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Emerging technologies toward a connected vehicle-infrastructure-pedestrian environment and big data have
made it easier and cheaper to collect, store, analyze, use, and disseminate multi-source data. The connected en-
vironment also introduces new approaches to flexible control andmanagement of transportation systems in real
time to improve overall system performance. Given the benefits of a connected environment, it is crucial that we
understand how the current intelligent transportation system could be adapted to the connected environment.
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1. Introduction

Analysis and understanding of transportation issues are often
constrained by domain-dependent data sources. Recent emerging tech-
nologies toward a connected vehicle-infrastructure-pedestrian (VIP) en-
vironment and big data havemade it easier and cheaper to collect, store,
analyze, use, and disseminate multi-source data. A connected VIP envi-
ronment also makes the systemmore flexible so that real-timemanage-
ment and control measures can be implemented to improve system
performance. With a connected environment, vehicles, infrastructure,
and pedestrians can exchange information, either through a peer-to-
peer connectivity protocol or a centralized system via a 4G or more ad-
vanced telecommunication network (VIP environment). Such technol-
ogy is regarded as one of the most potentially disruptive technologies
for the urban eco-system. The interaction and exchange of information
can occur vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), pe-
destrian-to-infrastructure (P2I), or vehicle-to-pedestrian (V2P). Given
the benefits of a connected environment, and considering its unique
characteristics, it is crucial to understand how current intelligent trans-
portation systems could be adapted to work with the connected envi-
ronment. This paper aims to: (1) review current trends in intelligent
transportation systems (ITSs) and smart cities; and (2) offer insights
on the introduction of connected VIP environment into these systems.

The paper is organized as follows. The next section is a review of the
current trends in intelligent transportation systems. In Section 3,we dis-
cuss smart cities and related artificial intelligence (AI) techniques. The
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concept of a connected environment is described in Section 4. Finally,
Section 5 offers insights into future ITSs and smart cities.

2. Current trends in intelligent transportation systems (ITSs)

Congestion, accidents, and pollution issues due to transportation are
becomingmore severe as a result of the tremendous increase in various
travel demands, including vehicular traffic, public transportation,
freight, and even pedestrian traffic. To resolve such issues, ITSs have
been developed that are able to integrate a broad range of systems, in-
cluding sensing, communication, information dissemination, and traffic
control. Three essential components are necessary for any ITS to per-
form its function(s): data collection, data analysis, and data/information
transmission.

Data-collection components gather all observable information from
the transportation system (e.g., traffic flow at a particular point of the
road network, average travel time for a particular road section, number
of passengers boarding a transit line, etc.) for further analysis of the cur-
rent traffic conditions. Traditionally, inductive loop detectors [1,2],
which detect the presence of vehicles based on the induced current in
the loop with passing vehicles, and pneumatic tubes [3], which detect
the presence of vehicles based on pressure changes in the tube, have
been used to collect basic traffic information such as traffic volume
and spot speed. However, because of their high implementation cost
and impact on traffic during implementation, these methods are be-
coming less popular, especially in congested areas.

Due to advances in sensing and imaging technology, video cameras
and radio-frequency identification (RFID) scanners are increasingly
being considered for use in traffic data collection. Cameras can be
installed at different locations in the network to collect traffic videos.
The videos are then analyzed using specifically designed image
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processing software (e.g., Autoscope) to determine information such as
traffic flow, speed, vehicle types, etc. [4,5]. In this context, automatic li-
cense plate recognition [6,7] is one crucial area of research, as through
the recognition andmatching of license plates, it can provide additional
information such as selected paths and travel times. On the other hand,
radio-frequency identification data (RFID) can commonly be obtained
at locations that accept contactless payment (e.g., Autotoll and Octopus
systems in Hong Kong), or for freight transport. Through the matching
of unique RFID, different traffic-related information, such as path choice
and travel time, can be extracted [8,9].

Recently, due to increasing penetration of smartphones and ad-
vanced communication technologies, Global Positioning System (GPS)
data [10,11], media access control (MAC) addresses from Bluetooth
and WiFi components [12,13], and mobile phone data [14,15] are be-
coming available for the analysis of traffic conditions or even travel be-
havior. Compared to the data sources listed above, these new types of
data are more at the level of the individual, as such devices are usually
personalized, and capable of continuous tracking (e.g., GPS and mobile
phone data). With such characteristics, more detailed and/or behav-
ioral-related analysis could be conducted.

Data analysis components of ITSs aim to provide various information
and management/control measures, using the traffic data collected
from the various sources discussed (e.g., inductive loop detectors, GPS,
etc.). Traditionally, predefined and pre-calibratedmodels, such as traffic
equilibriummodels [16,17],flowmodels [18,19], and variousmodels for
signalized intersection [20,21], have been adopted to evaluate traffic
conditions and provide the necessary response. Recent improvements
in computation power and the need for more detailed evaluation have
led to the development of micro-simulation and agent-based models
in data analysis components [22,23]. Due to the introduction of new
sources of data, these models have been extended to effectively use
the new data to improve the accuracy and detail of evaluations
[8,13,14,24].

The data/information transmission components of ITSs help com-
municate the collected data to operation centers for evaluation and
disseminate information, and/or management/control measures, to
travelers and infrastructures. Methods for transmitting collected
data have evolved from wires to optical fibers to wireless networks
(e.g., 3G/4G, WiFi, etc.) with cloud platforms. For the dissemination
of information and control/management strategies, methods have
evolved from traditional traffic signs and radio broadcasting to vari-
able message signs [25], mobile applications [26], and in-vehicle in-
formation [27] by taking advantage of improved communication
technologies.

With these basic components, ITSs can be categorized into one of
two categories based on their functionalities. These are Advanced Trav-
eler Information Systems (ATIS) and Advanced Management Systems
(AMS). The details of each are presented below.

Advanced Traveler Information Systems – ATISs aim to help trav-
elers make travel decisions (e.g., mode choice, route choice, depar-
ture time choice, etc.) by providing various types of information
(e.g., travel time, wait time, available parking). Of the various
implementations, travel time estimation/prediction [8,10,28], and
route guidance systems [29,30] are the most commonly studied
areas as they can affect travelers' choices directly, especially route
choice. With the advancement of the data-collection methods and
communication technologies described above, travel time and
route guidance information provided can be in a more accurate and
real-time manner. With the additional sources of data (e.g., GPS
data, mobile phone data, etc.), other real-time information is also
available to travelers. For example, analysis of road-condition images
from drivers taken automatically from smartphone applications can
be used to determine available roadside parking in real time [31].
Another example is the prediction of bus arrival time from informa-
tion transmitted by bus passengers through mobile phone signals
across different cell towers [32].
AdvancedManagement Systems –AMSs aim to control ormanage dif-
ferent infrastructures and operators within the transportation system
under different situations to ensure the efficiency and safety of the
transportation system. In the literature, such control/management
methods are applied to arterials [33], freeways [34], freight transport
[35], transit services [36], and incident/emergency situations [37].
With enriched data sources, improved data resolution, and enhanced
information dissemination methods, more real-time and detailed man-
agement is possible. For example, Fu and Yang [36] proposed bus-hold-
ing control strategies based on real-time bus location information to
regulate bus headway at specific stops. Although these researchers
have only validated their models in simulation experiments, they pro-
vide good insight into how new sources of information could be used
in transit management. Kurkcu et al. [37] provide another example by
using open data sources and social media data for incident detection,
which is the crucial first step of incident-management procedures.

3. Reviews of smart cities and related artificial intelligence
techniques

The ITSs introduced in the previous section aim to solve transporta-
tion-related issues and improve the overall efficiency of transportation
systems. These ITSs fall under the category of smart mobility within
the framework of smart cities, which is gaining its concerns in the recent
decades. In the literature, there is not yet consensus as to what consti-
tutes a smart city, and there are diverse definitions [38,39]. For example,
Hall [40] suggested that a smart city would monitor its components
(e.g., roads, buildings, etc.) to better optimize its resources, plan preven-
tive maintenance activities, and monitor security, while maximizing
services to its citizens. Lombardi et al. [41], on the other hand, proposed
that smart cities are those that use information and communication
technology (ICT) on human capital, social and relational capital, and en-
vironmental issues. The definitions also depend on the background of
stakeholders and the focus of the government [42]. For instance, acade-
mia considers improving quality of life to be the major goal of a smart
city, while stakeholders in a private company might opt for efficiency
as the primary goal [42]. Despite this diversity of definitions, using ad-
vanced electronic/digital technology (e.g., ICT), embedding ICT or
other electronic hardware into city infrastructure, and improving stake-
holders' interests in different aspects of the system are the three com-
mon characteristics or dimensions of the smart city.

Concerning functionalities, smart cities can be divided into six differ-
ent components [39,41,43,44]: smart governance, smart economy,
smart human/social capital, smart environment, smart living, and
smart mobility. Smart Governance aims to use ICTs to enhance the effi-
ciency and transparency of public sector organizations in the manage-
ment of public resources, and to encourage public participation in
decision-making. The goal of a Smart Economy is to employ ICT and re-
lated technologies to improve productivity in the manufacturing chain
and to enhance and fortify online transactions for the promotion of e-
commerce. Smart Human/Social Capital aims to improve the education
level and active public participation of citizens through the provision
of enriched information generated from the other components of the
smart city. The goal is also to collect individual views and attitudes, as
these data are some of the best information any government can obtain.
The objective of a Smart Environment is to reduce pollution and resolve
other environmental issues with the ultimate goal of improving urban/
city sustainability through the use of technology. Smart Living seeks to
improve quality of life (e.g., security, housing quality, social cohesion,
etc.) through the implementation of advanced technologies within cit-
ies and infrastructures. Smart Mobility, sometimes considered under
the rubric of smart living due to the focus on the efficient transport of
people, attempts to use advanced ICT to optimize logistics and transpor-
tation systems and provide efficient, safe, and environmentally friendly
services for passengers and freight. Based on these components, various
indicators (e.g., local accessibility, productivity, emissions, etc.) have
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been designed [41,45] to evaluate the performance of smart cities and
help decision makers design policies that pave the way toward even
smarter cities.

In the context of smart mobility and ITS, various estimations, predic-
tions, andmanagement and controlmethodsmust be carried out in real
time based on available information from sensors and stakeholders.
Transportation-related problems are characterized by a large number
of variables with parametric relationships that are not well-understood,
large volumes of incomplete data, and unclear goals and constraints
[46]. Recently, AI-related techniques, with their unique strength in
knowledge building, have been adopted in smart mobility and ITS. AI
is the intelligent demonstrated by machine in rationally perceived the
environment (analyzing data from various types of sensors), and to
make rational decisions that maximize the chance of achieving a goal
[47]. The commonly adopted AI approach for transportation problems
involves artificial neural networks, support vectormachines, and Bayes-
ian networks.

Artificial neural networks (ANN), with the ability to perform non-lin-
ear mapping between inputs and outputs through the consideration of
hidden layers and sufficient training, are suitable for addressing trans-
portation problems in which the parametric relationships among vari-
ables are not well-understood. In the literature, ANNs are commonly
adopted in state estimation/forecasting [48,49], incident detection
[50], traffic/infrastructure control [51], and behavior analysis [52]. Sim-
ilar to ANN, support vector machines (SVM) are supervised learning
models that analyze input data, but are more focused on the classifica-
tion of stages/scenarios. As a result, although SVMs have been applied
to other transport-related problems [53,54], they are mainly used for
problems like incident detection [55,56] and accident prediction
[57,58] in the context of ITS. Unlike ANN and SVM, which are solely
data-driven, Bayesian networks are a type of statistical model that con-
siders the probabilities and conditional dependencies of the control var-
iables. In the ITS literature, Bayesian networks have been used for
various transportation problems [59,60], but are mainly used when
the focus is traffic forecasting [61,62] and incident/accident-related is-
sues [63,64].

4. A connected environment for smart mobility

Due to the substantial advancements in ICT and related sensing tech-
nologies, the current trend is toward installing and using Vehicle Auto-
mation and Communication Systems (VACS) in vehicles. VACS have
been shown capable of improving individual safety, comfort, and conve-
nience, as well as emissions in connected vehicles [65]. It is also ex-
pected that VACS could develop the potential to promote global traffic
efficiency through traffic control [66–69]. The number of connected au-
tomated vehicles (CAVs) equipped with VACS will rapidly increase in
the coming decade. Meanwhile, regular human-piloted vehicles
(RHVs) will continue to play a major role in the market in the short
term [70,71]. Thus, the road will soon be shared by CAVs and RHVs.

The penetration of CAVs and VACS into the market may lead to im-
provements in freeway network performance and traffic-flow effi-
ciency. It will also make it possible to implement control schemes,
such as individual vehicle speed and lane-change advice that are not
available with RHVs. As stated in Diakaki et al. [65], VACS that respond
to traffic flow conditions, i.e., adaptive cruise control systems (ACC)
and cooperative adaptive cruise control systems (CACC), create changes
in the characteristics ofmacroscopic trafficflow. In addition, reduced re-
action time due to CAVs can improve traffic flow efficiency via smaller
inter-vehicle headway [70,72,73]. In mixed-autonomy single-lane ring
road experiments (consisting of 22 RHVs on a 230-m ring track), Stern
et al. [74] demonstrated over 40% fuel consumption savings by the in-
sertion of a CAV in the traffic to dampen ring instability. However, re-
search to address the implications of emerging VACS on the flow
characteristics of traffic mixed with CAVs and RHVs, as well as their po-
tential for improving traffic flow operations, has been limited [65,75].
Compared with in-vehicle travelers, pedestrians are the most vul-
nerable road users. Pedestrians contribute to a significant proportion
of total road traffic fatalities and injuries (e.g., there were 273,000 pe-
destrian fatalities in 2010). Current efforts concentrate on developing
advanced driver assistance systems-based pedestrian protection sys-
tems. The performance of such systems is vulnerable under complex
urban environments because of various obstacles and insufficient time
for drivers to react. Vehicle-to-pedestrian (V2P) communication tech-
nology attempts to solve problematic pedestrian and traffic collisions
to improve pedestrian safety.

Owing to the advancement of ICT and increasing penetration of
smart devices, the idea of a connected environment in the transporta-
tion-related context has been extended and now crosses the physical
boundary. In the literature, traffic networks are usually modeled as di-
rected graphs for transport infrastructure only. However, traffic net-
works should consist of human, physical infrastructure, perceptual
road marking, and multimodal transport systems. Thus, it is more rea-
sonable to consider the complete network in cyber, social (human be-
havior) and physical (CSP) spaces. There is increasing discussion about
the construction of a flexible hierarchical traffic networkmodel that in-
tegrates physical, semantic, logical and perceptual networks in the dig-
ital reconstruction of CSP spaces [76].

5. Future of intelligent transportation systems and smart cities

From the reviews in the previous section, it may be seen that the fu-
ture of ITS falls within themultiple layers of the connected environment
(i.e., cyber, social and physical). Given this understanding, this section
aims to provide some insights into the development of future ITSs and
smart cities that include: analysis of information from cyber sources,
CSP network modeling, and flow models in a connected environment.

5.1. Analyzing public attitudes and perceptions from cyber sources

Apart from the physical data that could be collected by various sen-
sors, public attitudes and perceptions gathered from cyber sources (e.g.,
social networks) are the other promising sources of data for under-
standing a city's status and the performance of its transportation sys-
tem. Thus, future ITSs should use these data sources to monitor and
manage the systems. To extract useful and meaningful information
from social network data sources (e.g., public comments on Twitter), a
natural-language processing (NLP)-based algorithm that adopts
predefined semantic structures is suggested for data analysis. The NLP
algorithm should be able to detect social events and/or public com-
ments that could lead to potential traffic issues (e.g., congestion after a
football match), or reveal public attitudes toward and perceptions of
the transport system/current policy. In addition, with temporally and
spatially tagged social network data, the extent and seriousness of traf-
fic issues (e.g., comments on the delay of train service after an 8 AM
train disruption) could also be estimated.

5.2. CSP traffic network modeling

To better incorporate the data from the CSP spaces and other emerg-
ingmulti-source data, a CSPmodel should be developed to allow for the
association and fusion of data. In the future, a hierarchical traffic net-
work model that integrates physical, semantic, logical and perceptual
networks in the digital reconstruction of CSP spaces should be consid-
ered. A cross-layered (i.e., between the cyber, social, and physical
layers) network connection could be enabled by cognitive computing
and/or probabilistic inference models to depict network connectivity.
The association rule of cross-domain data could be investigated using
statistics and NLP. For instance, the spatiotemporal association rule
could be set between Bluetooth intensity and traffic volume, or building
energy usage and pedestrianflow. In formulating this hierarchical traffic
networkmodel, due to the abundance of available traffic information, it
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will be crucial to identify and define the types and amounts (in terms of
temporal and spatial resolution) of information that will be sufficient to
implement various services effectively.

5.3. Flow models under connected environments

With the increasing popularity of VACS, it is certain that future ITSs
will be applied in connected environments with mixed CAVs and
RHVs. As the behavior/characteristics of CAVs are substantially different
from those of RHVs, it is critical to understand theflow characteristics of
such mixed-vehicle environments for use in ITS. Extended vehicular
flowmodels will be necessary at both themicroscopic andmacroscopic
level. At the microscopic level, new car-following (CF) models will be
considered with the intention of incorporating the CAV-related charac-
teristics (e.g., unreliable vehicular communications, communication
delay, platooning driving protocols, penetration rate of CAVs, etc.).
Such CF model could then be used in the design of link-based control
in ITS. In contrast, at themacroscopic level, the CAV-related characteris-
tics should be considered in the development of the network-level flow
model to help in regional monitoring and planning (e.g., monitoring the
congestion level of a district, designing cordon-based road pricing
scheme, etc.).
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