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ABSTRACT This paper proposes a model-free control framework for the path planning of the rigid and soft
roboticmanipulator using an intelligent algorithm calledWeighted Jacobian Rapidly-exploring RandomTree
(WJRRT). The optimization approach is used to model the path planning problem, which is independent of
the robotic model, and then used the WJRRT algorithm to solve it. WJRRT algorithm not only explores
the cartesian space for the end-effector of the robotic manipulator randomly but also directs it towards the
goal-position when required. It is robust enough to tackle the uncertainties in the manipulator and make the
computation of path planning more efficient. WJRRT assigned a fitness value to each node of the tree. Based
on the fitness values algorithm computes the final path, which is a trade-off between efficiency and safety of
the path. The simulation results of two, three, and seven degrees of freedom (DOF) robotic manipulators
are presented and compared with JT-RRT, Bi-RRT, and TB-RRT algorithms. Experimental results are
verified using a soft manipulator made from flexible materials, i.e., polypropylene and polychloroprene.
Their flexible structure makes their control complex and creates uncertainties in the model. The simulation
and experimental results demonstrate that WJRRT can efficiently and accurately control the motion of
manipulators.

INDEX TERMS Rapidly-exploring Random Tree, robotic manipulator, redundant manipulator, robust path
planning, soft robotics.

I. INTRODUCTION
Soft robotic manipulators draw inspiration from animals
like, arthropods, starfish, and snakes and attracts immense
attention from researchers and engineers [1]–[4]. However,
a soft robotic manipulator’s path planning has always been
a challenging and intricate task for the researchers. They
deal with the high dimensional complex state-space, noisy
signals from the surroundings, and other stringent constraints
because of the highly flexible structure of soft robot [5]–[7].
Unlike rigid mechanical robots, it is impossible to model
forward and inverse kinematics for the soft robot, due to their
infinite degrees of freedom [8]–[10]. Furthermore, as the soft
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robotic manipulator’s joints increase the complexity of the
system four-fold [11]–[13]. For such complicated systems,
researchers have produced some insightful work that allows
the robotic system to navigate through search space and reach
the goal position [14]–[16].

Researchers found it immensely challenging to generate
a simple controlled motion in a soft robotic manipulator,
whereas path planning is highly intricate. Deimel et al. [17]
used an open-loop control for the three-finger soft robotic
manipulator is used to reach out for an object and grasp it. The
controlled pressurized air injected in pneumatic actuators in
a scripted manner to inflate and deflate the fingers of the soft
robotic manipulator. Likewise, Ilievski et al. [18] employed
another open-loop motion control for a starfish-shaped soft
robotic manipulator made of silicone chambers used to grasp
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delicate objects like an egg. Stokes et al. [19] mounted a
soft robotic manipulator on a mobile robot to pick and place
objects; it used Electro-Pneumatic Control (EPS) consisted
of eight microprocessors to inflate and deflate the chambers.
Brown et al. [20] further enhanced the controllability by
increasing the inflatable joints. Likewise, for medical use,
Ikuta et al. [21] have developed a slender tube to move
through the blood vessel under a controlled pressure con-
trol system. Furthermore, Calisti et al. [22] used another
open-loop framework to control the octopus Vulgaris arm to
grasp objects. All these control algorithms exhibit limitations
in performing a simple motion and require delicate fabrica-
tion, high stiffness, and tensile strength.

The path planning of the soft robotic manipulator is sev-
eral folds complicated and complex task. As for the same
end-effector position in cartesian-space, the robot can have
several configurations in joint-space because of its infinite
degrees of freedom [23], as shown in FIGURE 1. Researchers
come around different techniques to model the path planning
framework for the soft robotic manipulator. Hahnel et al. [24]
used the graphical models, and Khatib et al. [25] employed
potential fields as classical techniques to model path plan-
ning, but as the integrity of robotic material compromises,
the robotic parameters change, and the performance of these
techniques deteriorate. Likewise, the sampling technique [26]
and the grid-based algorithm [27] are computationally expen-
sive, time-consuming, and become more exhaustive as the
degrees of freedom (DOFs) increases. Furthermore, the key-
point interpolation technique [28] faces difficulty in selecting
the key point.

FIGURE 1. (a), (b), and (c) show that for the same cartesian coordinates
PG of the end-effector, the manipulator has three different joint-space
configurations.

Advanced methods include learning from the demonstra-
tion (LFD) [29], a novel technique incorporated with learning
algorithms to train the manipulator in path planning. LFD has
its limitations of pre-determination of the path, which is time-
consuming, and sometimes the manipulator can not trace
the path [30]. Rapidly-exploring Random Tree (RRT) [31] is
another known method for path planning. It works on a tree’s
principle with branches (nodes) rapidly growing and explor-
ing the space. The tree initially includes a Start-node (initial-
position) and a Goal-node (goal position). The start-node
rapidly grows out in a random direction, fills the search space
until it reaches the goal-node. Every node is a Parent-node

for the subsequent node, and the subsequent node is known
as a Child-node. In RRT, the generation of parent-child node
continuous until the tree reaches the goal-node. The abstract
idea of the RRT is manifested in FIGURE 2. The algorithm
then traces back from the goal-node to the start-node to
determine the path. Furthermore, the biased variant of the
RRT algorithm [32] allows the rapid expansion of tree until
it reaches the goal-node by giving more weight to those
nodes and branches that are directed towards goal-node and
thus increases the accuracy and efficacy. As it can navigate
through the complex space, it has already been employed in
different path planning schemes [32]–[37]. There are various
state of the art variants of RRT, e.g., RRT∗, B-RRT, RRT∗-
Smart, A∗-RRT, and RRTX . RRT∗ is an optimized version
of RRT. It not only randomly explores the search space to
the goal-node but also finds the optimal path on the addition
of each node to the tree. Reference [38] is another variant
of RRT∗, which not only optimizes RRT but also plans the
path in a dynamic environment. However, RRT∗ does not
ensure the convergence even when t →∞. To come around
this issue RRT∗-Smart [39] was introduced, It not only accel-
erates the convergence rate but also reduced the convergence
time. Likewise, B-RRT (Bidirectional RRT) [29] explores
the search space from both ends, i.e., start-node and goal-
node. The expansion of the tree from both directions further
consolidates the effectiveness and robustness of RRT. Later,
the optimized variant of B-RRT [40] was also proposed.
A∗-RRT [41] is a two-phase method, in the first phase,
the algorithm searches in a lower dimension, and in
the second phase it works as RRT∗ to search the path
in higher-dimension. Furthermore, RRTX , [42] is another
extensions of RRT∗ for the path planning in a dynamic
environment.

FIGURE 2. It shows the typical path planning technique of RRT algorithm.
It starts from the Start-node and reaches the Goal-node while avoiding
obstacles. It also gives an illustration of Parent-node and Child-node.

In this paper, a model-free control for the path planning of a
soft robotic manipulator is presented. The algorithm includes
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RRT integrated with Jacobian-transpose and weighted fea-
sible paths known as Weighted Jacobian Rapidly-exploring
Random Tree (WJRRT). The proposed algorithm is com-
putationally efficient since it computes Jacobian-transpose
instead of Jacobian-inverse, which is far more challeng-
ing. WJRRT controls the manipulator in forward kinemat-
ics so, it does not require the inverse kinematics model.
Furthermore, weighted feasible paths are included to safely
avoid the obstacles and overcome the system’s uncertainties.
RRT computes all feasible paths from parent-node to
child-node with different weights. Based on the weights,
the algorithm intelligently decides the path while con-
sidering the route’s safety and efficiency. Unlike tra-
ditional techniques, our proposed algorithm WJRRT is
robust enough to avoid the uncertainties in the system
and surroundings, e.g., changes in system-model and the
environment [43]–[48].

Furthermore, experimental validation of the algorithm
are also included. Soft robotic manipulator are made of
polypropylene tubes as links and polychloroprene as joints,
then employed WJRRT to compute the path. The soft robotic
manipulator successfully and robustly followed the path and
completed the task. The highlights of the proposed method
are as follow:

1) A model-free control framework for the path plan-
ning of a soft robotic manipulator includes obstacle
avoidance.

2) Proposed algorithm is a robust variant of RRT
integrated with Jacobian-transpose and weighted
feasible paths to design a path planning frame-
work for a soft robotic manipulator while avoiding
obstacles.

3) The theoretical analysis shows that WJRRT is a stable
and convergent algorithm.

4) The time and space complexity of WJRRT is polyno-
mial in time.

5) The simulation results show that WJJRT is capa-
ble of controlling the redundant manipulator as well.
Furthermore, WJRRT successfully accomplished the
path-planning of a soft robotic manipulator.

The rest of the paper is implemented as follows. Section II
includes the formulation of the optimization problem to solve
the path planning of the soft robotic manipulator while avoid-
ing obstacles. Section III includes the WJRRT algorithm, its
theoretical analysis, and time-space complexity. The simula-
tion results of two-arm, three-arm, and seven-arm redundant
manipulators are discussed in Section IV. Section V includes
the manufacturing and the path planning of a soft robotic
manipulator. Lastly, SectionVI concludes the paper with final
remarks.

II. PROBLEM FORMULATION
In this section, two sub-optimization problems are formu-
lated, i.e., path planning and obstacle avoidance, and then two
sub-optmization problems are unified into a single objective
function.

A. TRACKING CONTROL
Before path planning, the control framework of soft robotic
manipulator needs to be understand. The mechanics of
mechanical robots are applicable on soft robotic manipu-
lator, if they have rigid links, but soft joints. There are
two models to describe the motion of rigid manipulators,
i.e., Forward-kinematics (FK) and Inverse-kinematics (IK).
In FK, the input is provided in joint-space θ and output is in
cartesian-coordinates X of the end-effector. The mathemati-
cal model of FK is given as,

X = F(θ), (1)

where θ ∈ Rm and X ∈ Rn, m and n are total links and
cartesian-coordinates respectively of the manipulator. Since
the manipulator is in 3D space so n = 3. F(.) is a non-linear
transformation from joint-space to the cartesian-space. The
classical method to determine the FK of a manipular is known
as Denavit–Hartenberg [49]. However, the real-world robotic
applications are based on IK, where the input to themanipula-
tor is cartesian-coordinates of the end-effector, and output is
the joint-space of the links. The mathematical model is given
as,

θ = F−1(X), (2)

where F−1(.) is again a non-linear function. As mentioned
earlier, a manipulator can have multiple joint-space con-
figurations that result in the same end-effector configura-
tion, i.e., no closed-form solution, as shown in FIGURE 1.
Therefore, the viable model is to optimize FK, as IK is
immensely challenging to solve. For the path planning, It is
required to minimize the error between the current position
of the end-effector Xc and the goal position XG. The input
to the manipulator is joints angle and the output will be its
end-effector coordinates, i.e., X ∈ R3. The formulation of
the objective function is as follow,

min
θc

Ht (XG, θc), (3)

where Ht (.) is an optimization function to minimize the error
between the current position of the end-effector and the goal
position. θc is the current joint-configuration of the manipu-
lator. it can be expanded (3) as,

min
θc

Ht (XG, θc)) = ||XG − F(θc)||22. (4)

From (1) it can be seen that Xc = F(θc), so it can replace
F(θc) with Xc in (4), which is given as,

min
θc

Ht (XG, θc) = ||XG − Xc||22. (5)

Thus, the optimization problem for path planning of the soft
robotic manipulator is formulated, from the start position of
the end-effectorXS to the goal positionXG.Now the objective
of the WJRRT algorithm is to input angles θc to the joints
of the manipulator. The FK will compute the end-effector
configuration Xc of the manipulator based on θc. The (5) will
estimate the error between the current configuration Xc, and
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the goal configuration XG. The ultimate objective of WJRRT
is to minimize this error so, that the end-effector reaches the
goal position, i.e., Xc ≈ XG.

B. OBSTACLE AVOIDANCE
The optimization problem (3) does not include the obstacle
avoidance of soft robotic manipulator. To come around the
problem, maximizing the minimum distance technique is
used. It means that the links of the manipulator will maintain
a certain distance from the obstacles Obs. The formulation is
given as follows,

min
θ
Ho(Obs, θc), (6)

where Ho(.) is another objective function to account for
obstacle avoidance. The function depends on the obstacles
Obs in the environment and the current configuration θc of
the manipulator. On expanding the formulation becomes,

Ho(Obs, θc) =
1

min
l∈{1,2,3...m}

distl(Obs, lθc)
, (7)

where l represents the l th link of manipulator. The distl(.) is
a non-linear function that calculates the distance between the
obstacle and the l th link. For the implementation of distl(.), a
popular technique known as Gilbert–Johnson–Keerthi (GJK)
[50] algorithm is used. It takes two 3D bodies as an input
and first computes their geometry, then calculates the distance
between their vertices, and finally finds the shortest distance
between two vertices, i.e., obstacle and the link of the manip-
ulator. The formulation of distl(.) is given as,

distl(Obs,l θc) = GJK (obs,R(lθc)) l ∈ {1, 2 . . .m}, (8)

where R(.) is a non-linear function to compute the 3D
structure of the manipulator. The optimization problem for
obstacle avoidance is completed. Next, the unification of (3)
and (6) will be introduce.

C. UNIFICATION OF THE OBJECTIVE FUNCTIONS
The problem formulation is completed in two parts, i.e., path
planning and obstacle avoidance. Here it is worth mention-
ing that the mechanical and joint angle limitations for soft
manipulators are not required to be considered because of
their flexible nature. The soft robotic manipulator can endure
the high fluctuations in joints because of its flexible nature.
Now combine the sub-objective functions (3) and (6), which
is given as,

H = Ht (XG, θc)+ λHo(Obs, θc) (9)

H = min
θc
||XG − F(θc)||22

+
λ

min
l∈{1,2,3...m}

distl(Obs, lθc)
l ∈ {1, 2 . . .m}, (10)

where λ ∈ IR is weight-operator. It decides the trade-off
between the path tracking and the obstacle avoidance.

From (10) it can be seen that the final objective function con-
sists of two sub optimization problems, i.e., tracking control
and obstacle avoidance. The goal is to minimize (10), which
is 1) Decrease the error between the end-effector position Xc
and the reference trajectory XG and 2) Maximize the mini-
mum distance between the obstacle and the manipulator.

III. WEIGHTED JACOBIAN RAPIDLY-EXPLORING
RANDOM TREE ALGORITHM
In this section, the formulation of WJRRT algorithm will be
discussed.

A. PATH PLANNING USING RAPIDLY-EXPLORING
RANDOM TREE (RRT)
The path planning of robotic manipulator is described as
the navigation of the end-effector from the start-coordinates
XS to the goal-coordinates XG while avoiding the obstacles.
RRT is a valuable tool to compute complex trajectories effi-
ciently. RRT works in both configurations, i.e., cartesian-
configuration and joint-configuration. In our proposed
method, RRT will search all the viable joint-configurations
in search space from initial joint-configuration θS to goal
joint-configuration θG. The general framework of RRT is
shown in FIGURE 3. The FIGURE 3 (a) shows a single node
generation. Let us say a node N0 and a random node Nr are
created in the search space.N0 should extend towardsNr, but
there is no definite distance between them, so RRT generates
N1 between N0 and Nr at a distance d and bridges N0 with
N1. There are total k ∈ N nodes in search-space and the k–th
node is a Goal Node, i.e., Nk Likewise, the FIGURE 3(b)
shows that generated node of Nk-q is connected to N4 instead
of N2 because d1 > d2. It means that every generated node
will connect with the nearest node in the search space. The
generation of nodes will continue as shown in FIGURE 3(c)
until reaches the goal-node. At the end, RRT will trace back
the path from goal-node Nk to initial-node N0. For further
elaboration the pseudocode of RRT is shown in Algorithm 1.

FIGURE 3. (a) shows how RRT starts building the tree, (b) shows that how
Nk−q (node) connect with the nearest node N4, and (c) gives the idea of
how finally RRT track its path from goal-node Nk back to initial-node N0.

In Section II, It is discussed that the computation
of a closed-form IK solution is challenging, especially
when the number of links of a manipulator increase.
The different numerical approximations were utilized to
come around this problem, but those approximations were
failed to produce promising results. To tackle the issue,
Bertram et al. [37] made an extension to RRT, and instead
of extending tree in joint-space configuration, extend it in
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Algorithm 1 RRT Algorithm
RRT(N0,Nk)

T.add(N0) % Add node to the list
Nnew← N0

While(Distance(Nnew,Nk)> dx)
Nr = Random_node()
Nnearest = T.Nearest_node(Nr)
Nnew = extend(Nnearest,,Nr)
if (Nnew! = Null)

Nnew.set_parent(Nnearest)
T.add(Nnew) % Add new node to the list

end if
Resulting_Path← T.Trace_Back(Nnew)
return Resulting_Path

workspace-configuration (Cartesian-coordinates). The pro-
posed approach has some advantages:

1) It does not require inverse-kinematics (IK) to solve the
path planning problem.

2) Improved method generates only feasible and admissi-
ble configurations of the manipulator.

3) The convergence rate of RRT boosts as the algorithm
works in workspace configuration.

B. TRANSPOSE JACOBIAN REPLACED INVERSE JACOBIAN
Our proposed approach shares the motivation of
Bertram et al. [37], but instead of extending a tree randomly,
it directs the robotic arm to move towards the goal-node if
subsequent configurations are feasible. Let us say a robotic
arm has a joint-configuration of θ with the end-effector
position X ∈ R3. The extension of the manipulator from
θ → X is a non-linear mapping, which is complex and
computationally expensive. However, there exists a linear
mapping between θ̇ and Ẋ through Jacobian J is a linear
mapping. It is given as,

J θ̇ = Ẋ . (11)

Here the assumption includes obstacles Obs in the environ-
ment as well. The θ̇ is given as,

θ̇ = ρJ−1H , (12)

where ρ > 0 determines the step-size, H is the objective
function (9), and the goal is to minimize it. In the absence
of obstacles, uncertainties in the system, or the environment,
the simple controller will be enough to reach the goal posi-
tion. However, the real world environment includes obstacles
and the computation of J−1 on each iteration is a challenging
task. There are different methods like coordinate descent
techniques, function approximation, and inverse mapping to
approximate the Jacobian Inverse [51]–[53], but all are com-
putationally expensive and time-consuming. Another viable
approach presented in [27], instead of computing inverse,
computes the transpose of Jacobian. The computational time
and cost in calculating Jacobian transpose is much less than

Jacobian inverse. Based on [27] the (12) becomes,

θ̇ = ρJTH . (13)

The transpose controller works the same way as an inverse
controller. The rigorous proof of the concept is presented
in [27], but the basic idea is as follows: the instantaneous
motion of the end-effector is given as,

Ẋ = J θ̇ = J (ρJTH ). (14)

Multiple both sides with objective functionH , (14) becomes,

HT Ẋ = ρHT JJTH ≥ 1, (15)

since it is always positive definite, so it shows that the manip-
ulator always move towards the goal-node.

The transpose controller made a fundamental assumption
that any directed joint velocity is achievable, so this assump-
tion breaks in the presence of obstacles and uncertainties in
the system or the environment. These challenges are incor-
porated by further exploiting Jacobian controller, which will
help the soft robotic manipulator navigate around in search-
space. The proposed idea includes two scenarios; random
search with probability PR, and goal-directed search, PG =
1 − PR. In the absence of the obstacles, the motion of the
manipulator will be directed towards goal XG, but once the
manipulator comes across the obstacles, the algorithm will
compute all the valid configurations. Then it weighs them
based on how challenging they are. Finally, it obtains a
trade-off between the efficient and the safe path.

Algorithm 2WJRRT Algorithm
initialize environment()
initialize robotic arm()
Nnew = [] %Initialize Nodes
PG = 0.5 %Threshold for goal directed extension
P = rand()
for < n iterations > do
if P < PG then
Nnew = extend_Towards_Goal()

else
Nnew = extend_Randomly()

end if
if Nnew 6= NULL then
N = add_Node(Nnew)

end if
end for

Asmentioned earlier, theWJRRT algorithm is divided into
two scenarios: Extend randomly, i.e., extend_Randomly()
and Extend towards the goal, i.e., extend_Towards_Goal().
The addition of two scenarios made the path planning
more efficient, robust, and less time-consuming. The rea-
son is, if the tree grows out randomly based on ran-
dom nodes, i.e., extend_Randomly(), then it will be
time-consuming and less efficient in search of goal-node.
However, extend_Towards_Goal() is incorporated, then the
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algorithm purposely generates those nodes which moves the
manipulator towards goal-node until it comes across an obsta-
cle. And then, the extend_Randomly() function comes in
handy, which will search the space randomly, and it will
connect the tree with the configuration (node) that avoids
the obstacle. The efficiency of WJJRT is further elaborated
in simulation section. The basic framework of WJRRT is
given in Algorithm 2. Here it is worth mentioning, Nnew is
a node which includes the configuration of the manipulator,
i.e., Nnew → {Xnew, θnew}. In the framework of WJRRT,
the key function is the extension of the tree towards the goal,
i.e., extend_Towards_Goal(). To understand the function in
more detail, the pseudocode is provided in Algorithm 3. Out
of all the nodes so far generated in search space, WJRRT
looks for the node close to goal, i.e., Nc. To extend that node
further in joint-space, the formulation of closest which is also
the current joint-configuration θc is given as,

θc = θc +1θc, (16)

where 1θc is a small random change in θc. After calcu-
lating the Jacobain transpose at θc, WJRRT calculates the
joint-configuration θnew for Nnew, which is given as,

1Xc = delta_X(θc, θG) (17)

1θc = JT1Xc (18)

θnew = θc +1θc, (19)

where 1Xc is a small change towards goal. Now, the next
step is to check the obstacles in the path. WJRRT avoids
obstacles by solving the optimization problem mentioned
in (7). Obstacle avoidance is an intricate issue, especially for
the manipulators because of two reasons: 1) The mechanical
constraints of manipulators and 2) Uncertainty in the system
and environment. Imagine there is an obs obstacle between θc
and the θnew. Considering above mentioned issues, WJRRT
will generate m different configurations from θc towards
θnew, and the configurations avoid obstacle. All m trajecto-
ries will be assigned two weights, i.e., to choose the safest
path from θc to θnew and to make an efficient and smooth
transition towards θnew (considering mechanical constraints).
Two weights parameters, i.e., Ws and Wd are defined. Here,
Ws deals with the obstacle and the manipulators’ current
configuration. It sums up the distances between the obstacles
and the links of the manipulator. It is given as,

Ws =

m∑
i=1

dist(obs, θ [li]new). (20)

where dist(.) is given in (8) and Ws > C1, where C1 > 0.
The threshold of Ws is to maintain a reasonable distance
between the obstacle and the manipulator. The value of C1
is set through hit and trial. In an environment with several
obstacles, it is better to keep its value high because higher
Ws means the reasonable distance from the obstacle. Like-
wise, Wd is to control angular step-size based on admissible

configurations, which is given as,

Wd =

m∑
i=1

dist(θ [li]c, θ [li]new), (21)

where Wd > C2 and C2 > 0. The value of C2 is also
set through hit and trial. The trade-off between safe (far
from obstacles) and efficient (far from current configura-
tion) lies somewhere in between Ws and Wd . The function
extend_Randomly() is similar to above except that the algo-
rithm does not calculate Jacobian.WJRRT simply explore the
configuration space randomly. Finally, the contributions of
WJRRT algorithm are as follows:

• It is bias towards the direction of goal-node, which
makes It fast and efficient.

• It tackles the uncertainties in soft robotic manipulator
and make trajectory exploration more efficient.

Algorithm 3 extend_Towards_Goal()
initialize_zero(Count,Ws,Wd )
set_threshold(k,C1,C2)
Hbest = ∞
Nc = closest_Node_to_Goal()
while Nc 6= NG do
1θc = k ∗ rand(1,m)
θc = θc +1θc
JT = J_Tanspose(θc)
1Xc = delta_X(θc, θG)
1θc = JT1Xc
θnew = θc +1θc
for l = 1 : m do
if Ho(Obs, θ [l]new), as in (7) < 0.5 then
Count = Count+ 1
Ws = Ws + dist(Obs, θ [l]new), as in (4)
Wd = Wd + dist(θ [l]c, θ [l]new)

end if
end for
if Count < m then
return Nnew = NULL

end if
if Ws > C1 &&Wd < C2 then

Compute H , as given in 9
if H < Hbest then
Hbest = H
return Nnew

end if
end if

end while

C. THEORETICAL ANALYSIS
The section includes the theoretical analysis if WJRRT, sta-
bility, convergence, random and towards goal extension, time
and space complexity.
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1) WJRRT IS STABLE AND CONVERGENT
Theorem 1: The objective function ‘‘H’’ of Weighted Jaco-
bian Rapidly-exploring Random Tree (WJRRT) will continu-
ously decrease monotonically with iterations ‘‘n’’ thus makes
it stable. It is given as,

H1 > H2 n1 < n2. (22)

Proof: See Lemma 1 of [54].
Theorem 2: The objective function ‘‘H’’ of Weighted Jaco-

bian Rapidly-exploring Random Tree (WJRRT) will drive the
system towards optimal solution NG, as the iteration ‘‘n’’
approaches to infinity, makes WJRRT convergent. It is given
as,

H → NG n→∞. (23)

where NG is the goal-node in path planning of soft robotic
manipulator.

Proof: See Lemma 2 of [54].

2) EXTEND RANDOMLY VS. EXTEND TOWARDS GOAL
Here it is worth mentioning that the number of nodes towards
the goal, i.e., the configurations that lead the manipula-
tor towards the goal, are higher in extend_Towards_Goal()
than extend_Randomly() function. Assume PG = 0.5 and
P < PG, the algorithm will enter in extend_Towards_Goal().
As mentioned earlier, this function is biased towards
the Goal-node because it generates the series of joint-
configurations until it comes across the obstacle. After the
generation of one admissible node, the Transpose Jacobian
(within extend_Towards_Goal()) takes control and linearly
moves the manipulator towards the goal and, in this pro-
cess, all the generated nodes are goal nodes. Once it comes
across the obstacle the subsequent node breaks the loop and
returns the series of generated nodes, i.e., Nnew to the main
function. On the other hand, when P > PG, the algorithm
calls extend_Randomly() function, and it generates only a
single node on each call. Despite the equal probability for the
occurrence of both functions, extend_Towards_Goal() has the
higher potential to generate more nodes. The two functions
are elaborated in Algorithm 2 and Algorithm 3.

Finally, the selection of parameters, i.e., k,C1,C2,

depends on the manipulator and the environment. Here, k is
a step-size in configuration space, i.e., from θc towards θnew.
The smaller range of [0, 0.1] will ensure the smooth transition
of manipulator from θc→ θnew. For the values of C1 and C2,

as mentioned earlier, in case of a complex environment with
several obstacles keep the value of C1 higher, e.g., ≥ 10,
and C2 lower, e.g., ≤ 1. In that case, the algorithm includes
only those nodes that ensures the safe route for manipulator
towards goal-node.

D. TIME AND SPACE COMPLEXITY
1) TIME COMPLEXITY
The WJRRT algorithm will last for n iterations, as shown
in Algorithm 2. It includes two functions, extend_Towards_

Goal() and extend_Randomly(). Primarily, extend_Towards_
Goal() function contributes to the time-complexity of the
algorithm. Let us say, each statement consumes a unit of time.
The time-complexity of extend_Towards_Goal() is shown in
Algorithm 3. Consider there are N nodes then the time com-
plexity of closest_Node_to_Goal() will be n. The complexity
of Jacobian depends on the number of joints in manipula-
tor, which is given as m2. The time complexity of obstacle
check is linear because of the GJK algorithm [49], so the
time-complexity of for is m. The rest of the statements take
a unit of time each so they can ignored. The total complexity
of the function becomesO(m3n).The overall time complexity
of WJRRT becomes O(m3n2). Since, n2 � m3, so m3 can be
eliminated and the time-complexity becomesO(n2),which is
polynomial.

2) SPACE COMPLEXITY
The WJRRT algorithm will last for n iterations, as shown in
Algorithm 2. Again, focus on extend_Towards_Goal() alone
as it contributes to the space-complexity of the algorithm
mainly, it is shown in Algorithm 3. Let us say, each node
consumes unit space. The function closest_Node_to_Goal()
maximum will consume n, the jacobian transpose will con-
sume m2. Assume the obstacles consume p space. The
time-complexity of extend_Towards_Goal() is O(pnm2). The
space-complexity of WJRRT becomes, O(pn2m2). Since,
pn2 � m2, so m2 can be ignored to make the expression
simple. The final space-complexity is O(pn2), which is poly-
nomial.

IV. SIMULATION RESULTS
In this section, simulation results and the comparison of
WJRRT with JT-RRT (Jacobian Transpose RRT), Bi-RRT
(Bidirectional RRT) and TB-RRT (Tangent Bundle RRT)
are presented. WJRRT is tested on three different manip-
ulators, i.e., two-arm, three-arm, and seven-arm redundant
manipulators.

A. TWO-ARM ROBOTIC MANIPULATOR
First, WJRRT is tested on the two-arm robotic manipulator
and compared the results with the JT-RRT [55], Bi-RRT [56],
and TB-RRT [57] algorithms. The algorithms were tested on
the same PCwith specifications: Intel-i7, 3.41GHz processor,
and 16GB RAM. To end the simulation two cases are used,
either a certain number of iterations or if end-effector of
manipulator reaches within the threshold radius around goal
position XG. In case of two-arms, the number of iterations
are 500, and the threshold radius is r = 0.001cm. Safety
parameters are: C1 = 4 and C2 = 0.5. The simulation ran for
ten times and evaluated the performance of all four algorithms
based on the following parameters:

• Success: The number of times algorithm succeed in
accomplishing the task.

• Total Time: The time taken by the algorithm to accom-
plish single task.
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FIGURE 4. It is an implementation of the WJRRT algorithm on the two-arm manipulator. It shows the time-lapse of trajectory following by the
manipulator starting from XS to XG, and the task completion time is 5.63 sec .

TABLE 1. Comparison between WJRRT, JT-RRT, Bi-RRT, and TB-RRT algorithms.

• Nodes: The number of nodes generated by the algorithm
during a single task.

• Track Nodes: Out of total nodes those which are
included in path planning.

• Goal Nodes: The nodes in track nodes which are
obtained from extend_Towards_Goal() function.

• Random Nodes: The nodes in track nodes which are
obtained from extend_Randomly() function.

• Obstacle Check: The total number of times algorithm
avoided obstacles.

• Objective Function: The objective function value
which shows how close end-effector gets to the
Goal-Node.

The first two parameters are self explanatory, but Nodes,
Track Nodes, Track Nodes, and Random Nodes are related
to each other. Nodes represent the percentage of exploration
done by the algorithm in search space, more nodes mean

more exploration. Track Nodes are derived from the Nodes,
those nodes which directs the manipulator from Start-node
towards Goal-node, more Track Nodes. Within Track Nodes
there exist two types of nodes, i.e., extend_Towards_Goal()
(Goal Nodes) and extend_Randomly() (Random Nodes).
More nodes in Goal Nodesmean that manipulator’s trajectory
less abrupt changes because of Transpose Jacobian controller.
All these parameters are given in TABLE 1. For the two-arm
manipulator, the scenario includes obstacles. The goal is to
plan a path from XS to XG, using the WJRRT framework
while avoiding obstacles. The time-lapse of the simulation
is given in FIGURE 4(a)-(h). In this case, PG = 0.5. There
are no angular constraints except for self-collision.

The results manifested in TABLE 1 shows that the
success rate and simulation time of WJRRT outsmarts
the other algorithms. Likewise, more nodes generated
under extend_Towards_Goal() function makes WJRRT
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FIGURE 5. It is an implementation of the WJRRT algorithm on the three-arm manipulator. It shows the time-lapse of trajectory following by the
manipulator starting from XS to XG, and the task completion time is 9.43 sec .

more efficient. Lastly, the objective function value ofWJRRT
converged to the optimal solution which is 0.001.

B. THREE-ARM ROBOTIC MANIPULATOR
WJRRT algorithm is applied on the three-arm manipulator
and compared it with other algorithms, the results are shown
in FIGURE 5 and TABLE 1. The kinematics of a three-arm
manipulator is quite complicated as it has no closed-form
solution. Furthermore, the complexity increases when there
are obstacles in the environment. The number of iterations
for the accomplishment of the task is 1000, and there are
no angular constraints. Safety parameters are: C1 = 3 and
C2 = 0.7.

The detailed results are shown in TABLE1.Again,WJRRT
outperformed other algorithms in the success rate and in sim-
ulation time. Our proposed algorithm-generated more nodes
under extend_Towards_Goal() function. Lastly, WJRRT
algorithm converges to the optimum solution of 0.005. The
time-lapse of WJRRT generated path traced by a three-arm
manipulator is shown in FIGURE 5(a)-(h).

C. SEVEN-ARM REDUNDANT MANIPULATOR
Finally, the algorithm is applied on seven-arm redundant
manipulator and compared it with other algorithms, and the
results are shown in FIGURE 6 and TABLE 1. Redundant
manipulators are widely used in industries and the medical
field because of the dextrous nature. The extra degree of
freedom allows them to perform secondary tasks like obstacle
avoidance along with primary tasks like tracking paths. The
control of redundant rigid-manipulator is an intricate and
challenging task and requires complex controlling frame-
works to control them. The challenge increases several folds

in the case of soft robotic manipulators because of the flex-
ible nature. The path planning scenario for the redundant
manipulator is shown in FIGURE 6. The task for the redun-
dant manipulator is to follow the WJRRT generated path
from XS to XG. The objective is to plan a path in a narrow
tube without colliding the walls. Since the manipulator is
surrounded by more obstacles as compare to Two-arm and
Three-arm robotic manipulators, so the safety parameters are:
C1 = 10 and to further ensure the safety the C2 = 0.01 so
that manipulator takes smaller step.

The results are shown in TABLE 1, and it shows that once
again, WJRRT performed way better than other algorithms.
However, in some aspects, WJRRT has a close contest with
TB-RRT. TB-RRT has a higher success rate, but it is more
time-consuming because the nodes are not biased towards
goal-node. WJRRT algorithm converged to its optimal solu-
tion 0.002, the time-lapse of the simulation is shown in
FIGURE 6(a)-(h).

V. SOFT ROBOTIC MANIPULATOR PLATFORM
In this section, the implementation of WJRRT is presented
on the soft robotic prototype. The proposed design of soft
robotic manipulator is hybrid in nature. It includes rigid links
and soft joints made of polypropylene and polychloroprene,
respectively. These materials are widely available in market
and are used in sea for carrying cables which ensures their
durability [58]. The soft-manipulator has a fuzzy behavior
that makes its path planing a difficult task than a rigid
robot. The weight or fitness functions in the WJRRT algo-
rithm accommodate the fuzzy nature of the manipulator. Ws
ensures the safest path, i.e., Obstacle avoidance, which can
be seen from Obstacle Check mentioned in Table 1 where
WJRRT mostly has more obstacles checks than the other
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FIGURE 6. It is an implementation of the WJRRT algorithm on the seven-arm redundant manipulator. It shows the time-lapse of trajectory following by
redundant manipulator starting from XS to XG, and the task completion time is 13.21 sec .

three algorithms. Likewise, Wd ensures that manipulator has
a smooth transition from one joint space configuration to
other. The simulation results in TABLE1 shows that the Track
Nodes of WJRRT are more in number than the rest especially
in case of Seven-Arm Manipulator.

A. FABRICATION OF SOFT ROBOTIC MANIPULATOR
Asmentioned earlier, our soft robotic manipulator is the com-
bination of two materials, i.e., polypropylene tubes as links
and polychloroprene as joints. Here it is worth mentioning
that traditionally the fabrication of soft robotic manipulator
includes silicone elastomer because of its durability and flex-
ibility. However, it requires hours to develop into the designed
shape, and small mistakes can force to start the fabrication
process from the beginning. Silicone elastomer is replaced
with polychloroprene, as it is cheap and easy to use.

The fabrication of the soft robotic manipulator is as fol-
lows. The polypropylene tubes are flexible, so take a tube
of the length of two links, bend it from the middle, and cut
a notch, as shown in FIGURE 7(a). Take tube size poly-
chloroprene as it is soft and flexible like a ballon and insert
it inside the polypropylene tube. Now, take an air pipe and
insert it inside polychloroprene from one end and glue or tape
both ends of the tube, as shown in FIGURE 7(a). To test the
working, inject air inside the air-pipe using the pump, when
the polychloroprene inflates the tube bends from the center,
as shown in FIGURE 7(b)-(c).
The concept is further extended from two-arms soft robotic

manipulator to the three-arms soft robotic manipulator. For
three-arms, take a larger tube of polypropylene and cut three
notches; each represents a joint, so with three notches, it has
three links, i.e., three arms. Now insert three different poly-
chloroprenes inside the tube to control three joints of the soft
robotic manipulator.

FIGURE 7. (a), (b), and (c) show deflated, semi-inflated, and fully inflated
form of the soft-muscle, respectively.

B. SOFT ROBOTIC MANIPULATOR PROTOTYPE FOR
WJRRT ALGORITHM
A platform of a soft robotic manipulator is build to test the
performance of the WJRRT algorithm on real-world appli-
cations. The fabrication of the soft robotic manipulator is
discussed in the previous section. For the pump mechanism,
three syringes of 100mL,were used to drive them. Three 12V
linear-motors with motor driver L298, and Arduino-mega
controller is used. The system is shown in FIGURE 8. This
prototype is limited to support only the three-arm robotic
system, but by increasing the number of syringes and motors,
it can be further extended.

FIGURE 8. It is a prototype for the soft robotic manipulator manipulator,
(a) shows the hardware to drive the manipulator, and (b) is the
three-arm soft robotic manipulator.
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For controlling mechanism, three syringes of 100mL is
used and three linear motors because of the simple control.
Motors are used to control the back and forth motion of the
syringes. As the motor moves forward, it pushes the syringe
along as a result an air blows out of the syringe. Likewise,
when the motor moves backward, the syringe sucks the air
inside. The openings of all three syringes are attached with
one of the joints of the system, respectively. Now, when
motors move forward, the syringes blow the air inside the
soft robotic manipulator and bends it. Likewise, when motors
move backward, the syringes suck the air causing a manipu-
lator to achieve the initial position.

1) BENDING SENSOR TO MEASURE THE JOINTS ANGLE
LIMIT
The mechanism mentioned above is for the free movement of
all three joints, but to make it more controlled, the maximum
angles that these joints can provide are measured. A bending
sensor is attached with the tube. For three joints, three bend-
ing sensors are used. On calculation, the maximum bending
angle from base to the end-effector joints turned out to be, 40
to 45 degrees, 52 to 55 degrees, and 55 to 60 degrees. And the
minimum angle for all the joints was between 0 to 5 degrees.

2) PROPORTIONAL CONTROLLER TO CONTROL THE SOFT
ROBOTIC MANIPULATOR
Now the platform of soft robotic manipulator is ready, and
the next step is to control the bending of the manipulator. The
problem with the polychloroprenes is that it inflates abruptly
and deflates smoothly. To control the joint-configuration of
the manipulator, a simple proportional controller (P) is used.
The P controller formulation for the single joint soft robotic
manipulator is given as,

E = K (θr − θc), (24)

where E is the error between reference joint-configuration θr
and the current joint-configuration θc of the manipulator.K is
a proportional gain. The general trend between the pump air
and the inflation and deflation of a soft robotic manipulator
is shown in FIGURE 9(a). As mentioned earlier, inflation
requires some extra force at the beginning; however, deflation
happens smoothly. It can be seen in FIGURE 9(b), that how
the P controller reduced the error between θr and θc, and this
is done on a single joint soft robotic manipulator.

C. EXPERIMENTAL RESULTS
In this section, the implementation of WJRRT on the soft
robotic manipulator is elaborated. Experiment is performed
on two-arm and three-arm soft robotic manipulator. The
results were promising, and manipulators successfully and
robustly completed the tasks.

1) TWO-ARM SOFT ROBOTIC MANIPULATOR
First, WJRRT is implemented on the two-arm soft robotic
manipulator, the specifications of the experiment are as

FIGURE 9. (a) shows the relation between the pump air pressure PA and
the bending angle of the soft robotic manipulator, (b) shows the error E
deterioration as θc converges to θr using P controller.

follows: the angle constraints for both the manipulator
were 0 to 30 degrees for base-joint and 0 to 55 degrees for
end-effector joint. The threshold or bearable error E for the P
controller was 2 degrees.

An environment is generated in simulation and replicated
that environment in real-world, during the simulation the
number of iterations were 2000, and recorded all the nodes
generated during the simulation that leads the manipulator
from initial position XS to the goal position XG. The total
generated nodes were 1643, and the nodes for the final path
were 367, out of them selected 20 nodes for experimentation
including the start and the goal nodes, i.e., NS and NG Each
node consists of angles for both joints of the manipulator.
Although 20 out of 367 nodes made the motion of manip-
ulator discretized, our purpose was only to test the imple-
mentation of WJRRT on the soft robotic manipulator. The
completion of the track for a two-arm soft roboticmanipulator
using WJRRT is shown in FIGURE 10(a)-(f).

Theworking of the proportional controller becomes promi-
nent in FIGURE 10(a)-(f), when the end-effector arm passes
the required angle and proportional control brings it back
to its required position by minimizing the error between its
current position and its required position. But the working
of the WJRRT algorithm was a success for the two-arm soft
robotic manipulator. The next task is to integrate another arm
and test the implementation of the WJRRT algorithm on the
three-arm soft robotic manipulator.

2) THREE-ARM SOFT ROBOTIC MANIPULATOR
Now, WJRRT is implemented on the three-arm soft robotic
manipulator. The angle constraints for the manipulators were
0 to 30 degrees for base joint, 0 to 55 degrees for middle-joint,
and 0 to 60 degrees for the end-effector joint. The error E = 4
degrees, as it is more challenging to control the three-arm soft
robotic manipulator.

WJRRT is implemented twice, first to move the manipu-
lator from its initial position to inside the pit, as shown in
FIGURE 10(g)-(l), and then from the pit to the goal posi-
tionXG. The implementation technique is same, simulation is
performed and collected some output nodes for the path. The
P controller controlled the motion of the manipulator from
the initial-node NS to the final node NG. The experimental
results are shown in FIGURE 10(g)-(l).
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FIGURE 10. Experimental results for the implementation of WJRRT on two-arm and three-arm soft robotic manipulator.

The results obtained from both the experiments are promis-
ing, which shows that in the future it can be further extended
to a soft robotic manipulator with more arms, and by incor-
porating integral (I), Differential (D) controller, the accuracy
of path planning can be further improved.

VI. CONCLUSION
This paper used an optimization approach to present a
model-free control for the path planning of the robotic manip-
ulator. It uses an intelligent framework that integrates the
Jacobian controller with Rapidly-exploring Random Tree
known as Weighted Jacobian Rapidly-exploring Random
Tree (WJRRT). No inverse kinematic model of the manipula-
tor is required asWJRRT solves the path planning problem in
forward kinematics. WJRRT is robust as it does not depend
on the model of the manipulator. It explores the search space
randomly as well as it directs the manipulator towards goal
position when required. It also tackles the obstacles in the
environment using an approach known as maximizing the
minimum distance. It assigns a fitness value to each node
and, based on the values algorithm, intelligently decides the
final path, which is a trade-off between the path’s efficiency
and safety. The simulation and experimental results are pre-
sented on soft robotic manipulators of different degrees of
freedom (DOF) and compared with JT-RRT, Bi-RRT, and
TB-RRT algorithms. The results demonstrate that WJRRT
can efficiently and accurately control the motion of manip-
ulators.
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