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Modeling of field-induced magnetization in ferromagnetic materials has been an
active topic in the last dozen years, yet a dynamic treatment of distance-dependent
exchange integral has been lacking. In view of that, we employ spin-lattice dynamics
(SLD) simulations to study the external field effect on magnetic order of ferromagnetic
iron. Our results show that an external field can increase the inflection point of
the temperature. Also the model provides a better description of the effect of spin
correlation in response to an external field than the mean-field theory. An external
field has a more prominent effect on the long range magnetic order than on the
short range counterpart. Furthermore, an external field allows the magnon dispersion
curves and the uniform precession modes to exhibit magnetic order variation from
their temperature dependence. C© 2014 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4869023]

I. INTRODUCTION

Magnetic materials have found diverse applications, such as the magnetic data storage in hard
drives and power controlling components in electric machinery. For high temperature applications,
materials in the magnetic phase, such as ferritic steels, are suitable for building nuclear fission and
fusion reactors which require withstanding neutron bombardment. However, the physical properties
of ferritic steels are vulnerable to phase changes, which would severely affect the applicability of
their designed functions.

An important characteristics of magnetic materials is the ferro/paramagnetic (FM/PM) phase
transition, characterized by the transition temperature which is determined by the quantum ex-
change interaction between the lattice and spin subsystems. Magnetic order can be classified as long
range and short range, determined by the magnetic order at varying separation of classical spins.
The change in magnetic order is important to determine the magnetic phase transition; a material is
ferromagnetic if the overall magnetic order exists, but is paramagnetic if the order vanishes. Mag-
netization is a physical quantity describing the long range order as it represents the average atomic
spin orientation in a given bulk material. Likewise, spin-spin correlation and effective magnetic field
reflect the strength of the short range magnetic order.

The external field effect on magnetization and structural deformation has long been investigated.
For example, Holstein and Primakoff1 have treated ferromagnetic materials in domain scale and
expressed the Hamiltonian using the exchange interaction plus the magnetic energy due to an
external field. Wojtowicz and Rayl2 have analysed the external field dependence of magnetization
and heat capacity using mean field theory, suggesting that an external field can shift the magnetic
phase transition point. Choi et al.3 have employed the mean field theory to find the field-induced
magnetization of iron under fields of tens of Tesla, and reported that the transition temperature
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between austenite and ferrite state increased with the applied field. Koch4 has also mentioned the
higher shift of phase transition temperature under an external field, and the structure of materials
can be controlled by an external field. These theoretical and experimental studies indicated that the
variation of magnetic order would result in changes of material phase.

Furthermore, studies of the zero-field magnon dispersion curves of iron, which can also reflect
the magnetic order, could be identified as a measure of spin stiffness due to collective thermal
excitation of magnons. For example, neutron diffraction scattering has been performed by Shirane
et al.5 on Fe (4% of Si), suggesting the necessity of higher order correction terms in spin stiffness.
Experimentally, Lynn6 has studied the temperature dependence of zero-field magnetic excitation
using the neutron coherent inelastic scattering, and provided magnon dispersion relations beyond
the Curie temperature. Oguchi et al.7 have presented the zero-field magnon dispersion relations
beyond the Curie temperature based on the coherent potential approximation (CPA) and local
spin density functional (LSDF) formalism, with short range magnetic order neglected. Katsnelson
and Lichtenstein8 have performed the LSDF with magnetic correlations in electronic materials
considered, showing that such a correlation is essential for modeling ferromagnetic iron. Surprisingly,
few of the related studies focus on the field-induced magnon dispersion curves of ferromagnetic
iron. This research gap has to be filled for a better description of the external field effect.

In addition to the macroscopic and ab-initio study of magnetic properties, molecular simula-
tion helps determine the macroscopic conditions from microscopic level in the course of atomic
vibrations. Another simulation tackling both spin and lattice subsystems has been carried out by
Grossmann and Rancourt,9 who have performed molecular dynamics (MD) on lattice subsystem
and Monte Carlo (MC) simulation on spin subsystem on the basis that lattice vibration is more
frequent than that of spin. However, it lacks an explicit treatment of direct coupling between the
two subsystems. Antropov et al.10 have attempted an approach that combines finite-temperature
spin dynamics to first-principle molecular dynamics. However, only the simulation results at zero
temperature has been presented.11 Ma, Woo and Dudarev (MWD)11, 12 have developed spin-lattice
dynamics (SLD) by incorporating these two subsystems on an equal footing, using the exchange in-
tegral varying with lattice separations. The atomic spins vary with instantaneous lattice dimensions,
and the corresponding magnetic order is more pertinent to real ferromagnetic substances.

The external field effect on ferromagnetic materials is yet to be studied. In view of this problem,
this paper studies the field-induced thermo-mechanical properties of body-centred-cubic (BCC)
ferromagnetic iron. We focus on the temperature at which the trend of magnetic order starts to
stabilize, based on the orientation of atomic spins.

II. METHODOLOGY

A. Mean field theory

According to the mean field theory (MFT), the temperature-dependent magnetization in ferro-
magnetic materials can be derived from the exchange field.13–15 The reduced mean field magnetiza-
tion about the z-component, ez = M(T )/M(0), is equal to

ez = exp (ζ ) + exp (−ζ )

exp (ζ ) − exp (−ζ )
− 1

ζ
, (1)

where ζ = gμB H eff/kBT . In addition, H eff is the effective magnetic field strength found by

H eff = 1

gμB
ez

∑
i

Ji j − H ext
z . (2)

In BCC structure such as ferromagnetic iron in ground state, the total exchange integral can be
expressed by the lattice separation Ri j in terms of the lattice constant a as

∑
i

Ji j
(
Ri j

) = 8Ji j

(√
3a/2

)
+ 6Ji j (a) , (3)
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with
√

3a/2 representing the first nearest neighbor (1nn) distance and a the second nearest neighbor
(2nn) distance in a BCC structure.

B. Magnon dispersion relations and spin stiffness

The magnon dispersion relation is found from the Fourier transform of the autocorrelation
function Ce of the unit spin vector e, given by ensemble averaging as

Ce (q, t) = 〈
ei (q, t) · ei

∗ (q, 0)
〉

= 〈ei (q, t) · ei (−q, 0)〉 (4)

since ei (q, t) is a real-valued function. Then after the time Fourier transform, one can get

P
(
q, ωq

) =
+∞∫

−∞
Ce (q, t) exp

(− jωqt
)

dt, (5)

where q is the wavevector and ωq is the frequency at q. P can be expressed in terms of q by summing
the contributions from all frequencies:

P (q) =
+∞∫

−∞
P

(
q, ωq

)
dωq. (6)

The smallest interval of a wavevector for each Cartesian direction is, according to the reciprocal
lattice vectors in the first Brillouin zone,

�qx = 2π

Na
(1, 0, 0) ,�qy = 2π

Na
(0, 1, 0) ,�qz = 2π

Na
(0, 0, 1) , (7)

where N is the unit cell dimension. In this case, the wavevectors along the three major directions of
a reciprocal lattice, i.e. �, �, and �, are

� : �qk = 2π

Na
(0, k, 0) for k = 0, 1, 2, · · · , N ; (8)

� : �qk = 2π

Na
(k, k, k) for k = 0, 1, 2, · · · ,

N

2
; (9)

� : �qk = 2π

Na
(k, k, 0) for k = 0, 1, 2, · · · ,

N

2
. (10)

The magnon dispersion relations were obtained using 16,384-point Fast Fourier Transform, and the
wavevectors have a general form

q = 2π

a

(
l1

N1
,

l2

N2
,

l3

N3

)
, (11)

where N1, N2, and N3 are unit cell dimensions in x-, y-, and z-directions, respectively, and l1, l2, and
l3 are positive integers smaller than N1, N2, and N3, respectively. For the simulation boxes used in
this paper, N1 = N2 = N3 = 30.

The spin stiffness, characterized by the curvature, can be evaluated by fitting the points with the
dispersion relation for small wavevector, known as

�ω = � + Dq2, (12)

where ω is the magnon energy, � is the offset of the magnon dispersion from zero energy, D is the
fitted spin stiffness, and q is the norm of the wavevector q. Specifically when q = 0, the spin waves
are all in phase. The corresponding mode is known as the uniform precession mode,16, 17 being totally
responsible for the magnon energy for q = 0. Also by |q| = 2π/λ, where λ is the wavelength of a
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spin wave, the magnon energy at zero wavevector corresponds to an infinite wavelength obtainable
in an infinite bulk.

C. Spin-lattice dynamics

This technique11, 12 is based on a typical Hamiltonian of ferromagnetic materials:

H =
∑

i

p2
i

2mi
+ U ({Ri }) − 1

2

∑
i, j

ji j
(
Ri j

)
ei · e j + gμBHextS ·

∑
i

ei , (13)

where mi is the mass of atom i , {pi } is the momentum space, {Ri } is the position space, and
{ei } is the space of classical unit spins, and S is the norm of a spin vector. U ({Ri }) is the total
lattice potential, and ji j (Ri j ) is the exchange integral subsuming the norm S of spins i and j , i.e.
ji j (Ri j ) = Si S j Ji j (Ri j ). The exchange integral used in SLD is isotropic, implying that the effect of
spin correlation is non-directional. In this formalism, the last term represents the energy contributed
by an external field. Note in this definition that the atomic magnetic moment is opposite to the
classical spin, i.e. the atomic magnetic moment Mi = −gμBSi . The lattice potential adopted in the
simulation was the Chiesa-Derlet-Dudarev (CDD) potential UCDD({Ri }),18 minus the ground state
magnetic energy (−1/2)

∑
i

ji j (Ri j ), i.e.

U ({Ri }) = UCDD ({Ri }) −
(

−1

2

∑
i

ji j
(
Ri j

))
. (14)

After removing the ground state energy, the lattice potential can reflect the condition of finite
temperature.

The phase space trajectory of the SLD technique is evaluated as

dRk

dt
= ∂ H

∂pk
= pk

mk
, (15)

dpk

dt
= − ∂ H

∂Rk
= −∂UCDD ({Ri })

∂Rk
+ 1

2

∂

∂Rk

∑
i, j

ji j
(
Ri j

) (
1 − ei · e j

)
, (16)

dei

dt
= 1

�
ei × gμBHeff

i . (17)

For equation (17), Heff
i is the effective magnetic field experienced by atom i (see equation (21)),

and � is the reduced Planck constant. The solutions to each of these equations can be obtained from
the integration algorithm for SLD,19 based on Suzuki-Trotter decomposition.20–24 Note that the spin
equation of motion in equation (17) is derived from the Poisson bracket, treating spins quantum
mechanically:

dSi

dt
= i

�

[
H spin, Si

]
, (18)

where H spin = (−1/2)
∑
i, j

ji j
(
Ri j

)
ei · e j + gμBSHext · ∑

i
ei is the Hamiltonian of the spin-related

subsystem.

D. Simulation steps

The BCC iron bulks contained 54,000 atoms with spins, arranged in 30 × 30 × 30 unit cells. The
lattice constant at ground state was set as 2.8665 Å The bulks were subject to a constant magnetic field
along the +z direction, while undertaking thermalization under NPT condition, with the pressure
set to be zero. The field ranged from 0 T to 100 T, whereas the thermalization temperature ranged
from 300 K to 1,400 K. Langevin thermostats,25 based on fluctuation-dissipation theorem,26, 27 were
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FIG. 1. Temperature dependence of the reduced magnetization from both SLD and MFT at equilibrium volume. SLD data
are represented by dashed lines, whereas MFT data are represented by solid lines. The Curie temperature TC of zero-field
iron at 1,043 K is shown for validating the simulated zero-field magnetization. Given an external field, MFT returns a higher
inflection temperature than SLD does because MFT neglects spin correlation in the formation of the exchange field. The
arrows on the inset locate the inspected inflection points at various fields for both SLD and MFT computations.

used for both spin and lattice subsystems. Readers may refer to Ref. 11 for the mechanism of the
spin thermostats. Berendsen barostat28 is used to control the stress of the simulation box. For each
atom, its stress is evaluated by the virial theorem.29 The simulation was carried out with time step of
1 femtosecond (fs). Suzuki-Trotter decomposition was used to solve the equations of motion. The
cut-off distance of spin interaction was set as 3.75 Å in order to include the second nearest neighbor
atoms during simulation. Periodic boundary condition29 was adopted to avoid the surface effect. After
the equilibrium volume had been reached, the equilibrium lattice constants were determined, which
were used to implement simulation in NVT condition for finding the equilibrium magnetization.

The atomic magnetization was given by

M = 1

n

∣∣∣∣∣∣
〈

gμBS
∑

i

ez
i

〉
T eq,V eq

∣∣∣∣∣∣ , (19)

where the angle brackets 〈· · · 〉T eq,V eq represent the ensemble average obtained at equilibrium tem-
perature T eq and equilibrium volume V eq, n is the number of atoms in a system, S is the magnitude
of a classical spin, and ez

i is the z-component of the unit spin vector of atom i .

III. RESULTS AND DISCUSSION

A. Atomic magnetization

Magnetization, characterising long range order, is often expressed within the mean field theory
(MFT) by assuming that the exchange field of spins originates from one single external magnetic
field — the mean field. In the presence of just one mean field, the MFT has neglected spin correlations
along the plane of spin precession, resulting in a less accurate representation of spin correlation.
Recently, the spin-lattice dynamics11, 12 method has addressed this limitation since the precession
of each atomic spin can be computed at each simulation time step. Therefore, the effect of spin
correlation on the magnetic order can be demonstrated. Figure 1 shows the temperature dependence
of reduced magnetization by SLD. The corresponding MFT results are also plotted for comparison.
When an external field is applied, the reduced magnetization does not totally disappear. Rather, some
finite values of magnetization can be recorded, known as the field-induced magnetization. According
to the literature,30, 31 the approximate Curie temperature under the zero-field condition, TC, can be
represented by the inflection points. Then one may consider the inflection points for field-induced
magnetization as well, known as the inflection temperature Tinflection. Hence Tinflection = TC if the
external field is absent. For SLD, Fig. 1 returns the inspected inflections at about 1,000 K for 0 T,
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FIG. 2. Scaling factor of the MFT effective field against external field strength based on various convergence criteria, in an
attempt to emulate SLD. The scale increases with the external field, indicating that SLD also considers the spin correlation
that MFT has neglected. The effect of neglecting the spin correlation can be masked if the external field is strong.

1,025 K for 10 T, 1,050 K for 50 T, 1,100 K for 100 T, respectively. Similarly for MFT results, the
inspected values are about 1,250 K for 0 T, 1,275 K for 10 T, 1,300 K for 50 T, and 1,350 K for
100 T, respectively. These values show that the inflection temperatures from both SLD and MFT
increase with the field. Their deviation from the Curie temperature is more pronounced when the
external field increases.

One can quantify the discrepancy between SLD and MFT by scaling the MFT effective field
H eff with a factor A and then by finding the scale with the best fit to the SLD data, such that

H eff = A

(
ez

gμB

∑
i

Ji j − H ext
z

)
. (20)

Here, ez is the unit spin vector along the z-component, g is the gyromagnetic ratio, μB is the Bohr
magneton, Ji j is the exchange integral experienced in atom j due to neighbor atom i , and H ext

z is
the effective field along the z-component.

Three convergence criteria are chosen to find A: (i) most approximate area under the reduced
magnetization curve, (ii) least algebraic sum of residuals between the two curves, and (iii) least
squared sum of residuals between the two curves. The fitting results of A against the external field
strength are depicted in Fig. 2, which shows that A increases with the external field regardless of
the convergence criteria. The result A ≤ 1 implies that the mean field lowers its contribution along
the z-component (i.e. the applied field direction) and contributes to the spin precession components
instead. Furthermore, we can realize that A → 1 if the external field gets stronger because the
uncorrelated portion of the effective field (i.e. due to the external field) dominates the molecular
field, as MFT assumes. In other words, MFT overestimates the temperature for the onset of the
magnetization stability. The cause of this overestimation is because MFT lacks consideration of the
correlation in spin precession planes, but SLD simulation explicitly takes into account the three
dimensional Heisenberg model. In addition, both the MFT and SLD results would converge at about
zero when the field is well beyond the Curie temperature. This phenomenon is expected because
the internal field is disrupted by such a high temperature, making the external field a dominant
component of the effective field.

The implication of the scaling factor A between MFT and SLD can be further refined. The
factor A can be regarded as the proportion of the mean field magnetization which should lie along
the external field direction. Indeed, 1 − A can be regarded as the proportion of the mean field which
contributes to the precession direction, in order for MFT to be reduced to SLD. For the proportion
1 − A to occur, the orientations perpendicular to the external field need possess some atomic spin
components.
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FIG. 3. Reduced temperature dependence of reduced magnetization of BCC iron, with the retarding change starting near
0.90Tinflection. The experimental result comes from Ref. 32. The graph shows that the choice of the inflection temperatures is
appropriate.

The field-induced inflection points deserve more concern because it represents the temperature
at which the average magnetization begins to become stable. Figure 3 shows the overall effect of
the external field by plotting the reduced magnetization against the reduced temperature, in which
are derived by inspecting Tinflection in Fig. 1. The experimental data under zero-field condition by
Crangle and Goodman32 are also presented for comparison. The simulated and experimental values
are departed because SLD treats spins classically instead of quantum mechanically with just spin-up
and spin down states.11 Apart from of the departure, the simulated reduced magnetization curves
have nearly the same temperature dependence trend below about 0.90Tinflection. This means that
the external field has a weaker effect to change the reduced magnetization below the inflection
temperatures. However, as the temperature increases to about 0.90Tinflection, of the corresponding
field, the reduced magnetization starts to diverge and to maintain above zero in the presence of an
external field. The graph also shows that increasing field strength retards the drop of magnetization
in the critical region more effectively. In another perspective, we can realize that the field-induced
inflection points are analogous to the Curie temperature in the zero-field case that represents the
retarding change of magnetization near Tinflection.

The total effective magnetic field is an indicator of the short range order, since it is calculated
from the spin correlation among the nearest neighboring spins. Fig. 4(a) shows the temperature
dependence of the effective magnetic field along the applied field direction. Given the simulation
results, the curves tend to converge at about 625 T at 1,400 K, probably as evidence of the remaining
short range order that exists under strong magnetic fields (up to 100 T according to this study) in spite
of thermal excitation. This result coincides with the computations by Tao et al.33 that demonstrates
the spin wave excitations beyond the Curie temperature. Fig. 4(b) shows the reduced temperature
dependence of the effective field at various external field strengths. By adopting the inspected
inflection temperatures from Fig. 4(a), the field-induced effective fields exhibit a divergence at about
0.82Tinflection as compared to 0.90Tinflection for macroscopic magnetization in Fig. 1. Even though
the proportionality constant of Tinflection is slightly different, Fig. 4(b) suggests that the inflection
temperature from the effective field is the temperature beginning to exhibit a levelling trend in short
range order.

The findings infer that the external field contributes insignificantly to the effective field. Consider
the general expression of the effective field of atom i :

Heff
i = 1

gμB

∑
j

Ji j S j − Hext. (21)

The first term on the right hand side of equation (21) represents the internal magnetic field contributed
by the temperature-dependent spin moment S j , and the second term is the external field vector Hext.
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FIG. 4. (a) Effective magnetic field strength along the applied field direction, showing similar temperature dependence to
the long range order case in Fig. 1. The Curie temperature TC of BCC iron is labelled at 1,043 K. (b) Reduced temperature
dependence of the effective field of BCC iron, with the retarding change occurring near 0.82Tinflection, suggesting the
significance of the inflection points in descripting magnetic order. The insets of both graphs show their inspected inflection
points indicated by arrows. Both graphs can also indicate the short range order (SRO) at sufficiently high temperatures.

The effective field is thus a vector sum of the internal and the external fields. In Fig. 4, the simulation
calculates the total effective field to be thousands of Tesla, significantly larger than any of the external
fields tried in this paper. Therefore, the external field investigated in the paper has a much weaker
contribution than the internal field in the effective field, despite the relative orientation between the
external field and the internal field. In other words, the internal field would dominate the effective
field if the external field is not excessively strong.

If the spin unit vector ei of atom i is known, the ensemble average of the normalized spin
correlation function 〈ei · e j 〉 can serve as another indicator of short range magnetic order,34 which
would change with external field and temperature. Fig. 5 shows the reduced temperature dependence
of the (a) first-neighbor (1nn) and (b) second-neighbor (2nn) spin-spin correlation functions when
an external field of various strengths is present. Here, the inflection temperatures inspected from
the effective field curve (see Fig. 4) are employed to calculate the reduced temperatures. The
spin-spin correlations exhibit a similar divergence near the inflection points (at 0.96Tinflection) and a
convergence beyond the inflection points, just as the average magnetization characterising long range
order indicates. Besides, the remaining short range order under strong thermal agitation accounts for
the convergence of 〈ei · e j 〉 (0.128 for 1nn and 0.0753 for 2nn) at high temperature for all simulated
fields.
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FIG. 5. Spin-spin correlation function of BCC Fe within (a) the first nearest neighbors (1nn) and (b) the second nearest
neighbors (2nn) against reduced temperature, under various magnetic fields tried. Divergence of the short range magnetic
order occurs at about 0.96Tinflection. Both graphs can indicate the importance of the field-induced inflection temperature in
representing disappearance of long range order and the existence of short range order (SRO), at least for the temperatures
and field strengths attempted.

B. Effect on magnons

The simulation results show that thermal excitation of magnons can be inhibited by an external
field, which in turns varies the magnetic order. Fig. 6 shows the magnon dispersion relations at
(a) 300 K, (b) 900 K, (c) 1,000 K and (d) 1,100 K, respectively, for four applied magnetic fields.
The data points are joined by the fitted lines according to Eq. (12). Since the experimental magnon
dispersion curve of pure iron is lacking in the literature, the magnon dispersion relation of Fe (12%
of Si)6 is taken for comparison. An external field can hardly vary the spin stiffness at temperatures
below 1,000 K, i.e. before the Curie temperature (TC) of BCC iron at 1,043 K. It means that the
long range magnetic order cannot be reinforced by the magnetic field appreciably. However, at
temperatures near or above the critical region of iron (i.e. 1,000 K and 1,100 K), an external field
can increase the spin stiffness significantly. It is noted that the data points near the critical region
(Fig. 6(c) and 6(d)) are less aligned with the fitted trend of the solid lines. Such a misalignment
demonstrates the disappearance of long range magnetic order, as the atomic magnetic moment in
Fig. 1 already demonstrates. Another noticeable point is the existence of non-zero magnetic energy
at large wavevector when the temperature is high and the external field is absent. Due to the short
range order (see the plots for 0 T beyond |q| = 0.6 in Fig. 6(d)), the magnetic energy is still present
beyond the Curie temperature of BCC iron (1,043 K). Also, the experimental result6 shows a slightly
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FIG. 6. Magnon dispersion relation curves at various temperatures in each graph, under various fields. Reinforcement of
magnetic ordering can be realized by increasing the applied field strength. Neutron scattering results on Fe (12% Si) from
Ref. 6 are shown for comparison. The short range order (SRO), shown by the non-zero value of magnon energy, remains
beyond the Curie temperature (1,043 K) when no external field is present.

smaller curvature (230 meVÅ2) than the simulated results at room temperature (300 K), possibly
due to the introduction of impurities (Si) in the experimental settings, as opposed to the adoption of
pure BCC iron in the simulations. Compared to Figs. 1 and 4, the temperature dependence of the spin
stiffness resembles that of the macroscopic magnetization and that of the effective field. In addition,
the presence of an external field is useful to maintain the spin stiffness at elevated temperatures, in
particular beyond the inflection points.

Fig. 7 shows the temperature dependence of spin stiffness D, according to the magnon dis-
persion curves in Fig. 6. The data points beyond the zero-field Curie point (1,000 K) do not agree
with the fitted curves very well regardless of the field, due to the strong scattering of magnons
at this temperature range. On the other hand, the spin stiffness at room temperature (300 K)
agrees fairly well with the ab-initio results of You et al.35 (237 meVÅ2) and Liechtenstein et al.36

(294 meVÅ2), respectively. The spin stiffness decreases slowly with temperature from 275 meVÅ2

at 300 K. Then it begins to vanish a temperature that exceeds the zero-field Curie point (TC).The
temperature at which the field-induced spin stiffness value begins to stabilize can be regarded as the
transition temperature. One can inspect the inflection points as indicated by the arrows in the inset of
Fig. 7. Though the temperature of these points differ from those observed from the atomic magnetic
moments (Fig. 1), these values can demonstrate the increase in the transition point with the applied
magnetic field. Far beyond the critical region, the external field has inappreciable effect on the spin
stiffness values. Instead the stiffness values tend to converge at around 25 meVÅ2 regardless of the
field strengths, probably due to the short range order that remains beyond the inflection temperature.

The curves in Fig. 6 at a fixed temperature seems to be generally shifted upward by the external
field, suggesting that the vertical intercept known as the uniform precession mode should also depend
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FIG. 7. Temperature dependence of spin stiffness for various fields tried. The trend comes from fitting the calculated stiffness
values in Fig. 6. The Curie temperature TC (1,043 K) is located for comparing the field-induced inflection temperatures with
it. In fact, the temperature dependence can be an indicator of the stabilising trend of magnetic order, indicated by the
corresponding inflection point (see arrows on the inset) at which the spin stiffness becomes stable at elevated temperatures.
The zero-field spin stiffness evaluated by You et al.35 and Lichtenstein et al.36 have been marked as comparison to our results
at room temperature (300 K).

FIG. 8. Temperature dependence of the uniform precession mode, given external field strengths. The Curie temperature TC

of BCC iron is marked as a reference. Data points are from SLD simulations, and the fitted lines indicate the trend of the
temperature dependence being another indicator of magnetic order, just as the temperature dependence of the spin stiffness
shows us. The theoretical values of the uniform precession mode are marked in dashed lines. The inspected transition points
are located by arrows, which show their increase with the external field.

on the field strength. Fig. 8 plots the uniform precession mode varying with temperature for certain
field strengths. The uniform precession mode increases with the applied field, and it has a declining
trend of temperature dependence similar to that of other quantities. Below the critical region of
iron (800 K), the uniform precession mode drops slightly with temperature for all external fields
simulated. But the falling trend starts to stabilize at the onset of the critical region. Again, this trend
is consistent with that of other figures, indicating the disappearance of long range order and the
prominence of the short range order beyond the inflection temperatures. Some negative values are
found in Fig. 8 for the zero-field case, which might be attributed by the random error in locating the
peak frequency in a scattered magnon spectrum when a temperature exceeds the inflection point.

Since � results from one of the spin wave components (q = 0) in a given bulk, it shows the
characteristics of spin waves, e.g. the magnetic order. Therefore, the temperature dependence of the
uniform precession mode can be regarded as an indicator of magnetic order. Also, the temperature at
which the trend levels off can be treated as the inflection temperature of BCC iron at the corresponding
external field. They are located in Fig. 8 for exhibiting their increase with the external field.
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Theoretically, the uniform precession mode occurs when each spin undergoes precession at the
same frequency, known as the Larmor frequency as follows

ωLarmor = gμB H ext, (22)

independent of the norm of the classical spin. Guirreiro and Rezende37 attempted to explain that the
magnon energy intercept (See Fig. 7) has a relation to the applied field H ext as

� = �ω = � × gμB

�
× H ext = gμB H ext, (23)

according to quantum theory with no temperature effect. Here � is the reduced Planck constant.
Then one may compare the simulated uniform precession modes with either equation (22) or (23),
which are plotted in Fig. 8 as horizontal dashed lines. Before entering the critical region at about
1,000 K, the uniform precession modes from SLD simulations are about 2 meV larger than the
theoretical values. But once beyond the inflection point, the simulated values become consistent
with the theoretical values. Such a discrepancy of 2 meV below the inflection temperature might be
due to the fact that SLD approach to incorporate temperature effect before the inflection point.

IV. CONCLUSION

The paper studies the external field effect on BCC iron in terms of long and short range
order using spin-lattice dynamics, a current technique of atomistic simulation of spin-carrying
particles. In general, an external field can reinforce both the long and short range magnetic order
at elevated temperatures. An external field can resist the drop of average magnetization, so that a
higher temperature is required to disrupt magnetic order. With the technique of spin-lattice dynamics
by explicitly considering the spin precessions, the external field effect on ferromagnetic iron can
be better studied and understood than the conventional mean field theory. On the other hand, an
external field can reinforce the spin correlation and the effective magnetic field. However it requires
an extremely strong field to bring about the effect on the short range magnetic order controlled by
the internal field of the atom. An external field can also exhibit its effect on magnon dispersion,
showing an increase of the spin stiffness and a collective upward shift of the magnon dispersion
relations. At higher temperatures, an external field can help exhibit the disappearance of long range
magnetic order and the prominence of short range order. In addition, the temperature dependence
of the field-induced spin stiffness and the uniform precession mode can serve as indicators of the
retarding change of magnetic order. In particular, the uniform precession mode found by classical
spins can reflect the temperature effect that could not be given by quantum treatment of spins.
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