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Abstract: Computer-aided diagnosis (CAD) techniques have emerged to complement qualitative
assessment in the diagnosis of benign and malignant thyroid nodules. The aim of this review was
to summarize the current evidence on the diagnostic performance of various ultrasound CAD in
characterizing thyroid nodules. PUBMED, EMBASE and Cochrane databases were searched for
studies published until August 2019. The Quality Assessment of Studies of Diagnostic Accuracy
included in Systematic Review 2 (QUADAS-2) tool was used to assess the methodological quality of
the studies. Reported diagnostic performance data were analyzed and discussed. Fourteen studies
with 2232 patients and 2675 thyroid nodules met the inclusion criteria. The study quality based
on QUADAS-2 assessment was moderate. At best performance, grey scale CAD had a sensitivity
of 96.7% while Doppler CAD was 90%. Combined techniques of qualitative grey scale features
and Doppler CAD assessment resulted in overall increased sensitivity (92%) and optimal specificity
(85.1%). The experience of the CAD user, nodule size and the thyroid malignancy risk stratification
system used for interpretation were the main potential factors affecting diagnostic performance
outcomes. The diagnostic performance of CAD of thyroid ultrasound is comparable to that of
qualitative visual assessment; however, combined techniques have the potential for better optimized
diagnostic accuracy.

Keywords: computer-aided diagnosis; thyroid nodules; grey scale and Doppler ultrasound; Thyroid
Imaging Reporting and Data System

1. Introduction

Thyroid nodules are a common finding in symptomatic and asymptomatic patients and have a
malignancy risk rate of about 5–15% [1]. However, the incidence of thyroid cancer is rising due to
the increased sensitivity in diagnostic imaging tools such as ultrasound [2,3]. Fine-needle aspiration
cytology (FNAC) is the reference standard preoperatively; however, it is minimally invasive and can
yield non-diagnostic results in about 25% of the samples and about 20–30% indeterminate results [4].
Current thyroid management guidelines recommend ultrasound for the primary investigation of
all suspected thyroid nodules and FNAC being reserved for further investigation of suspicious or
equivocal ultrasound findings [5,6]. The primary goal in the diagnosis of thyroid nodules is to limit
unnecessary FNAC procedures and unwarranted thyroid surgery on benign nodules which may lead
to cost and quality of life implications.

Ultrasound is an operator-dependent imaging modality whose results are prone to subjective
interpretation. Subjective assessment in grey scale thyroid ultrasound is dependent on the presence
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of features suggestive of malignancy or benignity; with multiple features within a single nodule
having higher predictive value and diagnostic accuracy [7,8]. Thyroid malignancy risk stratification
guidelines such as the thyroid imaging reporting and data system (TIRADS) are used in routine clinical
practice to differentiate benign and malignant nodules. Some of the guidelines used include those
from the American Thyroid Association (ATA), American College of Radiology (ACR), Korean Society
of Thyroid Radiology (KSThR), European Thyroid Association (EU), and the American Association
of Clinical Endocrinologists, the American College of Endocrinology, and the Associazione Medici
Endocrinologi (AACE/ACE/AME) [5,6,9–12].

Computer-aided diagnosis (CAD) systems have emerged in past years as non-invasive approaches
to complement radiologists’ interpretation and potentially overcome subjective interpretation
limitations. CAD detection and diagnosis methods are based on machine learning approaches that use
statistical and data mining algorithms, which rely on textural ultrasound features and quantitative
regional segmentation of vascularity, to differentiate benign and malignant nodules [13–16]. CAD
software can be embedded within the ultrasound unit or be used as an isolated program for offline
image analysis. Grey scale ultrasound CAD software is equipped with selected TIRADS for diagnostic
purposes, whereas Doppler ultrasound CAD is often based on stipulated cut-off points for vascularity
indices (VI) used in differentiating peripheral and central vascularity in thyroid nodules.

Presently, few studies have investigated the diagnostic performance of various thyroid ultrasound
CAD methods as applied in the clinical context and shown variable results. Existing systematic reviews
have been based on analyzing different textural techniques and machine learning algorithms and
classifiers more on a biomedical engineering perspective rather than clinical applicability [13,17–19].
A recent systematic review and meta-analysis study focused on the diagnostic performance of mainly
the Samsung S-Detect CAD software in comparison with that of radiologists for the differentiation of
thyroid nodules in clinical settings [20]. As various CAD systems for ultrasound feature assessment of
thyroid nodules have been developed by various researchers and clinicians in different parts of the
world, there are multiple factors that can influence their diagnostic performance.

To the best of our knowledge, there is currently a lack of reviews analyzing the performance of
different types of ultrasound CAD for characterizing thyroid nodules. Hence, this present systematic
review assesses and summarizes current evidence on the diagnostic performance of various thyroid
ultrasound CAD software in the differentiation of benign and malignant thyroid nodules and identifies
potential factors that may influence diagnostic efficiency and clinical applicability.

2. Materials and Methods

2.1. Literature Search

The following electronic databases were searched: PUBMED, EMBASE and Cochrane Library.
The search strategy was based on the PICOS framework to search concepts relating to the population,
intervention, and outcomes in the different databases. The search concepts were: (1) Thyroid neoplasm,
(2) ultrasonography, (3) computer-assisted diagnosis, and (4) diagnostic accuracy, and their related
terms as MeSH terms, keywords and/or EmTree terms. Initially, there were no date or language
restrictions. Searches were re-run regularly until August 2019 before the final analyses to retrieve more
studies for inclusion.

2.2. Inclusion and Exclusion Criteria

All the studies analyzed for assessing the diagnostic performance of thyroid ultrasound
computer-aided diagnosis techniques had to meet the following criteria: (1) The study involved
only human subjects and had institutional ethical approval; (2) informed consent was either obtained
from each participant or adequately waived for retrospective studies; (3) the study investigated
the diagnostic performance of computer-aided diagnosis techniques in either grey scale or Doppler
ultrasound or both for differentiation of benign and malignant thyroid nodules in a clinical setting;
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(4) use of an appropriate reference standard (FNAC or histopathology); (5) diagnostic performance
outcomes of interest were reported in terms of sensitivity, specificity, negative predictive values
(NPV), positive predictive values (PPV), diagnostic accuracy, and/or area under receiver operator
characteristic curve ROC curve (AUROC); and (6) peer-reviewed articles in English. Exclusion criteria
were: (1) Unrelated to computer-aided diagnosis in ultrasound of thyroid nodules; (2) reviews, case
reports, editorial letters, or commentaries; (3) studies assessing engineering classifiers of thyroid
ultrasound textural features; (4) non-English; and (5) insufficient diagnostic accuracy outcomes.

2.3. Data Extraction

Two reviewers independently performed data extraction and discrepancies were resolved by
reaching a consensus. A standardized data abstraction form was developed based on the preferred
reporting items for systematic reviews and meta-analysis (PRISMA) guidelines [21,22]. For each study
included in this review, the following information was extracted: Authors, year of publication, number
of patients and thyroid nodules, average thyroid nodule diameter, the reference standard for final
diagnosis, type of ultrasound machine and transducer used, type of computer-aided diagnosis used,
and optimal cut-off points for determining malignancy where applicable. The specificity, sensitivity,
NPV, PPV, and diagnostic accuracy or AUC from each study were extracted from each reported study.

2.4. Quality Assessment

The risk of bias and methodological quality of the included studies was assessed using the
QUADAS-2 checklist tool [23]. The included studies were assessed on the four major quality domains:
(1) Patient selection bias and applicability; (2) index test conduct and interpretation bias and applicability;
(3) reference standard, its conduct and interpretation bias and applicability; and (4) patient flow and
timing bias and applicability. Each of these domains was categorized as high, low, or unclear and
discrepancies resolved by consensus upon re-reviewing the articles.

2.5. Data Analysis Approach

Due to the wide range of the diagnostic criteria in the studies included in this review, a meta-analysis
was not done as few studies had comparable criteria. A narrative synthesis was adopted, and the
analysis focused on categorizing findings based on the type of ultrasound features, comparative
analysis of human and CAD performance, as well as the TIRADS used.

3. Results

3.1. Literature Search

The initial comprehensive search strategy up to 15 August 2019, yielded 385 papers for the
title and abstract screening with 46 duplicates being excluded (Figure 1). There were 203 articles
from PUBMED, 165 articles from EMBASE and 17 articles from Cochrane. A further 296 papers
were excluded based on the abstract review as they were not related to the review topic. Of these,
285 papers were unrelated to thyroid ultrasound computer-aided diagnosis. Six studies were excluded
based on wrong outcomes, with two focusing on computer-assisted scintigraphy [24,25] while the
other four focused on quantitative elastography [26], computed-tomography [27], laser ablation [28],
and sonographic localization of metastatic lymph nodes [29]. Because the scope of this review was
limited to human populations with thyroid nodules, two studies were excluded with one being a
mouse model study [30] and the other a human cell line study [31]. Two review articles and an
editorial letter were excluded as they did not meet the publication inclusion criteria of original research
articles [17,19,32]. A full-text review was conducted for the remaining 43 papers which resulted in
the exclusion of 29 articles that did not meet the inclusion criteria. Nineteen textural feature analysis
studies were excluded because they focused on texture feature extraction and classifier performance
for the design and developmental phase of CAD software from an engineering perspective rather
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than a clinical approach. Of these, seven analyzed the performance of various statistical textural
features [33–39], while six studies analyzed performance of a combination of textural features and
other features, namely texture and wavelet transform features [40–42], texture and morphological
features [43], and texture and radiological features [44], as well as texture analysis, elastography and
grey scale ultrasound [45]. Two studies evaluated the performance of the combination of histogram
and fractal texture analysis for support vector machine (SVM) and random forest classifiers [46,47]
and one study assessed the accuracy of wavelet texture analysis for different classifiers [48]. Three
studies focused on artificial intelligence texture analysis; two evaluated the diagnostic performance of
the combination of artificial neural network (ANN) textural analysis with SVM [49], and ANN with
binary logistic regression analysis [50], while another evaluated deep learning convolutional neural
network feature classification performance using a random forest classifier [51]. Seven studies were
excluded because they were pre-clinical pilot studies for the validation of different CAD algorithms and
classifiers [52–58]. Two studies were excluded based on insufficient diagnostic performance outcomes
as one had insufficient data to determine sensitivity, specificity, and diagnostic accuracy for adequate
comparative analysis between the CAD software and radiologist [59,60] while one study was not
exclusively on ultrasound [61]. A total of 14 papers met the inclusion criteria for this review.
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3.2. Study Characteristics

All studies included in this review were diagnostic cohort studies comprising of eight prospective
studies [62–69] and six retrospective studies [70–75] published between 2007 and 2019. The main
patient characteristics in these studies are summarized in Table 1. The total number of patients from the
14 studies was 2232. The number of patients ranged from 50 to 333 patients per study with an average
female percentage of 79% ± 4.3 (range 69.7–85%) across the included studies although two studies did
not give gender distribution [26,32]. From these patients, a total of 2675 thyroid nodules (1396 benign
and 1279 malignant) were evaluated and the mean malignancy rate was about 46% ± 16.9 (22.6–78.8%
range). In the studies that reported the mean diameter of the thyroid nodules, the range was from 1.5
to 3.37 cm for benign nodules and 0.9 to 3.2 cm for malignant nodules. The reference standard, type of
ultrasound machine, and CAD characteristics are outlined in Table 2. Four studies used the Philips
HDI 5000 ultrasound system (Philips Healthcare, Bothell, WA, USA) [62–64,72], four studies used
the Samsung RS80A (Samsung Medison, Gyeonggi-do, Republic of Korea) [65,67,68,71], while three
studies included multiple ultrasound systems [70,73,75], and another three used Aixplorer (Supersonic
Imagine Aix en Provence, France), Sonoline Elegra (Siemens Healthcare, Erlangen, Germany) and GE
Logiq E9 (GE Healthcare, Chicago, IL, USA), respectively [66,69,74].

Five studies used histopathology exclusively as a reference standard [69,70,72,74,75] while one
used FNAC only [71], and eight studies used both histopathology and FNAC [62–68,73]. Ten studies
assessed the diagnostic performance of CAD of grey scale ultrasound features with two focusing solely
on calcifications while one focused on echogenicity, and four studies assessed Doppler vascularity
features. Four studies used S-Detect for thyroid CAD (Samsung Medison, Gyeonggi-do, Republic of
Korea) embedded in Samsung ultrasound systems [65,67,68,71] whilst another four used AmCAD-UT
CAD software (AmCad BioMed, Taipei, Taiwan) [62–64,74]. Three studies used self-developed artificial
intelligence (AI) CAD systems [70,72,75]. The remaining three studies employed self-developed
Doppler ultrasound CAD algorithms [66,69,73]. The diagnostic performance outcomes of the different
thyroid ultrasound CAD systems in the included studies are summarized in Table 3.
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Table 1. Main patient characteristics of the included studies.

Author(s) Ref. Year
Patients
Total (n)

Mean Age-Years (SD/Range) Nodules (n) Mean Size of Nodules-cm (SD)

Overall Benign Malignant Total Benign Malignant Benign Malignant

Lyshchik et al. 2007 [69] 56 53.1 ± 11.6 NA NA 86 40 46 NA NA
Chen et al. 2011 [64] 225 NA 50.6 ± 12.52 46.7 ± 15.22 256 173 83 2.35 ± 0.98 1.94 ± 0.86
Wu et al. 2013 [62] 208 49.6 ± 13.4 51.0 ± 12.7 47.0 ± 14.2 238 159 79 NA NA

Choi et al. 2015 [72] 85 52 (29–81) NA NA 99 21 78 NA NA
Sultan et al. 2015 [73] 99 54 ± 15.5 56.6 ± 14.6 50.7 ± 16.4 100 58 42 1.81 ± 0.73 1.77 ± 0.74

Wu et al. 2016 [63] 333 48.37 (11–81) NA NA 411 254 157 NA NA
Baig et al. 2017 [66] 111 NA 51.2 ± 12 56.6 ± 17.6 111 84 27 NA NA
Gao et al. 2018 [70] 262 NA 48.4 ± 12.3 43.2 ± 10.4 342 103 239 1.7 ± 1.4 1 ± 0.7
Choi et al. 2017 [67] 89 45.3 NA NA 102 59 43 1.5 ± 0.8 0.9 ± 0.4
Gitto et al. 2019 [71] 62 60 ± 12 NA NA 62 48 14 NA NA
Yoo et al. 2018 [65] 50 43.2 (22–81) NA NA 117 67 50 1.2 ± 1.0 1.1 ± 0.8

Jeong et al. 2019 [68] 76 46 NA NA 100 56 44 1.8 ± 0.8 1.5 ± 0.8
Reverter et al. 2019 [74] 300 NA 55 ± 11 56 ± 12 300 165 135 2.8 ± 0.4 3.2 ± 1.0

Wang et al. 2019 [75] 276 46.3 (20–71) 50 ± 10.6 44.3 ± 11.5 351 109 242 3.37 ± 1.81 1.17 ± 0.87

NA-not available.
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Table 2. Main features of the diagnostic tools used in the included studies.

Author(s) Type of Ultrasound Machine Type of CAD Reference Standard Diagnosis Parameter

Lyshchik et al., 2007 [69] Siemens Sonoline Elegra with a 5–9MHz
linear array transducer (7.5L40)

Algorithm for manual segmentation of
tumor and Doppler quantification in

MATLAB
Histopathology

Doppler–visual and quantitative
intranodular vascularization (vascular

index-VI)

Chen et al., 2011 [64] Philips HDI 5000 (2000 model) with a
5–12 MHz linear probe (L12–5)

AmCAD-UT (grey scale CAD of
microcalcifications)

FNAC (75)/Histopathology
(181)

Qualitative and computed calcification
analysis (calcification index-CI)

Wu et al., 2013 [62] Philips HDI 5000 (2000 model) with a
5–12 MHz linear probe (L12–5) Stand-alone AmCAD-UV (Doppler CAD) FNAC/Histopathology Doppler–quantitative intranodular

vascularization (vascular index-VI)

Choi et al., 2015 [72] Philips HDI 5000 CAD based on artificial intelligence for
calcification assessment Histopathology Computed grey scale calcification analysis

Sultan et al., 2015 [73] Philips HDI 5000 (68), Philips iu22 (30),
GE LOGIC E9, GE LOGIC 9

IDL-based software computer program
for vascular analysis Histopathology/FNAC Qualitative and quantitative vascular area

analysis

Wu et al., 2016 [63] Philips HDI 5000 (2000 model) with a
5–12 MHz linear probe (L12–5)

Stand-alone AmCAD-UT (grey scale CAD
of echogenicity) FNAC/Histopathology Qualitative and quantitative echogenicity

analysis (echogenicity index-EI)

Baig et al., 2017 [66] Supersonic Imagine Aixplorer with 4–15
MHz linear transducer

Custom-developed Doppler algorithm for
use in MATLAB

FNAC
(62–benign)/Histopathology (49)

Quantitative regional Doppler
vascularization analysis (vascular

index-VI)

Gao et al., 2018 [70]
Philips HDI 5000, GE Logiq 9 and GE

Logiq 7 with a 5–12 MHz or 8–15 MHz
linear array transducer

CAD-based on artificial intelligence Histopathology Qualitative and computed grey scale
analysis

Choi et al., 2017 [67] Samsung RS80A with 3–12 MHz linear
transducer

S-Detect for Thyroid CAD embedded in
Samsung US scanner

Histopathology/FNAC/US
findings

Qualitative and computed grey scale
feature analysis

Gitto et al., 2019 [71] Samsung RS80A with 3–8 MHz linear
transducer

S-Detect for Thyroid CAD embedded in
Samsung US scanner FNAC Qualitative and computed grey scale

feature analysis

Yoo et al., 2018 [65] Samsung RS80A with a 5–12 MHz linear
probe (Samsung Medison Co., Ltd.)

S-Detect for Thyroid CAD embedded in
Samsung US scanner

FNAC (14)/Histopathology
(103)

Qualitative and computed grey scale
feature analysis

Jeong et al., 2019 [68] Samsung RS80A with 5–12 MHz linear
transducer

S-Detect for Thyroid CAD embedded in
Samsung US scanner Histopathology/FNAC Qualitative and computed grey scale

feature analysis

Reverter et al., 2019 [74] GE Logiq E9 with 5–15 MHz linear
transducer AmCAD-UT Histopathology Qualitative and computed grey scale

analysis

Wang et al., 2019 [75]
GE Logiq E8, Philips iE Elite, and Philips
iU22 with a 6–15 MHz, 3–11 MHz or 5–12

MHz linear array transducer
CAD-based on artificial intelligence Histopathology Qualitative and computed grey scale

analysis

CAD: computer-aided diagnosis, IDL: Interactive data language, US-ultrasound; FNAC: Fine-needle aspiration cytology.
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Table 3. Diagnostic performance of thyroid ultrasound computer-aided diagnosis (CAD) for characterization of malignant and benign thyroid nodules.

Author(s) Diagnostic Criteria SEN (%)–95% CI SPEC (%)–95% CI PPV (%)–95% CI NPV (%)–95% CI DA (%)–95% CI AUC–95 CI

Lyshchik et al. [69]

Visual vascularization 65.2 (49.75–78.65) 52.5 (36.13–68.49) * 61.22 (51.71–69.95) * 56.76 (44.48–68.25) 58.9 (48.17–69.78)

ND
Visual <2 cm 65.5 (45.67–82.06) 85.7 (57.19–98.22) * 90.48 (71.94–97.24) * 54.55 (41.02–67.43) 72.1 (56.33–84.67)

Normalized VI >0.14 in <2 cm 72.4 (52.76–87.27) 100 (76.84–100) * 100 * 63.64 (49.25–75.94) 86.2 (66.60–91.61)
Weighted VI >0.24 in <2 cm 69 (49.17–84.72) 100 (76.84–100) * 100 * 60.87 (47.48–72.80) 84.5 (63.96–89.96)

Chen et al. [64]
Qualitative calcification 48.2 (37.08–59.44) 89 (83.38–93.26) 67.8 (56.59–77.27) 78.2 (74.30–81.60) 75.8 (70.06–80.90) ND
CI threshold at 0.0089 63.9 (51.69–73.86) 80.9 (71.35–87.59) * 71.43 (61.99–79.31) * 73.87 (67.58–79.32) * 72.93 (65.84–79.25) 0.763
CI threshold at 0.00488 80 (69.20–87.96) 55 (44.74–64.78) * 57.80 (51.83–63.55) * 77.78 (68.59–84.87) * 65.75 (58.34–72.63) 0.763

Wu et al., 2013 [62]

Mean VI at 37.056 threshold 84.8 (74.97–91.90) 40.9 (33.16–48.95) 41.6 (37.80–45.53) 84.4 (75.69–90.40) 55.5 (48.90–61.88) 0.711
Mean VI at 10.330 threshold 45.6 (34.31–57.17) 83.7 (76.97–89.03) 58.06 (47.48–67.95) 75.6 (71.42–79.29) 71 (64.80–76.69) 0.711

Central VI at 32.285 threshold 83.5 (73.51–90.94) 41.5 (33.76–49.58) 41.5 (37.60–45.53) 83.5 (74.93–89.61) 55.5 (48.90–61.88) 0.71
Central VI at 5.453 threshold 40.5 (29.60–52.15) 89.3 (83.43–93.65) 65.3 (52.74–76.05) 75.1 (71.42–78.51) 73.1 (67.00–78.63) 0.71

Overall VI at 42.014 threshold 78.5 (67.80–86.94) 40.3 (32.56–48.31) 39.2 (35.46–43.67) 78.8 (70.35–85.66) 52.9 (46.39–59.42) 0.693
Overall VI at 15.755 threshold 40.5 (29.60–52.15) 83 (76.26–88.50) 53.3 (43.40–64.69) 73.6 (69.80–77.34) 68.9 (62.61–74.73) 0.693

Choi et al., 2015 [72] 0.64 threshold 83 (73.19–90.82) 82.4 (58.09–94.55) * 94.2 (87.00–97.53) * 56.7 (43.30–69.13) 82.8 (73.94–89.67) 0.83

Sultan et al. [73]
Qualitative vascularity 67.5 (50.45–80.43) 88.1 (76.70–95.01) * 80 (65.91–89.22) * 78.5 (70.15–84.95) * 79 (69.71–86.51)

NDCentral vascular fraction area 90 (77.38–97.34) 88 (76.70–95.01) 84 (72.91–91.63) 92 (83.32–97.02) 89 (81.17–94.38)
Central flow volume index 50 (34.19–65.81) 62 (48.37–74.49) 48 (37.91–59.88) 63 (54.38–71.14) 56 (46.71–66.86)

Wu et al., 2016 [63]
Visual hypoechogenicity 89.8 (83.98–94.06) 31.9 (26.20–38.01) 44.9 (42.46–47.37) 83.5 (75.47–89.28) 54 (49.06–58.91) ND

Comp. hypoechogenicity (EIN–T) 79.6 (72.46–85.62) 52.4 (46.03–58.64) 50.8 (47.03–54.58) 80.6 (74.91–85.26) 62.8 (57.90–67.46) 0.7
Mark. hypoechogenicity (EIN–M) 33.1 (25.82–41.07) 93.3 (89.50–96.05) 75.4 (64.75–83.59) 69.3 (66.80–71.69) 70.3 (65.64–74.69) 0.77

Baig et al. [66]
Visual grey scale evaluation 96.3 (81.03–99.91) 46.4 (35.47–57.65) 36.6 (31.84–41.67) 97.5 (84.90–99.63) 58.6 (48.82–67.83) ND
Combined VI at 22% off-set 70.4 (49.82–86.25 71.4 (60.53–80.76) 44.2 (34.28–54.58 88.2 (80.50–93.16) 71.2 (61.80–79.37) ND
Combined VI + visual GSU 66.7 (46.04–83.48) 83.3 (73.62–90.58) 56.3 (42.65–68.97) 88.6 (81.90–93.04) 79.3 (70.55–86.39) ND

Gao et al. [70]

CAD 96.7 (93.51–98.54) 48.5 (38.58–58.60) 81.3 (78.30–84.04) 86.2 (75.45–92.71) 82.2 (77.69–86.07) 0.73
Radiologist–KWAK 96.2 (92.97–98.26) 75.7 (66.29–83.64) 90.2 (86.73–92.83) 89.7 (81.90–94.32) 90.1 (86.39–93.02) 0.87

Radiologist–ATA 95.4 (91.91–97.68 78.6 (69.47–86.10) 91.2 (87.73–93.76) 88 (80.39–92.97) 90.4 (86.72–93.26) 0.83
Radiologist–ACR 90.0 (85.43–93.46) 76.7 (67.34–84.46) 90.0 (86.29–92.73) 76.7 (68.94–83.00) 86 (81.83–89.47) 0.86

Choi et al., 2017 [67]

CAD–all nodules 90.7 (77.9–97.4) 74.6 (61.6–85.0) 72.2 (58.4–83.5) 91.7 (80.0–97.7) 81.4 0.83 (0.74–0.89)
Radiologist–all nodules 88.4 (74.9–96.1) 94.9 (85.9–98.9) 92.7 (80.1–98.5) 91.8 (81.9–97.3) 92.2 0.92 (0.84–0.96)

CAD >1 cm nodules 100 (76.8–100.00) 71.8 (55.1–85.0) 56 (34.9–75.6) 100 (87.7–100) 79.2 0.86 (0.74–0.94)
Radiologist >1 cm nodules 92.9 (66.1–99.8) 97.4 (86.5–99.9) 92.9 (66.1–99.8) 97.4 (86.5–99.9) 96.2 0.95 (0.85–0.99)

Gitto et al. [71] CAD 21.4 (4.7–50.8) 81.3 (67.4–91.1) 25 (9.4–51.6) 78 (72.3–82.8) 67.7 ND
Radiologist-K-TIRADS 78.6 (49.2–95.3) 66.7 (51.6–79.6) 40.7 (29.8–52.8) 91.4 (79.3–96.7) 69.4 ND

Yoo et al. [65]
CAD 80 (66.28–89.97) 88.1 (77.82–94.70) 83.3 (72.00–90.67) 85.5 (77.09–91.18) 84.6 (76.78–90.62) 0.84 (0.76–0.90)

Radiologist 84 (70.89–92.83) 95.5 (87.47–99.07) 93.3 (82.15–97.71) 88.9 (80.88–93.80) 90.6 (83.80–95.21) 0.90 (0.83–0.95)
Radiologist + CAD 92 (80.77–97.78) 85.1 (74.26–92.60) 82.1 (72.08–89.12) 93.4 (84.70–97.35) 88 (80.74–93.30) 0.89 (0.81–0.94)
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Table 3. Cont.

Author(s) Diagnostic Criteria SEN (%)–95% CI SPEC (%)–95% CI PPV (%)–95% CI NPV (%)–95% CI DA (%)–95% CI AUC–95 CI

Jeong et al. [68]

Expert Radiologist 84.1 (69.93–93.36) 96.4 (87.69–99.56) 94.9 (82.50–98.64) 88.5 (79.61–93.84) 91 (83.60–95.80) ND
Expert Radiologist using CAD 88.6 (75.44–96.21) 83.9 (71.67–92.38) 81.3 (70.24–88.84) 90.4 (80.34–95.58) 86 (77.63–92.13) 0.863

User 1 using CAD 70.5 (54.80–83.24) 80.4 (67.57–89.77) 73.8 (61.61–83.19) 77.6 (68.30–84.76) 76 (66.43–83.98) 0.754
User 2 using CAD 75 (59.66–86.81) 73.2 (59.70–84.17) 68.8 (58.01–77.80) 78.8 (68.57–86.43) 74 (64.27–82.26) 0.741
User 3 using CAD 70.5 (54.80–83.24) 73.2 (59.70–84.17) 67.4 (56.28–76.84) 75 (66.05–83.64) 72 (62.13–80.52) 0.718

Reverter et al. [74]

Expert–ATA 87 (79.75–91.90) * 91.2 (85.4–94.82) * 90.5 (82.74–92.70) * 90.9 (84.39–92.78) * * 89.00 (84.90–92.31) 0.88
CAD–ATA 87 (79.75–91.90) * 68.8 (61.44–76.04) * 64.5 (64.40–74.42) * 86.3 (80.28–90.79) * * 77.00 (71.82–81.64) 0.72
CAD–EU 85.2 (78.05–90.71) * 50.2 (42.43–58.17) * 50.1 (54.22–62.41) * 82.6 (72.93–86.47) * * 66.00 (60.33–71.35) 0.71

CAD–AACE/AME/ACE 81.5 (73.89–87.64) 53.2 (45.42–61.13) * 51.8 (54.36–63.15) * 80.8 (70.62–83.75) * * 66.00 (60.33–71.35) 0.7

Wang et al. [75] CAD 90.5 (86.08–93.88) 89.9 (82.66–94.85) 95.2 (91.90–97.22) 81 (74.19–86.33) 90.3 (86.73–93.20) 0.902 (0.866–0.931)
Radiologist 93.8 (89.98–96.49) 78 (69.03–85.35) 90.4 (86.90–93.10) 85 (77.46–90.33) 88.9 (85.12–91.98) 0.859 (0.818–0.894)

* calculated value based on available data from the study-may not correspond exactly to the given value. Abbreviations: SEN, sensitivity; SPEC, specificity; PPV, positive predictive value;
NPV, negative predictive value; DA, diagnostic accuracy; AUC, area under curve; CI, confidence interval; ND, not determined; GSU, grey scale ultrasound; comp, computed; mark.,
marked. EIN-T-Echogenicity index (nodule–thyroid tissue); EIN-M-Echogenicity index (nodule-muscle), K-TIRADS-Korean TIRADSATA: American Thyroid Association EU: European
Thyroid Association; AME: Associazione Medici Endocrinologi; ACE: American College of Endocrinology.
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3.3. Quality Assessment

The quality assessment of the included studies for bias and applicability using the QUADAS-2
tool is summarized in Tables 4 and 5, respectively. Most studies avoided case-control design, had
appropriate reasons for exclusions, and blinded the reference standard to index test. All studies had a
reference standard; however, six studies had a high risk of patient selection bias due to the recruitment
of patients scheduled for thyroid surgery and retrospective analysis of ultrasound features for the
determination of the diagnostic performance of thyroid ultrasound CAD. Applicability concerns in
reference to patient selection, index test, and reference standard definition of the condition were low
risk in most of the studies. The PRISMA-2009 checklist (Table S1) and graphical display of the risk of
bias (Figure S1) and applicability concerns (Figure S2) are provided in the Supplementary Materials.

Table 4. Quality assessment of diagnostic accuracy studies (QUADAS) bias results.

Author (S) Patient
Selection

Index
Test

Reference
Standard

Flow and
Timing

Lyshchik et al., 2007 [69] High Low Low Low
Chen et al., 2011 [64] Low Low Low Low
Wu et al., 2013 [62] Low Low Low Low

Choi et al., 2015 [72] High High Low Low
Sultan et al., 2015 [73] High Low Low Unclear

Wu et al., 2016 [63] Unclear Low Low Low
Baig et al., 2017 [66] Low Low Low Low
Gao et al., 2018 [70] High Low High Low
Choi et al., 2017 [67] Low Low Low Low
Gitto et al., 2019 [71] Low Low Low Low
Yoo et al., 2018 [65] Low Low Low Low

Jeong et al., 2019 [68] Low Low Low Low
Reverter et al., 2019 [74] High Low Low Low

Wang et al., 2019 [75] High Unclear Low Low

Table 5. QUADAS Applicability Results.

Author (S) Patient Selection Index Test Reference Standard

Lyshchik et al., 2007 [69] Low Low Low
Chen et al., 2011 [64] Low Low Low
Wu et al., 2013 [62] Low Low Low

Choi et al., 2015 [72] High Unclear Low
Sultan et al., 2015 [73] Low Low Low

Wu et al., 2016 [63] Low Low Low
Baig et al., 2017 [66] Low Low Low
Gao et al., 2018 [70] Low Low High
Choi et al., 2017 [67] Low Low Low
Gitto et al., 2019 [71] Low Low Low
Yoo et al., 2018 [65] Low Low Low

Jeong et al., 2019 [68] Low Low Low
Reverter et al., 2019 [74] Low Low Low

Wang et al., 2019 [75] Low Low Low

3.4. Study Findings

This section covers the narrative synthesis and summaries of study findings. The synthesis of the
findings was guided by the different types of CAD studies included in this review. To ensure the logical
comparative analysis of the diagnostic performance outcomes, the different studies were categorized
to create subsections based on the relatedness of ultrasound features and the similarities in the study
methodological approaches. The subsections begin with studies that focused on the performance of
CAD of isolated grey scale ultrasound features, followed by CAD performance of Doppler ultrasound
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features, and lastly a subsection on general CAD performance which is further subdivided into an
analysis of diagnostic performance between CAD and radiologists and diagnostic performance under
different TIRADS guidelines.

3.5. Performance of Sole Computerised Ultrasound Features

3.5.1. Echogenicity

One study in the review evaluated CAD diagnostic performance in evaluating echogenicity.
Wu et al. [63] compared the diagnostic performance of human assessment of echogenicity and computed
quantified analysis of echogenicity based on echogenicity indices for hypoechogenicity and marked
hypoechogenicity based on computed mean grey value differences between the nodule and normal
thyroid tissue (EIN–T), and the nodule and strap muscle (EIN–M less), respectively. Their results showed
that marked hypoechogenicity based on the computed quantitative echogenicity index was very
specific (93.3%) but had a low sensitivity (33.1%) as compared to the visual human assessment of
hypoechogenicity which was highly sensitive (89.8%) but low on specificity (31.9%). Although the
study found computed hypoechogenicity to be independently predictive and highly specific for thyroid
malignancy, the authors indicated the need to combine it with other computed ultrasound features to
improve diagnostic performance. Further studies are necessary to validate these findings and to assess
the diagnostic performance of combined CAD methods.

3.5.2. Echogenic Foci

Two studies in this review assessed ultrasound CAD of thyroid nodule calcifications based on
computed calcification at different threshold settings and showed varying results. Chen et al. [64]
compared the diagnostic performance of computerized quantitative analysis of ultrasound calcifications
and human assessment by experienced sonographers and their results showed higher sensitivity
with CAD (80%) than qualitative assessment (48.2%) but with a lower specificity for CAD (55%)
and a higher specificity for qualitative assessment (89%). The authors highlighted that using the
quantified CI, the choice of threshold can be adjusted to prioritize higher sensitivity over specificity
to rule out calcium-filled cancers. Choi et al. [72] assessed the diagnostic accuracy of computed
calcification analysis using a neural network in differentiating benign and malignant thyroid nodules
and found the diagnostic performance to be optimal for both sensitivity and specificity (83% and 82.4%,
respectively). The study indicated that quantified interpretation of thyroid nodule calcifications may
improve efficiency and consistency in thyroid nodule diagnosis. Due to the limited number of studies
evaluating CAD of thyroid nodule calcifications, and with diverse methodological approaches in the
two studies in this review, conclusive inferences cannot be adequately drawn, hence more studies are
warranted to assess the diagnostic performance of CAD for this ultrasound feature.

3.5.3. Doppler Ultrasound Feature

Four studies evaluated the diagnostic performance of CAD of Doppler ultrasound features.
Wu et al. [62] assessed the diagnostic performance of computed thyroid power Doppler vascular
indices (VI) for central and ring vascularity densities at different cut-off points in determining thyroid
malignancy in power Doppler images. Results from the study showed that using the minimum value
(PDVImin) of the central VI at a threshold of 5.453 as diagnostic criteria, specificity was higher (89.3%),
with a sensitivity of 40.5% and an accuracy of 73.1%. The sensitivity was higher (84.8%) and the
specificity lower (40.9%) when the average VI at a threshold of 37.056 was used as a screening tool.
However, the authors indicated that benign nodules predominantly had more intranodular vascularity
and higher vascularity VIs in both central and ring regions than malignant nodules in this study.
Intranodular vascularity was therefore not a reliable predictor of malignancy in this study, however,
quantified VIs may be useful for differentiation of benign and malignant nodules when acceptable
thresholds are chosen for optimized sensitivity and specificity.
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Baig et al. [66] compared the diagnostic performance of qualitative grey scale ultrasound feature
evaluation, quantitative regional color Doppler vascularization VIs, and the combined VIs with
qualitative grey scale ultrasound analysis. In their study, the combination of Doppler CAD VIs of color
Doppler ultrasound images with the qualitative assessment of grey scale ultrasound features resulted
in improved specificity from 46.4% to 83.3%, improved diagnostic accuracy from 58.6% to 79.3%, but
reduced sensitivity from 96.3% to 66.7% from initial sole qualitative analysis. Combined VIs alone
optimized sensitivity (70.4%), specificity (71.4%), and accuracy (71.2%), although accuracy was still
slightly lower than that of combined VIs with qualitative assessment. The highest accuracy achieved
with the combination of both quantified vascularity and qualitative assessment in this study suggests
the potential for improved diagnostic performance with combined methods.

Lyshchik et al. [69] compared the diagnostic performance of human qualitative vascularization
assessment of power Doppler images with quantitative intranodular vascularization based on
normalized and weighted VIs. Their findings showed that qualitative human assessment of increased
intranodular vascularity had a low diagnostic performance with a sensitivity of 65.2% and overall
accuracy of 58.9% for all thyroid nodules but higher specificity (85.7%) and diagnostic accuracy (72.1%)
for thyroid nodules <2 cm. Furthermore, for benign lesions, intranodular vascularization increased
with increase in the size of the lesions, with increased intranodular vascularization observed in only
14.3% of lesions <2 cm but 65.4% of those >2 cm. Quantitative analysis in the same study showed that
the size of the thyroid nodule influenced the diagnostic performance of the Doppler algorithm for both
normalized and weighted VI at stipulated cut-off points. For all thyroid nodules, the VIs were poor
discriminators of benign and malignant nodules, however, normalized VI cut-off point yielding 82.5%
sensitivity, 54.3% specificity, and 68.4% diagnostic accuracy. However, thyroid nodules <2 cm had a
better diagnostic performance with 72.4% sensitivity, 100% specificity, and 86.2% diagnostic accuracy
for normalized VI. These findings suggest that size of a thyroid nodule may influence the diagnostic
performance of vascular indices, however this evidence is limited as this was the only Doppler study
that had a nodule size-based vascularity analysis.

Sultan et al. [73] compared qualitative color Doppler vascularity evaluation and quantitative central
vascular area and central flow volume analysis. The study findings demonstrated that quantitative
vascularity assessment based on the central vascular area was more sensitive (90%) than qualitative
vascular assessment (67.5%), respectively, with a diagnostic accuracy of 89%. These findings affirm
that quantifying intranodular vascularity based on automated zonal segmentation is more objective in
assessing vascularity to differentiate benign and malignant thyroid nodules. These findings, however,
differ from those of Baig et al. [66] who found a lower sensitivity than qualitative analysis of central
vascularity. This may be attributed to the differences in methods.

Among all the Doppler ultrasound CAD studies, based on quantitative vascularity analysis, the
highest sensitivity observed was 90% whilst the highest specificity was 100%. The setback of the
Doppler ultrasound CAD software and algorithms in these studies is that they are not real-time or
embedded within the ultrasound machine and often require offline analysis. Furthermore, the studies
have different methodologies of assessing vascularity and calculating vascularity indices and optimal
cut-off points for differentiating benign and malignant nodules.

3.6. General Performance of CAD

3.6.1. Performance between CAD and Radiologists (Clinicians)

Five studies focused on the general performance of grey scale CAD and human visual assessment
by radiologists or clinicians based on the same TIRADS guideline for both approaches. Yoo et al. [65]
compared the diagnostic performance of an experienced radiologist using the KSThR-TIRADS
guidelines [11], sole CAD system, and the radiologist assisted by the CAD system. The results from
the study showed that the radiologist visual assessment had a higher specificity (95.5%), while the
sensitivity for both CAD and radiologist assessment was comparable. A combination of the radiologist
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and CAD assessment yielded higher sensitivity (92%) than sole approaches, but with slightly lower
specificity (85.1%). The diagnostic accuracy of all three approaches was comparable, with that of the
radiologist being slightly higher (90.6%).

Jeong et al. [68] evaluated the diagnostic performance of an experienced radiologist using KSThR
TIRADS and the CAD system used by four operators with different levels of experience in ultrasound,
ranging from 0–10 years including the experienced radiologist. Their results showed the difference
in CAD output when used by a very experienced user and a less experienced one, with sensitivity
being 88.6% and 70.5%, respectively and diagnostic accuracy 86% and 72%, respectively. The visual
assessment by the experienced radiologist had higher specificity (96.4%) and diagnostic accuracy (91%)
than all CAD approaches. Although this was the only study that assessed CAD performance based
on the user’s thyroid ultrasound experience, these results suggest that thyroid ultrasound imaging
experience may be a potential influencing factor of CAD diagnostic performance. More similar studies
are warranted to validate this assertion.

Choi et al. [67] compared the diagnostic performance of the CAD system and an experienced
radiologist for all nodules, nodules >1 cm, and the performance of the CAD system in nodule
segmentation. The CAD system generally had a slightly higher sensitivity (90.7%) than radiologist
assessment (88.4%) for all nodules but for nodules >1 cm, CAD sensitivity was 100% yet radiologist
sensitivity was (92.9%). The specificity of CAD was, however, lower (71.8%) than that of the radiologist
(97.4%). CAD assessment of nodules >1 cm had the least diagnostic accuracy (79.2%). Although these
results suggest that CAD diagnostic performance may be dependent on the size of the nodules, it
was the only study in this review that assessed the influence of size on grey scale CAD performance.
Therefore, more studies with similar approaches would be helpful to validate these findings and
ascertain the extent of the influence of nodule size on CAD performance.

Wang et al. [75] compared AI CAD based on a neural network and an experienced radiologist
using ACR TIRADS. The AI CAD system had higher specificity (89.9%) than the radiologist (78%)
whereas the sensitivity was comparable between both approaches, although that of the radiologist’s
assessment was slightly higher (93.8%) than that of AI CAD (90.5%). The diagnostic accuracy of the
CAD system was slightly higher (90.3%) than that of the radiologist (88.9%). These results concur with
other studies that CAD has comparable diagnostic performance to that of radiologist assessment and
furthermore has more potential for optimized sensitivity and specificity.

Gitto et al. [71] compared the diagnostic performance of an experienced radiologist and CAD
system for the stratification of low to high suspicion thyroid nodules using the K-TIRADS [76].
CAD had a poor sensitivity of 21.4% while the specificity was 81.3%, whereas the radiologist visual
assessment had higher sensitivity (78.6%) and lower specificity (66.7%). These findings contrasted
other grey scale CAD studies in this review which generally showed that CAD had comparable or
slightly higher sensitivity than radiologists’ visual assessment which had a higher specificity. The
differences may be attributed to the difference in methodological approaches and potentially the choice
of thyroid nodules in the latter study, which were mainly low to high suspicion nodules determined
by FNAC.

3.6.2. Performance Based on Different TIRADS Guidelines

Two studies evaluated the diagnostic performance of CAD and radiologists using different
TIRADS. Gao et al. [70] compared the diagnostic performance of an AI CAD with that of radiologists
using ATA, ACR, and KWAK TIRADS. Their results found a comparable sensitivity between CAD
and radiologist assessments based on the three different TIRADS, however, the specificity of CAD
was much lower (48.5%) than that of the radiologists (KWAK-75.7%; ATA-78.6%; and ACR-76.7%).
The diagnostic accuracy of CAD was slightly lower (82.2%) than that of the radiologists using KWAK,
ATA, and ACR TIRADS stratifications for subjective assessment which had comparable diagnostic
accuracy (90.1%, 90.4% and 86%, respectively). The authors suggested that the AI CAD would be more
helpful as a complementary tool in ruling out malignancy and excluding the need for FNAC, due to a
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high NPV (86.2%) and sensitivity (96.7%) despite the diagnostic accuracy and specificity being lower
than that of the radiologists.

Reverter et al. [74] compared the diagnostic efficiency of a clinical expert using ATA TIRADS for
grey scale ultrasound feature visual assessment and AmCAD CAD analysis based on three TIRADS
guidelines within the system (ATA, EU and AACE/AME/ACE). The diagnostic performance of CAD
differed based on the TIRADS used with CAD using ATA showing comparable sensitivity to the
radiologist assessment (87%) whereas EU-TIRADS and AACE/ACE/AME-TIRADS yielded slightly
lower sensitivity (85.2% and 81.5%, respectively). The visual assessment by the expert had much
higher specificity (91.2%) than all the 3 TIRADS used in CAD assessment, with ATA-CAD yielding the
better specificity (68.8%) amongst them. These findings concur with previously mentioned studies in
this review which showed that CAD performance has comparable performance to radiologist visual
assessment but has a lower specificity.

Limited evidence from these two studies suggests that the choice of TIRADS may potentially
influence the diagnostic performance of CAD. However, because the studies used different approaches,
one focusing on TIRADS-based visual assessment, while the other focused on TIRADS-based CAD
assessment of thyroid nodules, future studies with similar methodological approaches are needed for
CAD systems embedded with TIRADS so as to adequately assess the influence of the choice of TIRADS.

Overall, the highest sensitivity obtained for CAD approaches from studies included in this review
was 100% for CAD of grey scale ultrasound features for nodules >1 cm, and 96.7% for all other nodules.

4. Discussion

4.1. Overview of Principal Findings

Human characterization of thyroid lesions relies on a qualitative assessment of ultrasound features
based on established risk stratification guidelines. This approach is highly subjective and therefore
prone to inter-observer variabilities even when the same risk stratification system is applied by different
users. CAD approaches employ computational quantitative methods in image feature analysis thereby
reducing the potential for human biases. In this study, we systematically reviewed the current literature
on the diagnostic performance of ultrasound CAD approaches for thyroid nodule characterization
in clinical settings. Studies included in this review focused on comparative analysis of grey scale
CAD and visual assessment based on different criteria, Doppler ultrasound CAD, and CAD of sole
ultrasound features such as echogenicity and calcification.

Based on the seven studies focused on grey scale ultrasound CAD, it was found that overall,
CAD approaches generally perform comparably to qualitative assessments by radiologists in terms of
sensitivity but have a lower specificity. These findings concur with those from a recent meta-analysis
which evaluated the diagnostic performance of CAD and radiologists’ visual assessment of grey scale
thyroid nodule ultrasound features [20]. However, unlike this current review, the meta-analysis only
focused on grey scale features and did not include Doppler ultrasound studies. Limited evidence
from the only study which assessed combined radiologist assessment of grey scale ultrasound
features and CAD assessment suggests that a balanced sensitivity and specificity can be achieved
with combined techniques than sole visual assessment or CAD assessment. This emphasizes the
complementary role of CAD to the human assessment of ultrasound features, however, the lack of
studies of combined techniques warrants more future studies in this area to sufficiently determine the
diagnostic performance.

Overall, quantitative Doppler vascularity analysis approaches generally yielded balanced
sensitivity and specificity than visual vascularity assessment which showed variable results in
the three Doppler ultrasound CAD studies that determined the diagnostic performance of both
approaches. Variable results for qualitative vascularity assessment can be attributed to the subjective
grading of vascularity which is prone to interpreter bias. Quantitative vascularity analysis approaches
based on segmentation of peripheral and central vascularity overcome limitations of subjective visual
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assessment of vascularity pattern and distribution [15,16,77]. Only one study demonstrated that
the combination of Doppler ultrasound CAD with qualitative grey scale ultrasound features can
result in an optimal sensitivity and specificity, but with reduced sensitivity compared to individual
assessment of both qualitative and Doppler CAD [66]. The reduction in sensitivity may be attributed
to the unknown influence of collinearity of different ultrasound features when they are assessed in
combination. Although this is limited evidence on combined approaches, the findings concur with
the only grey scale CAD study in this review which determined diagnostic performance of combined
visual and CAD assessment. This suggests the potential for improved diagnostic performance with
combined CAD techniques.

The diagnostic performance of CAD of sole features such as echogenicity and calcification was
found to yield higher specificity than sensitivity with results showing features such as computed
marked hypoechogenicity as highly specific. These findings concur with other previous grey scale
thyroid ultrasound studies that indicated that marked hypoechogenicity has higher accuracy in the
prediction for malignancy mostly when combined with other suspicious features [73,74]. However,
due to the limited number of studies assessing CAD of these features in this review, generalizability
may not be adequately achieved from these findings.

4.2. Potential Factors that May Influence CAD Diagnostic Performance

Limited evidence from this review suggests that the diagnostic performance of CAD may be
influenced by the user’s ultrasound experience with more experienced radiologists yielding higher
diagnostic performance in comparison to users with minimal or no thyroid ultrasound experience [68].
This can be attributed to ultrasound imaging being operator-dependent and highly dependent on the
user’s technique and chosen settings on the ultrasound machine. CAD approaches involve automated
or semi-automated region of interest (ROI) selection methods which may require the users to manually
delineate the margins of the ROI. Furthermore, inexperience in the ultrasound technique may result in
the acquisition of images of poor quality which may, in turn, result in wrong interpretation by the
CAD system thereby resulting in misdiagnosis [64].

In this review, the diagnostic performance of CAD based on different TIRADS systems showed
that ATA-TIRADS had the highest sensitivity. Although this evidence is based on two studies, these
findings concur with some studies that indicated ATA- and KWAK-TIRADS have better diagnostic
efficiency in comparison with other TIRADS systems in human visual assessment of thyroid nodules
>1 cm [78–80]. Contrarily, some recent studies state that ACR-TIRADS has the lowest false-negative rate
and is superior at reducing cases of unnecessary thyroid FNAC [81–83]. The differences in literature
findings may be due to the differences in the criteria within the different TIRADS systems.

In the current review, two studies showed that the diagnostic performance of both grey scale and
Doppler ultrasound CAD may potentially be influenced by the size of the nodule [67,69]. Doppler
ultrasound CAD seems to perform more reliably than visual vascularity assessment for thyroid nodules
<2 cm. This can be attributed to the highly subjective determination of intranodular vascularization
by visual assessment. Conversely, grey scale ultrasound CAD appears to have higher sensitivity
than specificity, especially for nodules >1 cm. Although a meta-analysis on the accuracy of thyroid
ultrasound in malignancy determination suggested that thyroid nodule size is not a reliable predictor
of malignancy [1], the results from this review, concur with recent findings that nodule size influences
diagnostic performance of visual assessment, with higher sensitivity for nodules <2 cm, and higher
specificity for nodules >2 cm by human assessment using ATA-TIRADS [84]. Similarly, a prior study
indicated that for nodules <1 cm, the presence of three or more predictive features increases diagnostic
accuracy while for nodules >1 cm a combination of two features can result in the diagnostic accuracy
of about 90% [85]. However, due to the minimal evidence from this review, future studies evaluating
the influence of nodule size on CAD performance could help validate these findings.



Cancers 2019, 11, 1759 16 of 22

4.3. Clinical Implications and Suggested Directions for Future Research

CAD approaches may be helpful in preventing misdiagnosis when used as a second opinion
particularly in thyroid cases with ultrasound features which may be ambiguous on visual assessment.
CAD assessment of sole features, however, may have limited clinical value because features such as
microcalcifications are highly specific to papillary thyroid cancer, thereby potentially excluding other
thyroid cancers. CAD approaches of sole features may, however, have a potential role in determining
the extent of features such as calcification thereby assisting in the sub-classification of thyroid nodules
based on computed characteristic features. Because no single ultrasound feature is highly predictive
of malignancy on its own, CAD of multiple ultrasound features is more diagnostically accurate
and reliable.

Due to the high specificity of Doppler ultrasound CAD approaches, they have the potential for
application in clinical practice in helping avoid unnecessary FNAC and surgery in otherwise benign
thyroid nodules that are <2 cm and have increased intranodular vascularity. However, their routine
clinical application may be limited by the lack of standardization in methodology and threshold
determination. Therefore, the future development of Doppler ultrasound CAD should involve
standardizing the approaches and embedding the software within the ultrasound system for real-time
analysis for ease of clinical use and comparison of findings. Furthermore, as there are limited studies
evaluating the diagnostic performance of quantitative thyroid vascularity determination techniques in
combination with human assessment of grey scale ultrasound features, future studies with a focus on
combined thyroid ultrasound CAD techniques, would aid in drawing objective inferences regarding
the diagnostic performance of thyroid CAD approaches.

Because ultrasound imaging is an operator-dependent modality, the clinical application of thyroid
ultrasound CAD in routine practice may require adequate training of CAD users in ultrasound image
acquisition and CAD image selection and analysis in order to achieve optimal diagnostic performance.
Furthermore, because varying TIRADS are incorporated within some CAD software, the choice of
TIRADS may be limited by the software provider. Therefore, due to limited TIRADS choices in some
CAD software, it may be beneficial to adopt a goal oriented TIRADS selection approach that best
increases specificity or sensitivity or optimizes both for clinical practice. Additionally, for current
CAD approaches, the choice of TIRADS for the CAD analysis may need to be made in consideration
of the nodule size for optimized diagnostic accuracy, although this is an area for further research.
As embedded TIRADS are structured for qualitative visual assessment thereby resulting in a bias for
texture analysis in most CAD approaches, another research focus could be optimizing the TIRADS for
CAD by developing diagnostic criteria for more quantitative features based on AI techniques.

4.4. Strengths and Limitations

The strength of this review was that a broad approach was adopted in evaluating different
thyroid ultrasound CAD approaches. From the diverse studies included in this review, a general
narrative overview of the diagnostic performance of ultrasound CAD for thyroid nodules and potential
influencing factors could be identified from the findings from the different studies. To the best of our
knowledge, there is currently limited literature on systematic reviews and narrative reviews on the
diagnostic performance of different thyroid ultrasound CAD approaches and this review may be used
to highlight potential areas for future studies.

The broad spectrum in the study design, study subjects and outcomes in the different selected
studies for CAD of both grey scale and Doppler ultrasound features was also a limitation, in that it
hindered a meta-analysis and group-based analysis. This can be attributed to the limited evidence of
thyroid ultrasound CAD studies of similar approaches in the clinical setting. Although an extensive
search strategy was used to ensure the screening of all relevant studies, some studies may have been
missed particularly due to the English language restriction in our search criteria.
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5. Conclusions

This review suggests that CAD of thyroid ultrasound features has a good diagnostic performance
which is comparable to that of radiologists’ qualitative assessment with the potential for improved
overall diagnostic accuracy when qualitative and quantitative approaches are combined. The nodule
size, the experience of the operator and the choice of TIRADS system are potential influencers of CAD
diagnostic performance. Future multi-center studies that compare similar CAD software based on
standardized approaches and assess the diagnostic performance of combined Doppler ultrasound
CAD and grey scale ultrasound CAD of the same thyroid nodules are recommended to further evaluate
the clinical role of CAD in thyroid nodule characterization.
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