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ABSTRACT This paper focuses on improving thermal efficiency and reducing unburned carbon in fly ash
by optimizing operating parameters via a novel high-efficient swarm intelligence optimization algorithm
(grey wolf optimizer algorithm, GWO) for coal-fired boiler. Mathematical models for thermal efficiency and
unburned carbon in fly ash of the discussed boiler are established by artificial neural network (ANN). Based
on the ANNmodels, the grey wolf optimizer algorithm is used to obtain higher thermal efficiency and lower
unburned carbon by optimizing the operating parameters. Meanwhile, the comparisons between GWO and
particle swarm optimization (PSO) and genetic algorithm (GA) show that GWO has superior performance to
GA and PSO regarding the boiler combustion optimization. The proposed method can accurately optimize
the boiler combustion performance, and its validity and feasibility have been experimentally validated.
Additionally, a run of optimization takes a less time period, which is suitable for the real-time optimization.

INDEX TERMS Coal-fired utility boiler, grey wolf optimizer, thermal efficiency, unburned carbon in
fly ash.

I. INTRODUCTION
Motivation: In the recent years, the coal-fired utility boil-
ers face the dual requirements of reducing operating costs,
energy saving. And efficient combustion optimization tech-
nology has attracted increasing attention in related fields.
In the ‘‘National Guideline on Medium and Long-term Pro-
gram for Science and Technology Development’’, the State
Council of China pointed out that energy saving is a top
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it for publication was Jagdish Chand Bansal.

priority. In order to significantly improve the efficiency in
the use of energy, overcoming technological snag is an urgent
problem to solve. As the biggest coal consumer in the world,
electricity generation by coal-fired power plants in China
represents over 75% of the national production [1]. It is nec-
essary to improve thermal efficiency and reduce unburned
carbon in fly ash so as to use coal in a highly utilization and
economically viable way. The thermal efficiency called here
denotes the utilization of coal heat of boiler, which could also
represent boiler combustion conditions. As one of the main
economic index, the level of unburned carbon also reflects the
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safety and reliability of boiler equipment. The purpose of this
paper is to propose a method for simultaneously optimizing
thermal efficiency and unburned carbon of coal-fired utility
boiler in a shorter period of time.
Brief Summary of Prior Literature: Over the past decade,

a good many research studies on combustion optimization
have been published in order to improve thermal efficiency
and reduce unburned carbon in fly ash for utility boilers.
So many methods can be applied to optimize thermal effi-
ciency and unburned carbon in fly ash, such as optimiz-
ing operating parameters of boilers [2]–[5], optimization of
excess air [6], over-fire air arrangement [7], the retrofit of
boiler [8], improve load adaptability of boiler with an effi-
cient control scheme [9], and coordinated control strategy of
energy balance [10], etc. All of them, the method of optimiz-
ing the operating parameters of boilers [11]–[22] is better.
Because it takes less time and cost than other methods and is
easier to implement. Generally speaking, the method of opti-
mizing operating parameters for the coal-fired boiler has two
steps. Firstly, the model of boiler combustion process should
be established, and then operating parameters of boiler com-
bustion would be optimized by appropriate algorithms based
on previously established model. The relevant researches on
operating parameters optimization are referred in this paper.
Artificial neural networks (ANN) was used to model coal
combustion process and boiler combustion process was opti-
mized by genetic algorithm (GA) [11], [12]. The prediction
and optimization of nitrogen oxides emission for large capac-
ity pulverized coal fired boilers were investigated applying
ANN and GA [13]. Genetic algorithm (GA) was applied to
improve the performance of coal rate prediction model of
coal-fired utility boiler trained by support vector regression
(SVR) [14]. Based on the boiler combustion model trained
by support vector regression, multi-objective optimization
of boiler combustion performance was achieved by cellular
genetic algorithm [15]. Considering the quality improvement
of optimization results, the operating parameters in coal-fired
utility boiler were optimized by three different algorithms
and simulated annealing genetic algorithm (SAGA) showed
a superior optimization performance [16]. The relationship
between operating parameters and NOx emission was stud-
ied with extreme learning machine, which showed that it
had a stronger generalization ability, and harmony search
was also proved to be more powerful in optimizing oper-
ating parameters [17]. Particle swarm optimization (PSO)
was applied to optimize the air distribution scheme to reach
best combustion based on the boiler combustion prediction
model [18]. The mathematical models of boiler combustion
were trained by support vector regression, the optimiza-
tion results of ant colony optimization (ACO) showed that
ACO can optimize boiler combustion effectively [19]. The
approach to obtain the optimal NOx emission and thermal
efficiency was discussed by optimizing secondary air and
overfire air [20]. The secondary and tertiary air flow rate
of conventional pulverised-coal-fired boilers were optimized
in order to minimize the NOx emissions, CO concentration

and unburned carbon [21]. In the modeling process of ther-
mal efficiency and nitrogen oxides emissions in an ultra
supercritical boiler, computational fluid dynamics (CFD)
simulation data was added to improve the accuracy of
ANN model, and then GA was employed to search for the
best damper openings of secondary air to optimize boiler
combustion [22]. The optimization performace in aforemen-
tioned works [2]–[5], [11]–[22] show that thermal efficiency
has been effectively improved. But the optimization results
of unburned carbon often exceed 3%, which are harmful
to the environment and waste energy. And the optimization
time is more than 1 minute, or even more than 2 minutes,
which is not conducive to optimize the boiler combustion
process online. So how to reduce optimization running time
and reduce unburned carbon by suitable algorithm is a key
problem during the optimization process.

Recently, metaheuristics algorithms have become very
popular in many fields [23], such as grey wolf optimizer
(GWO) [24]–[26], whale optimization algorithm (WOA)
[27], coyote optimization algorithm (COA) [28], salp swarm
algorithm [29], and new optimization approaches based on
modeling the nonlinear physics processes [30]. The grey
wolf optimizer is derived from the hierarchy mechanism and
predator behavior of grey wolf populations in nature. GWO
is easy to tune and is suitable for online optimization. The
GWO algorithm has been used in real optimization projects,
such as training the models of macromolecules release from
poly-lactide-co-glycolide (PLGA) [31], feature selection for
pharmaceutical tabletting processes [32], power system eco-
nomic dispatch [33]–[35], load frequency controller parame-
ter optimization [36], [37], and image segmentation [38], etc.
A method based on combination of grey wolf optimizer and
antlion optimization was used to select a representative set
of features for machine learning, and the results show supe-
rior performance [39]. The yarn tenacity is related to many
process parameters, so grey wolf optimization and neural
network were proposed to train the prediction model [40].
The grey wolf optimizer was applied to optimize the pre-
diction model for bottom hole pressure of vertical wells
that trained by ANN and the optimized prediction model is
highly accurate [41]. GWO algorithm was proved to have
superior accuracy in carbon dioxide emissions estimating
and renewable energies generation [42]. It is proved that the
optimization performance and convergence speed of GWO
are superior to other methods.
Contribution of This Paper: Motivated by the aforemen-

tioned discussions, a method of combining ANN and GWO
scheme is proposed to optimize the boiler combustion process
online, as shown in Figure 1. The best air distribution scheme
is searched by GWO algorithm so that the boiler would
operate in a high thermal efficiency under the given limit of
unburned carbon in fly ash. Then, the closed-loop control of
utility boiler could straight adjust the air distribution scheme
to optimize boiler combustion process. The main difficulty
of this paper is meeting the requirements of simple operation
flow, easy operation by staff, and short optimization time.
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FIGURE 1. Flowchart of the proposed ANN-GWO method.

The main contributions of this paper focus on the following
two aspects.
• GWO is applied to search the best operating parameters
in utility coal-fire boiler. Compared with other methods,
GWO algorithm greatly improves the boiler optimiza-
tion performance and shortens the optimization time by
more than half.

• The population size of GWO algorithm is the only
parameter to be set by users, which is simple operation
flow and easy operation by staff.

Organization: The rest of this paper is organized as fol-
lows. In Section II, the ANN models of thermal efficiency
and unburned carbon in fly ash are established, and GWO
optimization model is built. In Section III, GWO optimiza-
tion results of every case, the comparisons between the
ANN-GWO method and other boiler optimization methods
are studied. In Section IV, we obtain the final conclusions.
Notation: Let t be the number of iterations. X(t + 1) is the

next grey wolf individual position vector. a is the convergence
factor. Ffit is the fitness of individual. ηg denotes the thermal
efficiency. Aar is the ash content as received (%). Mar is the
moisture content as received (%). Qarnet,p is the net heat value
as received at constant pressure (kJ/kg). Var is the volatile
content as received (%).

II. METHODOLOGY
A. ANN MODELS
Artificial neural network (ANN) can be used to pre-
dict the boiler combustion process. It can establish an
exact mathematical model of a highly nonlinear process.
Back-propagation neural network (BPNN) trains multilayer
perceptrons through propagation algorithm, and it is one of
the most widely used ANNmodels in the related field. In this

FIGURE 2. The ANN models structure of utility boiler combustion process.

part, a BP neural network is built to obtain mathematical
model of boiler combustion process. A large amount of his-
torical operating data from utility boiler can be obtained
through DCS and these data can be used as ANN models
training samples [11], [12], [22]. We select 50 groups from
these data to train the ANN model, and select 10 sets of data
to test the ANNmodel. Training samples are divided into two
categories. One category is fixed parameters that are constant
during the boiler combustion optimization, such as load, coal
quality and excess air. Another category is the parameters
to be optimized, such as 6 damper opening positions that
are referred to as air distribution scheme. And referring to
engineering practice, the load of the plant, the coal properties
(Aar ,Mar ,Qarnet,p,Var ), excess air, 6 damper opening positions
totally 12 variables are the ANN models input parameters.
Thermal efficiency and unburned carbon in fly ash represent-
ing boiler combustion performance are the output parameters
of ANN models. Considering the operating conditions of
utility boiler and accuracy of the model, the ANN models
have a hidden layer with 23 neurons. Figure 2 is the structure
of the ANN models.
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The BP neural network models of thermal efficiency and
unburned carbon in fly ash are simulated in MATLAB.
Specifically, the training function is TRAINBR, the trans-
fer function is TANSIG, the performance function is MSE,
the adaptive learning function is LEARNGDM.

B. GREY WOLF OPTIMIZER (GWO)
The GWO algorithm is a heuristic algorithm for mimicking
the hierarchy mechanism and hunting pattern of the natural
grey wolf population [24]. The GWO algorithm has strong
robustness, and it starts with a set of search agents, also
known as solutions. The adaptive values of parameters A,
C and a guarantee the GWO to obtain the optimal solu-
tion. The coefficient vector A with random value is used
to diverge the search agent from the victim. Component C
determines the random weights to search for the prey in the
search space. The explorations of A and C permit GWO
to search the area globally. In the simulation process, grey
wolves are defined as four types (based on the objective
function values). The best would be alpha (α), the second best
would be beta (β), the third best would be delta (δ), and the
rest would be the omega (ω) group. The hunting positions of
grey wolves are influenced by the first three search agent (α,
β and δ) obtained so far and the next generation or new grey
wolf positions can be gained as:

X(t + 1) =
Xα(t + 1)+ Xβ (t + 1)+ Xδ(t + 1)

3
(1)

whereX(t+1) is the next greywolf individual position vector,
Xα(t+1), Xβ (t+1) and Xδ(t+1) are the first three best grey
wolf individual position vectors, respectively. The specific
process of the GWO algorithm can be seen in Ref. [24].

According to boiler combustion performance experiment
study, the air distribution scheme has influence on the thermal
efficiency and unburned carbon in fly ash. In addition, adjust-
ing the air distribution scheme is the best boiler combustion
optimization control strategy for the coal-fired utility boiler.
Thus, the air distribution scheme is optimized by GWO to
achieve higher thermal efficiency and lower unburned carbon.
And the fitness of individual is obtained by the ANN models
of thermal efficiency and unburned carbon. The fitness func-
tion is set as follow:

Ffit = exp(−
0.01
ηg

) (2)

where Ffit is the fitness of individual, and ηg is the ther-
mal efficiency of individual. In addition, if an individual’s
unburned carbon exceeds 3%, the fitness of individual will
be set to 0.01 so that this individual will be eliminated in
the next generation. Usually in the actual plant operation,
the damper opening positions of air distribution scheme
has an adjustable range. Considering the operational rou-
tines and security, the adjustable range for air distribution is
70-100%.When the algorithm reaches the maximum number
of iterations, or a satisfactory objective function value has
been obtained, the algorithm ends. Figure 3 is the flowchart
of the GWO process.

FIGURE 3. The process block diagram of the GWO.

III. RESULTS AND DISCUSSION
This section summarizes and analyzes the optimization
results obtained by the proposed ANN-GWO method on
boiler combustion optimization. Several quantitative mea-
sures are used to analyze the results obtained by the
ANN-GWO method. The first and second metrics are used
to show the accuracy of ANN models. The third metrics
indicates the repeatability of the optimization results. The
fourth, fifth and sixth metrics are the average, best and worst
optimization results of thermal efficiency and unburned car-
bon. The seventh metrics is used to evaluate the significant
difference between these optimization algorithms. The last
metrics is used to assess whether the method is suitable for
online optimization.

1 Average absolute percent error (AARD%): It measures
the average percent error of ANN models in predict-
ing boiler performance. It is the average of all inde-
pendent predicting results error, and its mathematically

VOLUME 7, 2019 114417



Y. Zhao et al.: Optimization of Thermal Efficiency and Unburned Carbon in Fly Ash of Coal-Fired Utility Boiler via GWO Algorithm

expressed as follow:

AARD% =
1
N

N∑
i=1

∣∣∣∣Pi −Mi

Mi

∣∣∣∣× 100 (3)

where Pi is the predicted boiler performance by ANN
model, and Mi is the measured data in the practical
process.

2 Correlation factor (R2): It is the metrics that reflects the
accuracy of the ANN models prediction. Its mathemati-
cally expressed as follow:

R2 = 1−

∑N
i=1 (Mi − P̄m)

2∑N
i=1 (Pi − P̄m)

2 (4)

where P̄m is the average of the boiler performance data.
3 Standard deviation (std): It is used to indicate the

repeatability of the optimization results. It is calculated
over all independent optimization results obtained by
optimizer in plenty of individual runs.

4 Mean fitness: It is the average of all independent opti-
mization results in plenty of individual runs by opti-
mizer.

5 Maximum fitness: It is the best optimization result of all
independent optimization results in plenty of individual
runs by optimizer.

6 Minimumfitness: It is theworst optimization result of all
independent optimization results in plenty of individual
runs by optimizer.

7 T-test: It evaluates the significant difference between
these optimization algorithms, as follow:

t =
x̄ − µ0

S/√
n

(5)

where µ0 is the average value of the t-distribution and
S
√
n is the std value of algorithm.

8 Average running time: It is the average running time for
optimization algorithm in plenty of independent runs.

A. MODELING RESULTS OF ANN
Asmentioned above, there are twoANNmodels developed to
predict the thermal efficiency and unburned carbon in fly ash.
The twoANNmodels are trainedwith the same input parame-
ters. The setting parameters of ANNare given in Section II-A.
The configurations of ANN models are 12 × 23 × 2 (an
input layer containing 12 input parameters, a hidden layer
with 23 neutrons and an output layer with 2 output parameters
which are thermal efficiency and unburned carbon in fly ash),
as shown in Figure 2. In order to verify the accuracy of the
build ANN models, the results of model statistical errors are
shown in Table 1. In terms of thermal efficiency and unburned
carbon in fly ash, the comparison results of measured data
and predicted data are shown in Figure 4 and Figure 5. The
analysis and comparison results show that there is a strong
correlation between the measured and predicted data of ther-
mal efficiency and unburned carbon, either training or testing

TABLE 1. The results of ANN prediction models.

FIGURE 4. The fitting results of thermal efficiency.

FIGURE 5. The fitting results of unburned carbon in fly ash.

FIGURE 6. Fitting errors of thermal efficiency and unburned carbon.

data. The fitting errors of thermal efficiency and unburned
carbon are shown in Figure 6. Overall, these prove that ANN
models have perfect accuracy and robustness. Therefore,
the ANN model is an effective method to predict thermal
efficiency and unburned carbon of utility boiler.
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Algorithm 1 The searching process of GWO
1: Initialize the grey wolf population X
2: Initialize a, A and C
3: Calculate the fitness of each grey wolf individual
4: Calculate unburned carbon of each grey wolf individual
5: if the unburned carbon of grey wolf individual exceeds 3% then
6: the fitness of grey wolf individual will be set to 0.01
7: end if
8: Set the best grey wolf individual as Xα;
9: Set the second best grey wolf individual as Xβ ;

10: Set the third best grey wolf individual as Xδ;
11: while t <Maximum number of iterations do
12: for each search grey wolf individual do
13: Update the position of the current grey wolf individual by equation (1);
14: end for
15: Calculate the fitness of each grey wolf individual
16: Calculate unburned carbon of each grey wolf individual
17: if the unburned carbon of grey wolf individual exceeds 3% then
18: the fitness of grey wolf individual will be set to 0.01
19: end if
20: Update Xα , Xβ and Xδ
21: Update a, A and C
22: t = t + 1
23: end while
24: return Xα

FIGURE 7. The effect of the population size on optimization results.

B. OPTIMIZATION RESULTS OF GWO
After the ANN models are established, the GWO algorithm
is used to optimize the thermal efficiency while ensuring that
the unburned carbon is within the allowable limit. To ensure
that unburned carbon is within limit, if the unburned carbon
of an individual exceeds 3%, we delete the individual by
setting the fitness value to 0.01. The pseudo code of the GWO
algorithm searching for the best air distribution scheme is
presented in Algorithm 1.

A major advantage of the ANN-GWO approach is its
easy tune, because there are limited number of parameters
to be adjusted in GWO algorithm simulation process. The
population size is the only parameter to be set by users. One

TABLE 2. The setting parameters of three algorithms.

case with thermal efficiency of 91.8% and unburned carbon
in fly ash of 3.88% is chosen for optimization. To compare
the effect of population size, three different population sizes
are studied, and Figure 7 is the optimization process of GWO
with different population sizes. The results clearly show that
the performance of the ANN-GWO approach is less relied on
the population size, which would make it easier for users to
select the appropriate parameters.

In order to further demonstrate the effect of optimization,
20 sets of historical operating data are randomly selected
to be optimized. The maximum iteration number of GWO
algorithm is set as 200, the population size is set as 80.
Based on the optimization results (as shown in Figure 8),
the minimum thermal efficiency is improved by 0.14% and
the maximum is improved by 0.78%. 90% of the samples
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TABLE 3. The comparison results between three different algorithms.

TABLE 4. Stability results analysis of three algorithms.

FIGURE 8. Optimization results of different operating conditions.

show an increase in thermal efficiency of more than 0.3%
and the mean improvement rate is 0.5%, which significantly
confirm the GWO algorithm effectiveness.

C. COMPARISON WITH OTHER EXISTING APPROACHES
The proposed GWO approach is compared with GA
approach [11] and PSO approach [18]. To ensure the fairness
of comparison, the control parameters of GWO, PSO and GA
need to be carefully set. The setting parameters of the three
algorithms are showed in Table 2.

The purpose of Section III-C is to verify the improve-
ment of the GWO algorithm in improving thermal effi-
ciency and reducing unburned carbon in fly ash. Therefore,
we choose one case with thermal efficiency of 91.8% and
unburned carbon of 3.88% to study the performance compar-
ison between the proposed ANN-GWO approach and other
existing approaches. Besides the above settings parameters,
the three algorithms optimize the same operating parameters
based on the same ANN models, and the initial input data
of three algorithms are also the same. Moreover, all sim-
ulation experiments are done on the same laptop (2.6GHz,
4GB RAM). The optimization results of three algorithms are
given in Table 3. The three optimizing processes are shown

TABLE 5. Significant measures for GWO against other optimizers.

FIGURE 9. Optimization processes of three algorithms.

in Figure 9. These results clearly show that the GWO algo-
rithm is superior to the PSO and GA algorithms. By compar-
ing the thermal efficiency (91.8%), the optimization results
obtained by GA, PSO and GWO approaches are 93.63%
(1.99% improvement), 93.67% (2.03% improvement) and
93.73% (2.11% improvement), respectively. It is clearly that
GWO algorithm achieves a great improvement in optimiza-
tion quality. Meanwhile, in the early evolution of the GWO
algorithm, the thermal efficiency rises significantly and then
converges in approximately 100 generations. Compared with
other two algorithms which converge in 300 and 450 gener-
ations respectively, the GWO algorithm converges faster and
is more suitable for online optimization.

It is clear that GWO outperforms PSO and GA, which veri-
fies the capability of GWO to search the operating parameters
for optimal boiler combustion performance and the capa-
bility of improving the running time. Compared with these
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TABLE 6. Optimization results of three algorithms.
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TABLE 6. (Continued). Optimization results of three algorithms.

FIGURE 10. Thermal efficiency optimization results.

methods, GWO algorithm has the advantages as follows:
firstly, the conveying mechanism and information sharing
capability of GWO is super. Secondly, it gets the optimal
solution based on random function and first three solutions,
and it converges quickly by jumping from local optimal to
global optimal. Finally, the principle of GWO algorithm is
simple, and it is easy to tune and implement.

To further verify the optimization performance of the
GWO algorithm, the three algorithms are repeated 100 times
according to the previous settings to optimize the case of
thermal efficiency of 91.8% and unburned carbon of 3.88%.
The optimization results are shown in Table 6 and Table 6

FIGURE 11. Unburned carbon in fly ash optimization results.

(Continued). Minimum fitness, mean fitness, maximum fit-
ness, and standard deviation values obtained by three algo-
rithms are shown in Figure 10, Figure 11 and Table 4. It is
shown that all of the three algorithms can improve thermal
efficiency efficiently. However, the mean boiler combustion
optimization results of GWO are better than these of PSO and
GA. The minimum optimization results of GWO are close
to the maximum optimization results. Furthermore, Table 4
shows that the std value of GWO is smaller than the ones
obtained by PSO and GA, which verify the capability of
GWO to search for the best or near-optimal solutions. The
optimization results clearly indicate that GWO could provide
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FIGURE 12. Average running time of three algorithms.

superior and more stable solutions than PSO and GA. And
the average running times of three algorithms are shown
in Figure 12. The direct comparisons between GWO and
other two algorithms clearly show that a run of GWOmethod
requires a less period time, which will facilitate online boiler
combustion optimization. Hence, GWO might be a better
alternative method to optimize boiler combustion online.

Significance tests can be used to confirm whether there
is a significant statistical difference between two algorithms.
The p-values of T-test for all the three algorithms are shown
in Table 5. In order to verify the performance of GWO,
Table 5 only shows the comparisons of other algorithms with
GWO. It is clear that the optimization performance obtained
by GWO is significantly superior compared to PSO (0.006)
and GA (0).

Additionally, the results also show that GWO can control
unburned carbon in fly ash. In particular, the unburned carbon
in fly ash has an allowable limit, so as long as unburned
carbon is within 3%, the results are considered acceptable.
It can also set optimization objectives as multi-objective
optimization.

IV. CONCLUSIONS
This paper proposes an ANN-GWO approach for optimizing
the thermal efficiency and unburned carbon in fly ash of
coal-fired utility boiler. ANN is applied to establish mathe-
matical models of thermal efficiency and unburned carbon
in fly ash. Both of the models show considerable accuracy
for predicting thermal efficiency and unburned carbon. After
that, GWO algorithm is used to optimize air distribution for
the coal-fired utility boiler to improve thermal efficiency
and reduce unburned carbon. The optimization results of
test cases by GWO confirmed the effectiveness of the GWO
algorithm. Furthermore, the performance of GWO is further
discussed by comparing its optimization results with the PSO
and GA approaches. It is showed that GWO can improve
thermal efficiency to a higher level and provide more stable
solutions. Meanwhile, GWO algorithm optimization requires
a shorter time period for a run, which is suitable for the
online application. The results of this paper enhance the per-

formance on boiler combustion optimization and reduce opti-
mization running time. For future work, changes in the coal
properties and some extreme operating conditions should be
considered to reduce the errors in experimental performance.
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