system. It is important to note that the analysis of execution
sequence need not necessarily be achieved on-line due to the
deterministic of real-time system. Since our proposedmethod

157112 VOLUME 8, 2020

S. Liu, W. Yi: Task Parameters Analysis in Schedule-Based Timing Side-Channel Attack

FIGURE 16. Precision comparison of the impact on the precision between
with and without execution time variation. The blue bar is the same with
which in 11.

uses the optimization toolbox, which is hard to migrate to an
on-chip system, in this experiment we only utilize a desktop
PC to analyze the captured sequences. In the following,
we will introduce the whole experiments in detail.

1) PLATFORM OVERVIEW
The Zedboard [47] (shown in Figure 17) includes a dual-core
ARM Cortex-A9 processor and each core has a private
32KB data, 32KB instruction L1 Cache and shares a 512KB
L2 Cache. The dual cores also share a Xilinx programmable
logic FPGA. The processor runs at 666.67MHz and drives
a shared 64-bit global timer (GT) which is clocked at half
the CPU frequency. And our control system run on one of
the processor core and do not use the FPGA functions. The
3DOF helicopter [48] (displayed in Figure 17) is a simplified
helicopter model, equipped with twomotors to generate force
and three sensors to measure elevation, pitch and travel angle
as shown in Figure 17. The Zedboard communicates with
the 3DOF helicopter through a PCIe-based control and data
acquisition unit [49] and an intermediate Linux-based PC.

FIGURE 17. Zedboard and 3DOF helicopter.

2) SCHEDULE TRACE CAPTURE
The control system task set is executed on a real-time
operating system, FreeRTOS, which is a open source
real-time kernel [50]. All tasks are scheduled by fixed
priority scheduling algorithm and the detailed information
of each task is listed in Table 1. To capture the schedule,
the FreeRTOS kernel has been modified on purpose to record
the timestamps of each context switch and the preemption of
the idle task. More specifically, the idle task is created in the

lowest priority with other user tasks by calling xTaskCreate()
function at system setup. And the idle task can optionally call
a vApplicationIdleHook() which allows designer to execute
their own functions within the idle task.We canwrite function
to recored timestamps referenced by the Global Timer when
context switch and preemption occur. Both types of time data
are saved in a log file and stored in an SD card for the sake of
off-line analysis.

TABLE 1. User tasks.

3) RESULTS
Before we apply our proposed method to the captured
traces, the captured busy interval should be refined. Since
the busy interval now includes a pair of redundant context
switch (idle task in and out). According to our test, this
pair of context switch takes about 16.68µs in average on
this board. We captured 50 different schedule traces to
evaluate the precision ratio of our proposed method, each
of them with length 20s. And the execution sequence is
obtained by sampling the real schedule tracewith 666.67MHz
frequency. The performance metric we used is similar to
which introduced in Section IV-B2.c. Specifically, for each
task τi, if the estimated value ci falls into the interval [ci −
ci · 20%, ci + ci · 20%] and pi equals to pi, we treat it as a
successful inference. By our method, the task set parameters
can be correctly obtained from 8 sequences. And it took
around 6.3 hours to finish the overall analysis procedure for
each trace.

As the simulation-based and Zedboard-based evaluation
show, the execution time variation will bring a huge
performance decrease to our method. However, it is important
to note that around 20% precision ratio is still useful for
adversaries who aim to steal information under detection.
In [8] the authors presented that, if the exact task set param-
eters are given in prior, the ScheduLeak algorithm presented
in [8] can give at least 93% precision ratio in reconstructing
the schedule sequence. With such information, a cache-based
side channel attack can be used to preciselymeasure the cache
usage information of an image encode task. Therefore, it is
still very promising to perform such attack by combing our
method and the SchedulLeak algorithm.

V. CONCLUSION
Traditionally, the real-time capability and security are treated
as two unrelated aspects in real-time embedded system
design. Recently, some work has shown these two aspects
actually can be related as the adversary may utilize the timing
behavior of the system to infer important information and use
them to conduct various attacks. In particular, [8] identifies

VOLUME 8, 2020 157113

S. Liu, W. Yi: Task Parameters Analysis in Schedule-Based Timing Side-Channel Attack

the schedule-based timing side-channel attack, in which the
attacker can reconstruct the exact schedule (telling which
task is executed at each time point) of the system from the
execution sequence (telling whether there is an task being
executed or not, i.e., whether the processor is busy or idle,
at each time point).An important assumption in this type
of attack is the prior knowledge of attackers about the task
parameter information, including the number of tasks in
the system and the period and execution time of each task.
The attackers can use such information, together with the
execution sequence of the task system, to reconstruct the
exact schedule of the tasks and perform various subsequent
attacks.

In this paper, to make such a schedule-based side-channel
attack more practical, we develop effective analysis methods
to infer the task parameter information from the execution
sequence. Our analysis methods are performed in two
steps, first select a set of possible candidates for the task
periods, and then compute the execution time of the task
corresponding to each period candidate.If the resulting
execution time corresponding to a period candidate is 0,
it means the system does not contain a task with this period
value. We conduct both experiments with synthetic task sets
and a case studywith a flight control system of civilian drones
to evaluate the proposed task parameter analysis method. The
experimental results show that the proposed methods work
well in most cases. However, it is sensitive to task execution
time variations, which needs further improvements in future
work. Moreover, we also present and discuss possible ways
to obtain the execution sequences.

APPENDIX: DFT BASICS
Discrete Fourier Transform (DFT) [14] is a classical signal
processing method that converts a finite sequence of equally
spaced samples into the frequency domain. The normalized
DFT of a scheduling sequence x(t), t = 0, 1, . . . ,N is
defined as

X (k) =
N−1∑
n=0

x(n)e−j
2π
N , k = 0, 1, . . . ,N − 1 (10)

We can also write it in a simple form X = DFT [x]. The
absolute value of X (k) indicates the weight of frequency
component k

N of x(t). By using inverse Discrete Fourier
Transform x = DFT −1[X], we can return from the
frequency domain back to the time domain. Notice that the
amplitude spectrum |X (k)| of sequence x(n) is symmetric
with respect to frequency k = N

2 , so it is sufficient to show
half of the amplitude spectrum |X (k)|, k = 1, . . . , N2 .

REFERENCES
[1] D. Schneider, ‘‘Jeep hacking 101,’’ IEEE Spectr., vol. 8,

2015. [Online]. Available: https://spectrum.ieee.org/cars-that-
think/transportation/systems/jeep-hacking-101

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
and S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno,
‘‘Comprehensive experimental analyses of automotive attack surfaces,’’
in Proc. 20th USENIX Secur. Symp. (USENIX Secur.), vol. 4, 2011,
pp. 447–462.

[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
‘‘Experimental security analysis of a modern automobile,’’ in Proc. IEEE
Symp. Secur. Privacy, May 2010, pp. 447–462.

[4] K. Wesson and T. Humphreys, ‘‘Hacking drones,’’ Sci. Amer., vol. 309,
no. 5, pp. 54–59, Oct. 2013.

[5] D. P. Shepard, J. Bhatti, and T. E. Humphreys, ‘‘Drone hack: Spoofing
attack demonstration on a civilian unmanned aerial vehicle,’’ GPS World,
vol. 23, pp. 30–33, Aug. 2012.

[6] S.Mohan, S. Bak, E. Betti, H. Yun, L. Sha, andM. Caccamo, ‘‘S3A: Secure
system simplex architecture for enhanced security and robustness of cyber-
physical systems,’’ in Proc. 2nd ACM Int. Conf. High Confidence Netw.
Syst. (HiCoNS), 2013, pp. 65–74.

[7] R. Pellizzoni, N. Paryab, M.-K. Yoon, S. Bak, S. Mohan, and R. B. Bobba,
‘‘A generalized model for preventing information leakage in hard real-time
systems,’’ in Proc. 21st IEEE Real-Time Embedded Technol. Appl. Symp.,
Apr. 2015, pp. 271–282.

[8] C.-Y. Chen, S. Mohan, R. Pellizzoni, R. B. Bobba, and N. Kiyavash,
‘‘A novel side-channel in real-time schedulers,’’ in Proc. IEEE Real-Time
Embedded Technol. Appl. Symp. (RTAS), Apr. 2019, pp. 90–102.

[9] C. Y. Chen, A. Ghassami, S. Nagy, M. K. Yoon, S. Mohan, N. Kiyavash,
R. B. Bobba, and R. Pellizzoni, ‘‘Schedule-based side-channel attack in
fixed-priority real-time systems,’’ Tech. Rep., 2015.

[10] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, ‘‘SecureCore:
A multicore-based intrusion detection architecture for real-time embedded
systems,’’ in Proc. IEEE 19th Real-Time Embedded Technol. Appl. Symp.
(RTAS), Apr. 2013, pp. 21–32.

[11] C. L. Liu and J. W. Layland, ‘‘Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,’’ J. ACM (JACM), vol. 20, no. 1,
pp. 46–61, Jan. 1973.

[12] P. Dash, M. Karimibiuki, and K. Pattabiraman, ‘‘Out of control: Stealthy
attacks against robotic vehicles protected by control-based techniques,’’ in
Proc. 35th Annu. Comput. Secur. Appl. Conf., Dec. 2019, pp. 660–672.

[13] M. Vlachos, P. Yu, and V. Castelli, ‘‘On periodicity detection and structural
periodic similarity,’’ in Proc. SIAM Int. Conf. Data Mining, Apr. 2005,
pp. 449–460.

[14] P. Welch, ‘‘The use of fast Fourier transform for the estimation of
power spectra: A method based on time averaging over short, modified
periodograms,’’ IEEE Trans. Audio Electroacoust., vol. 15, no. 2,
pp. 70–73, Jun. 1967.

[15] S. Vigerske and A. Gleixner, ‘‘SCIP: Global optimization of mixed-integer
nonlinear programs in a branch-and-cut framework,’’ Optim. Methods
Softw., vol. 33, no. 3, pp. 563–593, May 2018.

[16] S. Le Digabel, ‘‘Algorithm 909: NOMAD: Nonlinear optimization with
the MADS algorithm,’’ ACM Trans. Math. Softw., vol. 37, no. 4, pp. 1–15,
Feb. 2011.

[17] IBM Analytics. IBM CPLEX Optimizer. Accessed: May 19, 2019.
[Online]. Available: https://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/

[18] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu,
‘‘Securing real-time microcontroller systems through customized memory
view switching,’’ inProc. Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1–15.

[19] K.-S. Lhee and S. J. Chapin, ‘‘Buffer overflow and format string overflow
vulnerabilities,’’ Softw., Pract. Exp., vol. 33, no. 5, pp. 423–460, Apr. 2003.

[20] H. Shacham, ‘‘The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),’’ in Proc. 14th ACMConf. Comput.
Commun. Secur. (CCS), 2007, pp. 552–561.

[21] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, ‘‘Systematic
classification of side-channel attacks: A case study for mobile devices,’’
IEEECommun. Surveys Tuts., vol. 20, no. 1, pp. 465–488, 1st Quart., 2018.

[22] S. Wakabayashi, S. Maruyama, T. Mori, S. Goto, M. Kinugawa, and
Y.-I. Hayashi, ‘‘POSTER: Is active electromagnetic side-channel attack
practical?’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2017, pp. 2587–2589.

[23] Y.-I. Hayashi, N. Homma, T. Mizuki, H. Shimada, T. Aoki, H. Sone,
L. Sauvage, and J.-L. Danger, ‘‘Efficient evaluation of EM radiation
associated with information leakage from cryptographic devices,’’ IEEE
Trans. Electromagn. Compat., vol. 55, no. 3, pp. 555–563, Jun. 2013.

[24] A. Sayakkara, N.-A. Le-Khac, and M. Scanlon, ‘‘Electromagnetic side-
channel attacks: Potential for progressing hindered digital forensic
analysis,’’ inProc. Companion Proc. ISSTA/ECOOPWorkshops, Jul. 2018,
pp. 138–143.

157114 VOLUME 8, 2020

S. Liu, W. Yi: Task Parameters Analysis in Schedule-Based Timing Side-Channel Attack

[25] A. Sayakkara, N.-A. Le-Khac, and M. Scanlon, ‘‘Leveraging electromag-
netic side-channel analysis for the investigation of IoT devices,’’ Digit.
Invest., vol. 29, pp. S94–S103, Jul. 2019.

[26] J. Kelsey, B. Schneier, D.Wagner, and C. Hall, ‘‘Side channel cryptanalysis
of product ciphers,’’ in Proc. Eur. Symp. Res. Comput. Secur. Berlin,
Germany: Springer, 1998, pp. 97–110.

[27] K. Jiang, L. Batina, P. Eles, and Z. Peng, ‘‘Robustness analysis of real-
time scheduling against differential power analysis attacks,’’ in Proc. IEEE
Comput. Soc. Annu. Symp. VLSI, Jul. 2014, pp. 450–455.

[28] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan,
‘‘The Sorcerer’s apprentice guide to fault attacks,’’ Proc. IEEE, vol. 94,
no. 2, pp. 370–382, Feb. 2006.

[29] J. Son and J. Alves-Foss, ‘‘Covert timing channel analysis of rate
monotonic real-time scheduling algorithm inMLS systems,’’ inProc. IEEE
Inf. Assurance Workshop, Jun. 2006, pp. 361–368.

[30] M. Völp, C.-J. Hamann, and H. Härtig, ‘‘Avoiding timing channels in fixed-
priority schedulers,’’ in Proc. ACM Symp. Inf., Comput. Commun. Secur.
(ASIACCS), 2008, pp. 44–55.

[31] M. Volp, B. Engel, C. Hamann, and H. Hartig, ‘‘On confidentiality-
preserving real-time locking protocols,’’ in Proc. IEEE 19th Real-Time
Embedded Technol. Appl. Symp. (RTAS), Apr. 2013, pp. 153–162.

[32] S. Kadloor, N. Kiyavash, and P. Venkitasubramaniam, ‘‘Mitigating timing
side channel in shared schedulers,’’ IEEE/ACM Trans. Netw., vol. 24, no. 3,
pp. 1562–1573, Jun. 2016.

[33] N. Tsalis, E. Vasilellis, D. Mentzelioti, and T. Apostolopoulos,
‘‘A taxonomy of side channel attacks on critical infrastructures and relevant
systems,’’ in Critical Infrastructure Security and Resilience. Cham,
Switzerland: Springer, 2019, pp. 283–313.

[34] A. Ghassami, X. Gong, and N. Kiyavash, ‘‘Capacity limit of queueing
timing channel in shared FCFS schedulers,’’ in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2015, pp. 789–793.

[35] S. Liu, N. Guan, D. Ji, W. Liu, X. Liu, and W. Yi, ‘‘Leaking your engine
speed by spectrum analysis of real-time scheduling sequences,’’ J. Syst.
Archit., vol. 97, pp. 455–466, Aug. 2019.

[36] M.-K. Yoon, S. Mohan, C.-Y. Chen, and L. Sha, ‘‘TaskShuffler: A schedule
randomization protocol for obfuscation against timing inference attacks in
real-time systems,’’ in Proc. IEEE Real-Time Embedded Technol. Appl.
Symp. (RTAS), Apr. 2016, pp. 1–12.

[37] M.-K. Yoon, J.-E. Kim, R. Bradford, and Z. Shao, ‘‘TaskShuffler++:
Real-time schedule randomization for reducing worst-case vulnerability
to timing inference attacks,’’ 2019, arXiv:1911.07726. [Online]. Available:
http://arxiv.org/abs/1911.07726

[38] K. Krüger, M. Volp, and G. Fohler, ‘‘Vulnerability analysis and mitigation
of directed timing inference based attacks on time-triggered systems,’’
LIPIcs-Leibniz Int. Proc. Informat., vol. 106, p. 22, 2018.

[39] M. Nasri, T. Chantem, G. Bloom, and R. M. Gerdes, ‘‘On the pitfalls
and vulnerabilities of schedule randomization against schedule-based
attacks,’’ in Proc. IEEE Real-Time Embedded Technol. Appl. Symp.
(RTAS), Apr. 2019, pp. 103–116.

[40] O. Iegorov, R. Torres, and S. Fischmeister, ‘‘Periodic task mining in
embedded system traces,’’ in Proc. IEEE Real-Time Embedded Technol.
Appl. Symp. (RTAS), Apr. 2017, pp. 331–340.

[41] S. Mohan, M. K. Yoon, R. Pellizzoni, and R. Bobba, ‘‘Real-time systems
security through scheduler constraints,’’ in Proc. 26th Euromicro Conf.
Real-Time Syst., Jul. 2014, pp. 129–140.

[42] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
‘‘Guaranteed physical security with restart-based design for cyber-physical
systems,’’ inProc. ACM/IEEE 9th Int. Conf. Cyber-Physical Syst. (ICCPS),
Apr. 2018, pp. 10–21.

[43] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
‘‘Preserving physical safety under cyber attacks,’’ IEEE Internet Things
J., vol. 6, no. 4, pp. 6285–6300, Aug. 2019.

[44] Agilent. (2014). N9030A Real-Time Spectrum Analyzer User’s and
Programmer’s Reference. Accessed: May 19, 2019. [Online]. Available:
http://cp.literature.agilent.com/litweb/pdf/N9030-90059.pdf/

[45] Texas Instruments. (2014). MSP430 Ultra-Low-Power Microcontrollers.
Accessed: May 19, 2019. [Online]. Available: http://www.ti.com/tool/
MSP-EXP430G2

[46] ROHDE&SCHWARZ. R&S HZ-15 Compact Probe Set for E and H
Near-Field Measurements, 30 MHz to 3 GHz. Accessed: May 19, 2019.
[Online]. Available: https://www.rohde-schwarz.com/us/product/hz15-
productstartpage_63493-8985.html

[47] Xillinx. Xillinx Zedboard. Accessed: May 19, 2019. [Online]. Available:
http://zedboard.org/

[48] Quanser. Quanser 3-DOF Helicopter. Accessed: May 19, 2019. [Online].
Available: https://www.quanser.com/products/3-dof-helicopter/

[49] Quanser. Q8-USB Data Acquisition Device. Accessed: May 19, 2019.
[Online]. Available: http://www.quanser.com/Products/q8/

[50] FreeRTOS. The FreeRTOS Kernel: Market Leading, De-Facto Standard
and Cross Platform RTOS Kernel. Accessed: May 19, 2019. [Online].
Available: https://www.freertos.org/

VOLUME 8, 2020 157115

