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This study aims to extend the multivariate adaptive regression splines (MARS)‒Monte Carlo simulation
(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore
the influences of the multiscale spatial variability of soil properties on the probability of failure (Pf ) of the
slopes. In the proposed approach, the relationship between the factor of safety and the soil strength
parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen
eLoève expansion. MCS is subsequently performed on the established MARS model to evaluate Pf .
Finally, a nominally homogeneous cohesive‒frictional slope and a heterogeneous cohesive slope, which
are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.
Results showed that the proposed approach can estimate the Pf of the slopes efficiently in spatially
variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of
different statistics of soil properties, thereby making it an effective and practical tool for addressing slope
reliability problems concerning time-consuming deterministic stability models with low levels of Pf .
Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or un-
derestimate the Pf . Although the difference is small in general, the multiscale spatial variability of the soil
properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those
highly related to cost effective and accurate designs.

� 2018, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Soil properties are often spatially variable (Phoon and Kulhawy,
1999; Dasaka and Zhang, 2012; Ching and Wang, 2016; Wang et al.,
2016), mainly due to that soils are generally subject to complex
geological, environmental, and physicochemical processes during
their formation (Cho, 2012; Li et al., 2017). Such inherent spatial
variability in soil properties can significantly influence the reliability
analysis of slope stability. For example, a previous study (Griffiths and
Fenton, 2004) noted that ignoring the spatial variability of soil
properties (i.e., considering soil properties as ideally correlated ma-
terials) can overestimate the probability of failure (Pf ) of a slope
when the coefficients of variation (COVs) of the shear strength
).
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parameters are relatively high, or the factor of safety (FS) is relatively
low. Thus, researchers have exerted increasing effort to investigate
the reliability of slopes in spatially variable soils in recent years (e.g.,
Cho, 2010; Srivastava et al., 2010; Griffiths et al., 2011; Santoso et al.,
2011;Wang et al., 2011; Ji and Low, 2012; Ji et al., 2012, 2018; Huang
et al., 2013; Ji, 2014; Jiang et al., 2014, 2015; Low, 2014; Li et al., 2015;
Liu et al., 2017b) to develop new reliability analysis approaches or
enhance the existing approaches. Despite its approximate estimation
of Pf , response surfacemethod (RSM) has long been demonstrated as
one of the most effective and efficient approaches (Jiang et al., 2014,
2015; Li et al., 2015; Jiang and Huang, 2016). However, commonly
used RSMs, such as the quadratic RSM and stochastic RSM, are
parametric regression methods that must be used with a prior
assumption on the order and type of polynomials. Liu and Cheng
(2016) demonstrated that this assumption will be misleading if the
true performance function of the slope stability is a multimodal
function with several peaks and troughs.
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To maximize the efficiency of RSM and overcome the disad-
vantages of the traditional RSMs, this paper proposes the use of
multivariate adaptive regression splines (MARS) as an efficient
reliability approach for slope stability analysis in spatially variable
soils. In this approach, MARS is used as a surrogate for the implicit
performance function to improve the computational efficiency of
FS determination. MARS is selected because of its advantage of
automatically lending itself to available data samples without a
prior assumption (Zhang and Goh, 2013; Liu and Cheng, 2016).
MARS also displays good performance in slope reliability analysis
considering single random variables in our previous work (Liu and
Cheng, 2016). Nevertheless, the MARS adopted by Liu and Cheng
(2016) is only suitable for spatially constant random soils; this
approach cannot consider the soil spatial variability because of its
inefficiency toward considerably high-dimensional problems.
Hence, the proposed approach can be considered as an extension of
our previous MARS model for the reliability analysis of slopes in
spatially variable soils.

In addition, existing studies on slope reliability analysis in
spatially variable soils present two fundamental limitations as
follows: (1) the spatial variability of soil properties is simulated by
stationary random fields in most of recent studies (e.g., Griffiths
and Fenton, 2004; Cho, 2010; Wang et al., 2011; Jiang et al., 2014,
2015; Li et al., 2015); (2) although soil properties are assumed as
non-stationary in several studies, the statistics of soil properties,
such as the scale of fluctuations (SOFs), are considered the same for
different soil layers (e.g., Li et al., 2015, 2016a; Jiang and Huang,
2016). Nonetheless, in geotechnical engineering practice, soil pro-
files are generally spatially variable on various scales (Lu and Zhang,
2007; Cho, 2012). Soil properties in different soil layers may also
exhibit different SOFs (Phoon and Kulhawy, 1999; Li et al., 2015).
Therefore, the influence of multiscale variability of soil properties
on the reliability of heterogeneous slopes must be investigated. The
present study is completed by using the proposed MARS approach
due to its high efficiency. To the best of our knowledge, such study
appears to be original.

This study starts with random field simulation of the inherent
spatial variations of soil properties and subsequent introduction of
the proposed MARS-based MCS (MARS-MCS) approach and its
implementation procedure. Afterward, theMARS-MCS is illustrated
through two hypothetical slope examples: (1) a statistically ho-
mogeneous slope to verify the feasibility and accuracy of MARS-
MCS and (2) a two-layered cohesive slope to investigate the influ-
ence of multiscale variability of soil properties on the Pf using the
proposed approach.

2. Random field simulation of spatially variable soil
properties

2.1. Spatial variability of soil properties

Generally, soil properties at a particular location are closer to
adjacent locations than those at far locations (Li et al., 2015). In
addition, soil parameters at two arbitrary points can be hardly
correlated if the absolute distance between the two points exceeds
the SOF; otherwise, they are significantly correlated (Li et al., 2017).
This phenomenon is the spatial variation of soil properties, which is
generally characterized with an autocorrelation coefficient be-
tween soil properties at two points. Such a coefficient is commonly
evaluated from an autocorrelation function (ACF), which governs
the spatial correlation structure of soil properties. In geotechnical
engineering practice, the real ACF for a soil is commonly difficult to
obtain due to the limited site investigation data. Instead, theoretical
ACFs, such as single and squared exponentials, are often used as
alternatives (Li and Lumb, 1987; Li et al., 2015; Jiang and Huang,
2016; Liu et al., 2017b). Given that different ACFs yield insignifi-
cant differences in the results, and the squared exponential ACF is
considerably smooth and differentiable near the origin (Li et al.,
2015), this function is utilized in the present study and expressed as

r½ðx1; y1Þ; ðx2; y2Þ� ¼ exp

(
� p

"�
x1 � x2

dh

�2
þ
�
y1 � y2

dv

�2
#)

(1)

where ðx1; y1Þ and ðx2; y2Þ are the coordinates of two points in a 2-D
domain; and dh and dv are the horizontal and vertical SOFs of soil
properties, respectively.
2.2. KarhuneneLoève (KeL) expansion

The spatial variability of soil properties can be well modeled
within the framework of random field theory. Hence, several
methods such as the covariance matrix decomposition method
(Wang et al., 2011), local average subdivision method (Fenton and
Vanmarcke, 1990; Griffiths and Fenton, 2004) and series expan-
sion method (Phoon et al., 2002; Sudret and Kiureghian, 2002; Cho,
2010; Jiang et al., 2014), are commonly used in the literature. A
series expansion method named K‒L expansion is adopted in the
present study due to the following advantages (Jiang, 2014): (1) the
number of discretized random variables for the desired accuracy is
relatively small, thereby enhancing the random field simulation
efficiency; (2) the simulated random field can be represented by a
continuous function, which can be easily used to evaluate the
random field property at any point in the studied domain; and (3)
this expansion method can be easily extended for non-stationary
random field simulations. This method is briefly described in the
following.

In the context of K‒L expansion, a 2-D normally distributed
random field Hðx; yÞ can be discretized based on the spectral
decomposition of its ACF r½ðx1; y1Þ; ðx2; y2Þ�. This field is generally
expressed as a truncated series as

Hðx; yÞzbHðx; y; qÞ ¼ m0 þ
XM0

j¼1

s0
ffiffiffiffi
lj

q
fjðx; yÞcjðqÞ (2)

where bHðx; y; qÞ is the simulated random field of Hðx; yÞ; q is the
coordinate in the decomposited outcome space; m0 and s0 are the
mean and standard deviation of the 2-D random field, respectively;
fjðx; yÞ and lj are the eigen functions and eigen values of the 2-DACF
r½ðx1; y1Þ; ðx2; y2Þ� obtained by solving the homogeneous Fredholm
integral equation of the second kind (Phoon et al., 2002; Jiang et al.,
2015), respectively; cjðqÞ is a set of uncorrelated random variables
with zero mean and unit variance; and M0 is the number of K‒L
expansion terms that is critical to the accuracy and efficiency of the
truncated series. Huang et al. (2001) and Laloy et al. (2013) sug-
gested that the ratio of the expected energy (ε) can be used to
measure the accuracy of the truncated series and defined ε as

ε ¼

Z
U

E
�bHðx; qÞ � m

�2

dxdy

Z
U

EðHðx; qÞ � mÞ2dxdy
¼

XM
i¼1

li

,XN
i¼1

li (3)

where Eð$Þ is the expectation function, and eigen values li are
sorted in a descending order. Generally, a large ε value corresponds
to the high accuracy of the truncated series. Moreover, ε should be
close to 1 to maintain a certain accuracy. However, a large ε value
also indicates a significant computation cost. To achieve a
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compromise between accuracy and efficiency, Huang et al. (2001)
and Laloy et al. (2013) suggested using ε � 95% as a criterion in
determining the M value. This criterion is also used in this study.
2.3. Simulation of cross-correlated non-Gaussian random fields

In geotechnical engineering practice, a geotechnical structure
is often influenced by more than one soil parameter, and different
parameters are commonly cross-correlated with each other (Low,
2007; Cho, 2010; Li et al., 2011; Jiang et al., 2014). For example,
the cohesion (c) and the friction angle (4) are two key parameters
that influence slope stability; these parameters are generally
negatively correlated (Cho, 2010). Evidently, all these parameters
should be simulated as cross-correlated random fields when the
spatial variability of soil properties is considered. According to
Cho (2010), all random fields simulated over the same region U
(e.g., a soil layer) share an identical ACF; the cross-correlation
structure between each pair of simulated fields can be defined
by a cross-correlation coefficient. The underlying rationale of this
statement lies in that the spatial correlation structure is generally
caused by changes in the constitutive nature of the soil over
space (Fenton and Griffiths, 2003; Cho, 2010). Therefore, only one
evaluation of the eigen modes of a given ACF is required for a pair
of cross-correlated random fields over a region U. The resultant
set of eigen functions and eigen values is subsequently used in
combination with two cross-correlated sets of random variables
to expand the cross-correlated random fields. In the following,
the simulations of cross-correlated random fields associated with
c and 4 are used as examples to illustrate the procedure for cross-
correlated random field simulations (Cho, 2010; Jiang et al.,
2014).

If the eigen modes and the number of the K‒L expansion terms
under a given ACF (e.g., squared exponential ACF in this study) are
known, the cross-correlated random fields between c and 4 can be
simulated only if the cross-correlated sets of random variables are
obtained. When the cross-correlation coefficient between c and 4

as rc4 is denoted, the cross-correlationmatrix between them can be
written as

R ¼
�

1 rc4
rc4 1

�
(4)

A vector of independent standard normal samples is subsequently
generated using Latin hypercube sampling (LHS) or a standard normal
generator. This vector isfinally partitioned intoNF vectorswith adimension
of M0 to form a sample matrix cð ÞM0 �NF

, where NF is the number of
randomfields to be simulated. For two randomfields simulatedhere,NF ¼
2 and c ¼ �

cc c4

�
, where cc ¼ f cc1 cc2 / ccM0 gT

and c4 ¼ �
c41 c42 / c4M0

�T . Afterward, a lower triangular
matrixL is obtainedby theCholeskydecompositionofR. According toc and
L, the cross-correlated standard normal sample matrix x is obtained as

x ¼ cLT ¼ �
xc x4

�
(5)

where xc ¼
�
xc1 xc2 / xcM0

�T and x4 ¼ �
x41 x42 / x4M0

�T .
Given that the eigen modes and the cross-correlated standard

normal sample matrix x are known, the cross-correlated Gaussian
random fields underlying c and 4 are discretized as

bHG
i ðx; yÞ ¼ mi þ

XM0

j¼1

si

ffiffiffiffi
lj

q
fjðx; yÞxij ðfor i ¼ c;4Þ (6)

The isoprobability transformation (Li et al., 2011) is then utilized
to obtain the cross-correlated non-Gaussian random fields
component-to-component as

bHNG
i ðx; yÞ ¼ G�1

i

n
Fi

hbHG
i ðx; yÞ

io
ðfor i ¼ c;4Þ (7)

where G�1
i ð$Þ is the inverse cumulative distribution function (CDF)

of each non-Gaussian random field HNG
i ðx; yÞ, andFið$Þ is the CDF of

each Gaussian random field HG
i ðx; yÞ. For example, if c and 4 are

assumed as cross-correlated lognormal random fields, then the
lognormal fields can be easily approximated by exponentiating
their approximate Gaussian random fields as

bHLNG
i ðx; yÞ ¼ exp

24mln i þ
XM0

j¼1

sln i

ffiffiffiffi
lj

q
fjðx; yÞxij

35 ðfor i ¼ c;4Þ

(8)

where mlni and slni are the mean and standard deviation of the
Gaussian random field ln i, respectively. The relationship between
ðmi; siÞ and ðmlni; slniÞ is given as

( mln i ¼ ln mi � 0:5s2ln i

sln i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln
h
1þ ðsi=miÞ2

ir
(9)

3. MARS-MCS for slope reliability analysis

Typically, the limit state function (LSF) of a slope is highly
nonlinear, and direct evaluation of the FS values on a deterministic
stability model within the framework of MCS is very time-
consuming. In this section, an MARS-based RSM is proposed to
serve as an approximate surrogate for the true LSF of the slope,
based on which the slope reliability analysis can be efficiently
performed.

3.1. Introduction of MARS

MARS was initially proposed by Friedman (1991), which pro-
vides a flexible statistical tool to approximate the relationship be-
tween a set of independent variables and their responses.
According to MARS, the true function f Xð Þ can be approximated as

f Xð Þzbf Xð Þ ¼ a0 þ
XM
m¼1

amBm Xð Þ (10)

where bf Xð Þ is the MARS predictor; X ¼ 	
x1; x2;/; xp



is a vector of

input variables; am is the coefficient of the mth term in Eq. (10)
obtained by the least squares method; and Bm Xð Þ is the mth basis
function (BF) or spline consisting of a product of several bkmð$Þ,
which is written as

Bm Xð Þ ¼
YKm

k¼1

bkm
�
xvðk;mÞ

��pk;m 
(11)

where Km is the number of bkmð$Þ, which is a two-sided truncated
power function that is referred to as the spline basis function (SBF)
in the form of

bkm
�
xvðk;mÞ

���pk;m ¼
h
sk;m �

�
xvðk;mÞ � tk;m

iq
þ

¼ max
�
0; sk;m �

�
xvðk;mÞ � tk;m

q
(12)

where sk;m is the truncation direction with the value þ1 or �1;



Figure 1. Flow chart for MARSeMCS.
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xvðk;mÞ is the input variable that corresponds to the kth truncated
SBF in themth term of Eq. (10); tk;m is the knot that marks the end of
an interval and the beginning of another interval with respect to
the input variable xvðk;mÞ; and q is a non-negative parameter that is
the power of SBF reflecting a different degree of smoothness of the
resulting MARS estimation. To simplify the process, only piecewise
cubic (q¼ 3) function is examined in this study. Note that Bm Xð Þ can
be a single SBF as well as the product of two or more SBFs.

Regarding the implementation of MARS, it is achieved by a two-
phase process: forward selection and backward pruning. The for-
ward phase starts with only the basis function B0 Xð Þ ¼ 1 in the
MARS model, followed by the identification of the paired BFs that
yield the largest decrease in training error when they are added to
the current model. Assume a current model with M BFs and after
two BFs are added, the next model would be updated as

bf Xð Þ ¼ a0 þ
XM
m¼1

amBm Xð Þ þ bamþ1Bl Xð Þmax
	
0; xj � t



þ bamþ2Bl Xð Þmax

	
0; t � xj



(13)

where bamþ1 and bamþ2 are estimated by the least squares method
and BlðXÞ is the formerly determined BF with 0 � l � M. This for-
ward process of adding BFs continues until the predefined
maximum number of terms or the threshold of the training error is
reached. Generally, this process will produce a very complex and
over-fitted model which may poorly predict other new points;
however it well fits the training data sets (e.g., Cheng and Cao,
2014).
To enhance the predictive ability of the MARS model, the
backward pruning phase is then employed to delete the redundant
BFs that have the smallest contribution to the model. At each step,
the least effective BF in the current model will be deleted, which
produces a submodel with one BF less than the current model. This
process is repeated until no BF is available to be deleted, with which
a group of submodels is generated. Then, the best MARS model is
identified as the submodel that has the lowest value of GCV
(generalized cross-validation). For a training data set with N points,
GCV is calculated as (e.g., Hastie et al., 2009)

GCV ¼
1
N
PN

i¼1

"
yi � bf ðXiÞ

#2
½1� Mþd�ðM�1Þ=2

N �2
(14)

where yi is the true value at Xi; bf ðXiÞ is the predictive value at Xi; d is
a penalizing factor with a default value of 3 according to Friedman
(1991).
3.2. Evaluation of Pf using MARS‒MCS

Having established the RSM of a slope stability using MARS, the
FS for any given vector of random variables X ¼ 	

x1; x2;/; xp


can

be easily calculated, where p is the number of the randomvariables.
It should be noted that each vector of random variables here comes
from a realization of the discretizations of the random fields un-
derlying the soil properties. For example, for a slope involving two
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cross-correlated random fields, according to the above analysis in
Section 2.3, the two random fields can be discretized by two cross-
correlated vectors of random variables, and each of the vectors has
the same sample size (e.g.,M0). In this case, the total number of the
discretized random variables is equal to 2M0, i.e., p ¼ 2M0. An MCS
with a total number of Nsim realizations of random fields is then
directly performed on the established MARS to evaluate the Pf as

Pf ¼ 1
Nsim

XNsim

i¼1

IfFS½Xi� < 1g (15)

where If$g is an indicator function that is equal to unity when
FS½Xi�h1 and zero otherwise; and FS½Xi� is the FS for a given Xi. Since
FS½Xi� is directly calculated from the MARS model instead of the
initially established deterministic slope stability model, so the
proposed MARS-based MCS is more computationally efficient.
Figure 2. Geometry and random field discretization of the c‒4 slope.
4. Implementation procedure of MARS‒MCS

To facilitate the understanding and application of the MARS‒
MCS approach, this section introduces the detailed procedure for
implementing the proposed approach in practice. For convenient
purpose, the procedure is schematically shown in Fig. 1, which
comprises three major modules: random field stability model
(RFSM) for the direct FS evaluation of a spatially varied slope using
a limit equilibrium method/finite element method (LEM/FEM),
MARS model to construct the approximate surrogate for the true
LSF of a slope, and MCS for calculating the Pf . Afterward, the
probabilistic analysis of a 2-D slope involving two cross-correlated
random fields is used as an example to elaborate the whole pro-
cedure step by step as follows:

(1) Model preparation. Characterize the slope geometry and collect
all the soil parameters required for both deterministic and
probabilistic slope stability analysis, such as the means, stan-
dard deviations, cross-correlation coefficients, probability dis-
tributions, SOFs, and ACFs.

(2) Construct the RFSM. The main purpose of this step is to equip
the conventional LEM/FEM with the ability to calculate the FS
of a slope in spatially variable soils. This requires one to char-
acterize the spatial variability of soil properties by random
fields, and then to incorporate them into an LEM/FEM model.
Details are given as follows:
(a) Solve the 2-D homogeneous Fredholm integral equation

using the suggested method in section 2.2 to obtain the
eigen functions fjð$Þ and eigen values lj of the selected ACF
in step (1). Then, determine the number (i.e., M0) of K‒L
expansion terms based on the ratio of the expected energy ε

in Eq. (3).
(b) Discretize the study domain into finite elements and extract

the centroid coordinates ðxi; yiÞ of each element. Then,
given a cross-correlated standard normal sample matrix
samplematrix x, the cross-correlated non-Gaussian random
fields can be easily obtained by using Eqs. (6)e(9). The soil
properties at different locations ðxi; yiÞ are then calculated
by substituting their coordinates into Eq. (11), which is
considered as one realization of the random fields.

(c) Assign the soil properties at different locations ðxi; yiÞ to
their corresponding random field elements in an LEM/FEM
model to calculate the FS value.

(3) MARS model calibration and validation. Like many other RSM, a
certain number of training data are first required to calibrate
the MARSmodel. In this study, these training data are obtained
as follows:
(a) Use LHS to generate a vector of standard normal samples,
which are then partitioned into NF columns (e.g., two
herein) with a dimension of M0 to form an uncorrelated
standard normal sample matrix cð ÞM0 �NF

.
(b) Transform the c to a cross-correlated standard normal

sample matrix x using Eq. (5), which is then substituted into
RDSM to obtain the FS.

(c) The above procedure is repeated for Nt times until Nt pairs
of training data ðc; FSÞ are obtained. These data are then
used to calibrate the MARS model.

(d) Validate the established MARS model by a small group of
testing data that can be obtained using the suggested pro-
cedure in steps (a) and (b). If the accuracy of the model is
not good, then go back to step (a) to increase the number of
the training data until the accuracy is acceptable.

(4) MCS for calculating the Pf . Randomly generate Nsim vectors of
standard normal samples Xð ÞNF $M

0 �Nsim
, which are subsequently

substituted into the established MARS model to obtain the
predictive values of FS. The Pf is thus easily obtained based on
Eq. (15).
5. Example I: Application to a c‒4 slope

This section investigates the reliability of a statistically homo-
geneous c‒4 slope using the proposed approach. The slope was also
analyzed by in the literature (Cho, 2010; Li et al., 2015; Liu et al.,
2017b). Thus, the results obtained from previous studies can be
used directly to validate the accuracy of the proposed approach.

5.1. Example description and deterministic analysis results

Fig. 2 shows the geometry of the slope, which comprises a
“homogeneous” soil layer with a height of 10m and a slope angle of
45�. The soil parameters for the probabilistic stability analysis are
summarized in Table 1. The unit weight of the soil is considered
constant with a value of 20 kN/m3. The c and 4 are simulated as
cross-correlated lognormal random fields with a cross-correlation
coefficient of �0.5. The mean and COV of the random field under-
lying the c are respectively 10 kPa and 0.3; correspondingly, the
counterparts of the 4 are 30� and 0.2, respectively. According to
these mean values, the deterministic slope stability model is
initially established using the Bishop’s simplified method (BSM),
which yields an FS of 1.205 with the critical slip surface passing
through the slope toe, as shown in Fig. 2. Furthermore, the FS value
is highly similar to those obtained by Cho (2010) and Li et al. (2015)
by using the same method, i.e., 1.204 and 1.208, respectively, which
indicates the correctness of the model.



Table 1
Statistics of soil parameters for Example I.

Parameter Mean COV Distribution SOF rc4

c 10 kPa 0.3 Lognormal dh ¼ 40 m; dv ¼ 4 m �0:5
4 30� 0.2 Lognormal dh ¼ 40 m; dv ¼ 4 m
g 20 kN/m3 ‒ ‒ ‒ ‒

Note: The symbol “‒” means not applicable.

Figure 3. Variation of the ratio of the expected energy ε with the number of K‒L
expansion terms for the case in Table 1.

Figure 4. Validation of MARS model for the case in Table 1. (a) 280 training samples,
R2 ¼ 0.9934; (b) 100 testing samples, R2 ¼ 0.9423.
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Fig. 2 also illustrates the random field discretization of the slope
domain, which consists of 1190 four-noded quadrilateral elements
and 20 three-noded triangular elements. This random field mesh is
based on that used by Li et al. (2015) and Liu et al. (2017b) to
achieve a consistent comparison with their results in the following
analysis. The random fields are subsequently discretized at the
centroid coordinates of each random field element to characterize
the spatial variability of soil parameters by using the suggested
method in Section 2 (Li et al., 2015; Liu et al., 2017b) and the
assumed SOFs listed in Table 1, i.e., dh ¼ 40 m and dv ¼ 4 m.
Herein, the effect of the size of the random field element is not
considered. Further details on the selection of the random field
element size are provided elsewhere (Ching and Phoon, 2013). In
the following, probabilistic slope stability analysis is conducted
using the proposed approach with the aforementioned soil
parameters.

5.2. Probabilistic analysis results

The MARS model is first established on the basis of a certain
number of training samples, which are generated by LHS prior to
being applied to evaluate the Pf of the c‒4 slope. The number of the
training samples is crucial to the accuracy of the MARS model. A
large number of samples can increase the model accuracy and
decrease the simulation efficiency. The balance between compu-
tational accuracy and efficiency must be maintained. Nonetheless,
no precise guidelines have been established regarding this issue in
the literature (Kang et al., 2015). Hence, in the present study, an
empirical guideline that 10D‒15D (D is the number of variables)
samples will exert no remarkable change on the model perfor-
mance is adopted in accordance with the works of Silvestrini et al.
(2013). Kang et al. (2015) demonstrated that this guideline is useful.
The case in Table 1 is used as an example to illustrate the perfor-
mance of the guideline. When dh ¼ 40 m and dv ¼ 4 m, for the
squared exponential ACF, the number of K‒L expansion terms to be
maintained in Eq. (4) is 14 according to Fig. 3; this number is based
on the criterion shown in Eq. (5). The total number of random
variables is 28 because two cross-correlated random fields are
considered herein. Consequently, according to the guideline, 280
LHS samples are first generated to calibrate the MARS model. Re-
sults shown in Fig. 4 illustrated that the MARS model fits the 280
sample data considerably well with a R2 of approximately 0.9934.
This model also shows a relatively high predictive ability when
evaluated by a set of 100 randomly generated samples. This finding
demonstrated the feasibility of the guideline. Notably, the sample
size should be increased if the 10D training samples cannot yield an
accurately calibrated model, which will consume many computa-
tional resources. This adjustment is the same as that utilized by
Kang et al. (2015), which, unless otherwise specified, is also adop-
ted in the following analysis of this study.

No rules have been established on how to increase the size of
the training data, except for a trial and error method. Moreover, in
some cases, a surrogate model calibrated by 15D training samples
cannot yield satisfactory results because the slope stability problem
is highly complex. This phenomenon may become remarkably
serious when the number of discretized random variables is
relatively small, as demonstrated by Ji et al. (2017). In view of these
problems, a comprehensive empirical guideline proposed by Ji et al.
(2017) may be useful. This guideline is given as follows: if the
number of the discretized random variables is relatively small (e.g.,
less than 10), then the surrogate model should be trained based on
100e200 training data generated by a specially treated LHS



Table 2
Reliability results obtained by different methods for different cases in Example I.

Methods dh ðmÞ dv ðmÞ mFS sFS COVFS Pf

MARS‒MCS (this study) 40 4 1.198 0.114 0.096 2:92� 10�2

10,000 LHS (this study) 1.198 0.116 0.096 2:72� 10�2

10,000 LHS [47] 1.184 0.103 0.087 2:21� 10�2

Multiple RSM [15] 1.195 0.102 0.085 1:87� 10�2

50,000 MCS [14] 1.199 0.106 0.088 1:71� 10�2

Subset simulation [19] 1.197 0.103 0.086 2:04� 10�2

MARS‒MCS (this study) 40 8 1.201 0.140 0.117 5:46� 10�2

10,000 LHS (this study) 1.200 0.142 0.118 5:70� 10�2

10,000 LHS [47] 1.189 0.123 0.103 4:15� 10�2

Multiple RSM [15] 1.195 0.119 0.100 3:97� 10�2

50,000 MCS [14] 1.202 0.126 0.105 3:70� 10�2

Subset simulation [19] 1.199 0.126 0.105 4:10� 10�2

MARS‒MCS (this study) 80 4 1.201 0.117 0.097 3:05� 10�2

10,000 LHS (this study) 1.198 0.117 0.098 2:86� 10�2

10,000 LHS [47] 1.185 0.105 0.089 2:38� 10�2

Multiple RSM [15] 1.196 0.104 0.087 2:06� 10�2

50,000 MCS [14] 1.200 0.109 0.091 1:91� 10�2

Subset simulation [19] 1.200 0.107 0.089 2:20� 10�2

Note: A training sample size of 10D was adopted for all cases in this table.
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technique; otherwise, the 10De15D guideline for high-dimensional
randomvariables should be used. Details on further explanations of
this guideline can be found in the work of Ji et al. (2017).

Afterward, an MCS with a total of 1,000,000 samples is per-
formed directly on the calibrated MARS model to calculate the Pf of
the slope. To validate the accuracy of the proposed MARS‒MSC, a
direct LHS with a total of 10,000 samples based on the original
deterministic stability model is also conducted. Literature results
are also referred for comparison. Results from both the present
study and literature, including the statistics of FS (i.e., mean mFS,
standard deviation sFS, and coefficient of variation COVFS) and the
values of Pf for three different cases, are presented in Table 2. The Pf
values (i.e., 2:92� 10�2, 5:46� 10�2, and 3:05� 10�2) obtained
from the proposed MARS-MCS for the three cases are in good
consistence with the “exact” results (i.e., 2:72� 10�2, 5:70� 10�2,
and 2:86� 10�2) evaluated by the direct LHS of this study,
respectively. Furthermore, for all the three cases considered herein,
the probabilities of failure obtained by both the MARSeMCS and
the direct LHS in the present study are marginally larger than those
obtained by Cho (2010), Jiang (2014), Li et al. (2015) and Liu et al.
(2017b). The difference is mainly due to that the squared expo-
nential ACF and the single exponential ACF are used in this study
and their studies to characterize the spatial variation of soil prop-
erties, respectively. This explanation is reasonable and validated by
Li et al. (2015) who stated that: “The probability of failure associ-
ated with the commonly-used single exponential ACF may be
underestimated.” Nevertheless, the difference between these
methods is minimal. The statistics of FS obtained by different
methods for all cases are also approximately similar. Overall, these
findings indicated that the proposed MARSeMCS can accurately
evaluate the reliability of slopes in spatially variable soils.
Figure 5. Comparison of reliability results obtained by different methods for various
values of rc4 in Example I.
5.3. Influence of the statistics of soil properties on the accuracy of
MARS‒MCS

This section further explores the effects of different statistics
(e.g., COVs and SOFs) of soil properties on the accuracy of the pro-
posed MARS‒MCS for reliability analysis. For this purpose, the
aforementioned statistics including rc4, COVc, COV4, dh and dv are
allowed to varywithin some specified ranges to performparametric
studiesdrc4 ˛ ½�0:7; 0:5�, COVc ˛ ½0:1; 0:7�, COV4 ˛ ½0:05; 0:20�,
dh˛ ½10 m; 60 m� and dv ˛ ½1 m; 6 m�. These ranges are the same as
those adopted by Li et al. (2015), and thus the capacity of the
proposed MARS‒MCS can be compared easily with the results re-
ported by Li et al. (2015). In addition, following Li et al. (2015), only
one statistical parameter is changed during each parametric study,
while the other parameters are kept the same as the nominal case
where rc4 ¼ 0, COVc ¼ 0:3, COV4 ¼ 0:2, dh ¼ 40 mand dv ¼ 4 m.

Fig. 5 shows the variations of Pf obtained by this study and
several other methods in the literature with respect to the rc4. In
general, the results obtained by different methods show a very
similar variation trend, increasing with the value of rc4. The dif-
ference between the failure probabilities obtained by this study and
those from literature is significant at small values of the rc4 but
minimal when cohesion and friction angle are highly positively
correlated (e.g., rc4 ¼ 0:5). For example, when rc4 ¼ �0:7, the Pf is
predicted as 7:2� 10�3 using the proposed MARSeMCS, whereas
the values of Pf are approximately 3:9� 10�3, 4:86� 10�3 and
4:3� 10�3 by Cho (2010), Li et al. (2015) and Liu et al. (2017b),
respectively. Such difference is expected because the single expo-
nential ACF commonly used in these literature would underesti-
mate the failure probability, as stated before and validated by Li
et al. (2015). However, the results are of the same order of magni-
tude, which also verifies the accuracy of the MARSeMCS to some
extent. Furthermore, to ensure the results by MARS‒MCS be more
convincing, results from direct LHS are also plotted in Fig. 5 and are
considered as the “exact” solutions here. Note that, considering the
computation efficiency and the potential probability level, the
sample sizes of the LHS are 1000, 1000, 5000, 5000, 10,000 and
30,000 for rc4 ¼ ½0:5; 0:25; 0; �0:25; �0:5; �0:7�, respectively.
As seen from Fig. 5, the curve of the LHS is nearly consistent with
the one associated with MARSeMCS, suggesting the high accuracy
of the proposed approach.

Fig. 6a and b compares the reliability results obtained by the
MARS‒MCS and the multiple RSM for various values of COVc and
COV4, respectively. The results associated with the multiple RSM
are taken directly from the work by Li et al. (2015). It should be
noted that, to keep a consistent comparison, only the results based
on the squared exponential ACF are plotted in the figures as a
reference, though the failure probabilities were also evaluated
based on several other ACFs in the work by Li et al. (2015). For
different values of both COVc and COV4, a good agreement between
the two approaches is identified from Fig. 6, indicating the high
accuracy and robustness of MARS‒MCS against the COVs of soil
properties.

To investigate the influence of different SOFs on the capability of
the MARS‒MCS, Fig. 7a and b shows the variations of Pf obtained by



Figure 6. Comparison of reliability results obtained by different methods for various
COVs in Example I. (a) Cohesion; (b) friction angle.

Figure 7. Comparison of reliability results obtained by different methods for various
SOFs in Example I. (a) Horizontal scale of fluctuation; (b) vertical scale of fluctuation.
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the MARS‒MCS and the multiple RSM with respect to dh and dv,
respectively. Similar to Fig. 6, the results evaluated by theMARS‒MCS
agree well with those obtained from the multiple RSM based on the
squared exponential ACF (e.g., Li et al., 2015). For example, the Pf
estimated using the proposed approach increases from 6:3� 10�3 to
0:123 when dv changes from 1 m to 6 m, which is similar to the vari-
ation of the Pf obtained by the multiple RSM within the same range,
from approximately 7:66� 10�3 to 0.122. This suggests the effec-
tiveness of the MARS‒MCS for both high- and low-probability levels.
Totally, it can be concluded that the MARS‒MCS can accurately eval-
uate the reliability of slopes in differently spatially varied soils.
6. Example II: Application to a two-layered cohesive slope

Having demonstrated the capability of the proposedMARS‒MCS
approach for the reliability analysis of a statistically homogeneous
c‒4 slope under different spatially varied soil properties, this sec-
tion further extends the MARS‒MCS approach for the reliability
analysis of a two-layered cohesive slope. Meanwhile, based on this
heterogeneous slope example, the influence of the multiscale
spatial variability of soil properties on slope reliability analysis is
investigated using the proposed approach, which appears to be
original to the best of our knowledge.
6.1. Example description and deterministic analysis results

As shown in Fig. 8, the heterogeneous slope as studied is
adapted directly from the first slope example, which has the same
slope height (i.e., 10 m) and slope angle (i.e., 45�) but comprises of
two undrained clay layers. The soil parameters for the probabilistic
stability analysis are tabulated in Table 3. As shown in the table, the
unit weight of the cohesive soil layer that extends to 15 m below
the top of the slope is considered constant with a value of 19 kN/m3,
whereas the undrained shear strengths of the two clay layers, su1
and su2, are simulated as independent lognormal random fields. The
mean and COV of the random field su1 are 51 kPa and 0.3, respec-
tively, while the counterparts of the random field su2 are 34 kPa and
0.3, respectively. As a reference, based on the mean values, the
deterministic stability model for the slope was initially established
using BSM which gave the FS as 1.394 with the critical slip surface
passing through the slope toe, as shown schematically in Fig. 8.

Fig. 8 also shows the random field discretization of the cohesive
slope, which is the same as the discretization of the first slope
example because the two slope examples share the same slope
geometry. Based on the discretized elements, the random fields of
su1 and su2 can be easily simulated to characterize the spatial
variability of soil parameters using the samemethod adopted in the
first example and the SOFs listed in Table 3. However, different from
Example I, su1 and su2 here should be simulated as globally non-
stationary random fields because the soil properties from
different soil layers generally exhibit multiscale spatial variations
due to different formation processes (e.g., Cho, 2012). This indicates
that the soil properties at any two locations in different soil layers
are uncorrelated. Extention of the K‒L expansion for non-stationary
random field simulations is straightforward. Interested readers are



Figure 8. Geometry and random field discretization of the cohesive slope.

Figure 9. Variation of the ratio of the expected energy ε with the number of K‒L
expansion terms for the case in Table 3.
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referred to Lu and Zhang (2007), Jiang and Huang (2016) and Liu et
al. (2017a) for more details. In the following, probabilistic analysis
for the cohesive slope is performed using the proposed MARS‒MCS
approach based on globally non-stationary random fields.
6.2. Probabilistic analysis results

To evaluate the Pf of the cohesive slope, MARS model is first
established based on a certain number of training samples that are
generated by LHS. The size of the training samples is determined
using the strategy introduced in Section 5.2 to maintain a balance
between the computational accuracy and efficiency. For illustra-
tion, the case in Table 3 is taken as an example to show the use-
fulness of this strategy for the heterogeneous slope. When
dh ¼ 40 m, dv ¼ 4 m and the squared exponential ACF are applied
to both random fields of su1 and su2, the number of K‒L expansion
terms to be maintained in Eq. (4) is identified as 8 and 6 respec-
tively, as shown in Fig. 9. The total number of random variables is
thus calculated as 14. Based on the aforementioned strategy and
from an internal study, it is found that 15D (i.e., 210) samples can
well calibrate the MARS model with a good predictive ability. The
results are shown in Fig. 10, and it is found from the figure that the
MARS model fits the 210 sample data very well with an R2 of about
0.9905 which is a relatively high predictive ability when the model
is tested by a set of 100 randomly generated samples. Next, MCS can
be well performed directly on the calibrated MARS model to eval-
uate the Pf of the cohesive slope.

For the case in Table 3, the Pf is calculated as 8:17� 10�2 using
the proposed MARS‒MCS approach with a total of 1,000,000 MCS
samples. This value of Pf is very consistent with the result (i.e.,
8:25� 10�2) estimated by 10,000 direct LHS on the original
deterministic stability model. Furthermore, four more cases with
different SOFs in different soil layers are considered to further
validate the accuracy of the proposed approach. Both the proposed
approach and LHS are performed on these cases, and the results are
tabulated in Table 4. From the table, it is observed that the values of
Pf (i.e., 8:81� 10�2, 6:89� 10�2, 7:88� 10�2 and 6:46� 10�2)
obtained from the proposed approach for the four cases (i.e., Case
No. 2 to No. 5) compare favorably with the “exact” results (i.e.,
Table 3
Statistics of soil parameters for Example II.

Parameter Mean COV Distribution SOF

su1 51 kPa 0.3 Lognormal dh1 ¼ 40 m; dv1 ¼ 4 m
su2 34 kPa 0.3 Lognormal dh2 ¼ 40 m; dv2 ¼ 4 m
g 19 kN/m3 ‒ ‒ ‒

Note: The symbol “‒” means not applicable.
7:87� 10�2, 5:89� 10�2, 7:11� 10�2 and 6:31� 10�2) that are
evaluated by the direct LHS of this study, respectively. However, for
the similar results, the proposedMARS‒MCS only requires a limited
number of calls (e.g., 15D ¼ 210 in case No. 1) of the time-
consuming deterministic stability model, which is much more
efficient than the direct LHS with 10,000 samples. In addition, the
statistics of FS obtained by different methods for all cases are
Figure 10. Validation of MARS model for the case in Table 3. (a) 210 training samples,
R2 ¼ 0.9905; (b) 100 training samples, R2 ¼ 0.9001.



Table 4
Reliability results obtained by different methods for different cases in Example II.

No. Case Method Nt mFS sFS COVFS Pf Relative error
of Pf

1 dh1 ¼ 40 m; dv1 ¼ 4 m
dh2 ¼ 40 m; dv2 ¼ 4 m

MARS‒MCS (this study) 15D 1.259 0.195 0.155 8:17� 10�2 0.010
10,000 LHS ‒ 1.254 0.191 0.152 8:25� 10�2

2 dh1 ¼ 40 m; dv1 ¼ 4 m
dh2 ¼ 20 m; dv2 ¼ 4 m

MARS‒MCS (this study) 20D 1.257 0.215 0.171 8:81� 10�2 0.119
10,000 LHS ‒ 1.253 0.190 0.152 7:87� 10�2

3 dh1 ¼ 40 m; dv1 ¼ 4 m
dh2 ¼ 40 m; dv2 ¼ 2 m

MARS‒MCS (this study) 20D 1.260 0.181 0.144 6:89� 10�2 0.170
10,000 LHS ‒ 1.261 0.181 0.143 5:89� 10�2

4 dh1 ¼ 20 m; dv1 ¼ 4 m
dh2 ¼ 40 m; dv2 ¼ 4 m

MARS‒MCS (this study) 15D 1.255 0.187 0.149 7:88� 10�2 0.108
10,000 LHS ‒ 1.255 0.180 0.143 7:11� 10�2

5 dh1 ¼ 40 m; dv1 ¼ 2 m
dh2 ¼ 40 m; dv2 ¼ 4 m

MARS‒MCS (this study) 20D 1.242 0.164 0.132 6:46� 10�2 0.023
10,000 LHS ‒ 1.239 0.162 0.131 6:31� 10�2

Note: The symbol “‒” means not applicable.
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approximately similar. All these results confirm that the proposed
approach can efficiently evaluate the reliability of heterogeneous
slopes with sufficient accuracy while considering multiscale spatial
variability of soil properties.

6.3. Influence of multiscale spatial variability of soil properties

As mentioned above, soil properties will exhibit multiscale
spatial variability in multi-layered soils. However, few efforts have
Figure 11. Typical random field realizations for the five cases in Table 4. (a) Case No. 1, FS ¼ 1
Case No. 5, FS ¼ 1.227. Interpretation of the references to color in this figure can be referre
been made to quantify the influence of this kind of spatial soil
variability on slope reliability. Thus, this section intends to address
this problem involved in the aforementioned heterogeneous slope
using the proposed approach where the accuracy has been vali-
dated above. To show the multiscale spatial variability of the un-
drained strength of this slope, Fig. 11 schematically plots the
random fields of su1 and su2 for the five cases in Table 4 based on a
typical simulation. It is worth noting that in Fig. 11a, the undrained
strengths su1 and su2 vary in an identical level (i.e.,
.183; (b) Case No. 2, FS ¼ 1.261; (c) Case No. 3, FS ¼ 1.234; (d) Case No. 4, FS ¼ 1.018; (e)
d to the web version of this article.
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dh1 ¼ dh2 ¼ 40 m and dv1 ¼ dv2 ¼ 4 m) in their respective spatial
domains, indicating that no multiscale spatial soil variability is
considered. This is also the common way for characterizing the
spatial soil variability in layered soils in the literature (e.g., Huang,
2010; Li et al., 2015; Jiang and Huang, 2016; Li et al., 2016a). Hence,
this case (i.e., case No. 1) is considered for comparison purpose to
explicitly illustrate the influence of the multiscale spatial variability
of soils. Compared with Fig. 11a, b and c presents more rapid fluc-
tuations in clay 2 because smaller horizontal and vertical SOFs (i.e.,
dh2 ¼ 20 m in Fig. 11b and dv2 ¼ 2 m in Fig. 11c) are adopted in the
two figures, respectively, while the other SOFs are remained the
same as those in Fig. 11a. Similarly, Fig. 11d and e also presents
obvious multiscale spatial variability due to the influence of clay 1.
These observations are consistent with what has been presented by
Huang (2010), who however has not further consider such multi-
scale spatial variability in his work. The limitation of Huang (2010)
will be tackled properly in the present study.

Fig. 12a and b shows the variation of Pf with respect to various
horizontal and vertical SOFs, respectively, and both of the two sub-
figures concern the influence of three scenarios. Scenario 1 con-
siders that the undrained strengths su1 and su2 share the same level
of spatial variability in their respective domains, and it is marked by
the pink line with squares. Scenario 2 denotes the situation where
only a horizontal or vertical SOF of su1 in clay 1 changes but the
other SOFs, including those associated with su2 in clay 2 and
another SOF in clay 1, remain the same as those in the baseline case
(i.e., dh1 ¼ dh2 ¼ 40 m and dv1 ¼ dv2 ¼ 4 m), which is marked by
the red line with circles. In contrast to scenario 2, scenario 3 which
Figure 12. Influence of SOFs in different clays on Pf of the heterogeneous slope. (a)
Horizontal scale of fluctuation; (b) vertical scale of fluctuation.
is characterized by the blue line with triangles in Fig. 12 only in-
volves the change of a horizontal or vertical SOF of su2 in clay 2,
whereas the other SOFs are kept the same as those in the baseline
case. Herein, it is worth noting that scenario 1 does not take the
multiscale spatial variability of soil properties into account, while
scenarios 2 and 3 do consider, aiming at highlighting the influence
of the spatial variability in clays 1 and 2, respectively.

According to Fig. 12a, the values of Pf obtained for scenario 1
increasewith the increase of dh, which agrees well with many other
published results (e.g., Li et al., 2015) that are also evaluated by
neglecting the multiscale spatial variability of soil properties. The
results associated with scenario 2 also present an increasing trend
that is similar to scenario 1 but varies more slightly, whereas the
results associated with scenario 3 fluctuate around 8:00� 10�2.
Generally, there are differences among the results underlying all
three scenarios. Compared with the values of Pf for scenario 1, the
results obtained for both scenarios 2 and 3 are overestimated and
underestimated when dh is smaller and larger than 40 m, respec-
tively. The reasonmainly lies in the fact that the dh in both scenarios
2 and 3 becomes relatively larger and smaller than the dh in sce-
nario 1 when dh is smaller and larger than 40 m, respectively. This
will increases and decreases the probability that the undrained
strength has weak values, which finally induces higher and lower
values of Pf , when dh is smaller and larger than 40 m, respectively.
However, the difference of the aforementioned overestimation or
underestimation is not major. Additionally, compared with the re-
sults associated with scenario 2, the dh in caly 2 (i.e., scenario 3)
seems to have less influence on the Pf .

On the other hand, in Fig. 12b, the Pf values increase with the dv
for all the three scenarios which is as expected. It is also observed
from thefigure that similar to Fig.12a, the results based on scenario 1
are underestimated and overestimatedwhen dv is smaller and larger
than 4 m, respectively. The underlying reasons are very similar to
those for Fig. 12a and are not repeated herein. Overall, comparing
Fig. 12a and b, it is found that dv generally affects the Pf more
significantly than dh, which is in good consistencewith the results as
reported in the literature (e.g., Cho, 2010; Ji and Low, 2012; Li et al.,
2015). Furthermore, it is of practical significance to consider the
multiscale spatial variability of soil properties in reliability analysis
of heterogeneous slopes, especially for those highly related to cost-
effective and accurate designs, although conventional uniform
spatial variability assumption would not produce much difference.

7. Summary and conclusions

This paper proposed an efficient MARS‒MCS method for the
reliability analysis of slopes in spatially variable soils. The proposed
approach is illustrated by two slope examples that are character-
izedwith different spatial variabilities. Accordingly, the influence of
multiscale spatial variability of soil properties on slope reliability is
explored. The following conclusions can be drawn from this study:

(1) The relationship between FS and soil strength parameters of
slopes in spatially variable soils can be well established using
MARSwith the aid of K‒L expansion. Thewidely used empirical
guideline for selecting the training sample size is applicable to
the calibration of the MARS model in this study. K‒L expansion
can discretize the random fields of soil strength parameters by
using few random variables, which contribute significantly to
the accuracy and efficiency of the MARS model. Moreover, KeL
expansion can be easily extended to simulate globally non-
stationary non-Gaussian random fields.

(2) The proposed MARS‒MCS approach can efficiently estimate the
Pf of slopes in spatially variable soils with sufficient accuracy.
This approach is also relatively robust to the influence of
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different statistics (e.g., COVs and SOFs) of soil properties,
thereby suggesting its effectiveness for slope stability with both
high and low levels of failure probability. Thus, this approach
provides an effective and practical tool for addressing slope
reliability problems that concern time-consuming deterministic
stability models with low failure probability levels.

(3) Neglecting the multiscale spatial variability of soil properties
can overestimate or underestimate the probability of slope
failure, depending on the difference between the actual SOF in
a particular soil layer and the assumed SOF for all layers.
However, the difference in such overestimation or underesti-
mation is small. Nevertheless, the multiscale spatial variability
of soil properties must still be considered in the reliability
analysis of heterogeneous slopes, especially for those highly
related to cost effective and accurate designs.

(4) The difference between the undrained strengths in different
layers is insignificant. Thus, future studies on reliability analysis
should be conducted on slopes involving weak layers to further
explore the influence of multiscale spatial variability of soil
properties on the probability of slope failure.
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