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Abstract 

 

The study of ligand interactions with nucleic acid structures such as G-quadruplexes versus double-

stranded DNA is important because these interactions are fundamental for many intracellular 

processes. In the investigation of ligand-DNA binding process, achieving high fluorescent signal 

discrimination with strong binding affinity is challenging. To develop binding ligands with excellent 

recognition ability towards G4-DNA over duplex-DNA, the design of appropriate molecular scaffolds 

that are able to match with the G4-DNA binding pocket (G-quartet) is crucial. In the present study, 

the new fluorescent DNA binding ligands were designed and synthesized through the integration of a 

small and conjugated substituent group at the 2-position of the 1-methylquinolinium moiety of the 

nonspecific thiazole orange scaffold. The ligands were investigated in fluorescence binding assays 

and showed different interaction properties and significant fluorescent recognition selectivity towards 

G4-DNA over duplex-DNA in vitro. Molecular docking study of the ligands in complex with telo21 

G4-DNA and ds26 duplex DNA revealed different binding modes. In addition, the cytotoxicity of the 

fluorescent DNA binding ligands was evaluated in MTT assays against two selected cancer cell lines 

(human prostate cancer cell (PC3) and human hepatoma cell (hepG2)). The IC50 was found in the 

range of 6.3–12.5 μM, indicating a relatively high cytotoxicity of the ligands towards the cancer cells 

examined. 

 

Keywords: Fluorescent binding ligand, Ligand-DNA interaction, G-quadruplex DNA recognition, 

Molecular docking 
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1. Introduction 

Deoxyribonucleic acid (DNA) is a vital genetic material for all life in nature as it takes various 

critical biofunctions in the growth, development, reproduction, heredity and variation of organisms. 

The classical topology of DNA is a double helical structure, which is intertwined by two 

complementary single strands and was first proposed by Watson and Crick in 1953.[1] Over the past 

decades, it has been discovered that DNA can form a number of non-canonical structures that do not 

follow the simple A-T and G-C base pairings, typical examples including hairpins and cruciforms, 

triplex-forming oligonucleotides, i-motif structures and G-quadruplexes (G4).[2, 3] Interestingly, the 

guanine (G)-rich DNA sequences that are capable of forming G4-structures in human are found highly 

concentrated at the regions of telomere repeats (at the chromosomal extremities) and oncogenic 

promoters (at the intra-chromosomal region).[4, 5] Recent evidences also suggest that G4-structures 

may have important biological functions at cellular level such as the regulatory roles in the expression 

of certain human oncogenes, such as c-myc, c-kit and K-ras, and the perturbation of telomere 

replication.[6-8] It has been shown that enhancing the formation and stabilization of telomeric G4-

DNA structures in vivo may inhibit the telomerase activity in telomere extension in cancer cells.[9-

11] Currently, DNA G-quadruplexes have been considered as a potential target for drug design.[12-

14] Therefore, it is of great importance to design and develop novel and G4-specific small organic 

binding ligands for the in vivo recognition and stabilization of G4-structures. 

Many bioinformatics studies showed that about 376,000 possible G4 formation sequences 

(putative quadruplex sequences) in the human genome appear to correlate with functional genomic 

regions.[13, 15, 16] However, to distinguish G4-DNA structures from large amounts of double-

stranded DNA and/or other form of nucleic acid structures in vivo with small binging ligands is 

challenging.[13] Nonetheless, with the use of G4-specific fluorescent binding ligands [17-28], the 

study of their biofunctions, structural folding dynamics and the real-time location of appearance in 

vivo can be possible. In recent years, a variety of G4-DNA targeting fluorescent probes have been 

reported and reviewed.[12, 17-29] Some typical examples such as benzothiazole [24] and thioflavin 

T [30], naphthalene diimide [31], triphenylamine [32], triaryl-substituted imidazole[11], quinolinium 

[33-35], thiazole orange derivatives [36-38], carbazole derivative [39], porphyrin dyes [40] and 

triphenylmethane [41] are found possessing good selectivity towards G4-DNA over duplex-DNA. For 

the study of ligand-DNA interaction in vitro or in vivo, in order to achieve merit fluorescent signal 

discrimination and display higher affinity to interact with G4-DNA over duplex-DNA, the design of 

molecular scaffolds that are able to match with the G4-DNA binding pocket (G-quartet) is crucial. 
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Some recent reports revealed that the feature of a binding ligand such as molecular shape [42], 

symmetry [43, 44], the planarity and polarity of ligands [12, 45, 46] and the electronic effect of 

terminal groups [47-49], may have significant influence in the ligand‒G4-DNA interaction specificity 

and affinity. In the present study, three new G4-DNA binding ligands based on a relatively rigid 

thiazole orange (TO) scaffold were synthesized by varying the molecular size and flexibility of the 

terminal substituent groups for probing the interaction characteristics of the G-quartet of telomeric 

G4-DNA because the understanding of binding site matching in rational drug design is essential.[50] 

These new fluorescent ligands investigated in a number of binding assays showed different interaction 

properties and good fluorescent discrimination towards G4-DNA structures over duplex DNA. 

Molecular docking study of the ligands in complex with telo21 G4-DNA and ds26 duplex DNA was 

also performed for comparison. 

 

2. EXPERIMENTAL SECTION 

2.1 Materials and instrumentation 

All chemicals were purchased from commercial sources unless otherwise specified. All the solvents 

were of analytical reagent grade and were used without further purification. All oligonucleotides used 

in this work were synthesized and purified by Shanghai Sangon Biotechnology Co. Ltd. (Shanghai, 

China). The sequences were listed in Table S1. Fluorescence studies were performed with a LS45 

luminescence spectrophotometer (Perkin-Elmer, USA). A quartz cuvette with 2 mm x 2 mm path 

length was used for the spectra recorded at 10 nm slit width for both excitation and emission unless 

otherwise specified. Mass spectra (MS) were recorded on Bruker amaZon SL mass spectrometer with 

an ESI or ACPI mass selective detector. 1H and 13C NMR spectra were recorded using TMS as the 

internal standard in CDCl3 or DMSO-d6 with a Bruker BioSpin GmbH spectrometer at 400 MHz and 

100 MHz, respectively. The purity of synthesized compounds was confirmed by using analytical 

HPLC with a dual pump Shimadzu LC-20A system equipped with a photo-diode array detector and a 

C18 column (250 mm x 4.6 mm, 5 µM YMC) and eluted with acetonitrile/water (47:53) containing 

0.5 % acetic acid at a flow rate of 1.0 mL/min. The stock solutions of the ligands were prepared at 5 

mM with DMSO. The stock solution was then diluted to the required concentration with Tris–HCl 

buffer containing 60 mM KCl for experiments. All the titration experiments, binding studies, FRET 

assays and bioassays were repeated in triplicate.  
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2.2 General procedures for the synthesis of new DNA binding ligands 

The starting compound (Z)-1,2-dimethyl-4-((3-methylbenzo[d]thiazol-2(3H)-

ylidene)methyl)quinolin-1-ium iodide was obtained by followed the reported procedures.[37] The 

intermediate compound (0.16 mmol) was then further reacted with the selected aromatic aldehyde 

(0.32 mmol, benzaldehyde, or 2-naphthaldehyde or trans-cinnamaldehyde) using 4-methylpiperidine 

(0.5 mL) as a base and n-butanol (10 mL) as the solvent. The mixture was well-mixed at room 

temperature and then was heated to reflux for 3 h. After reaction, the mixture was cooled in an iced-

bath and the precipitates were collected by suction filtration. The solid was further washed with n-

butanol. The crude product was purified by using flash column chromatography to afford the desired 

pure compounds. These new compounds were characterized unambiguously with 1H and 13C NMR, 

ESI-MS and HPLC before utilized for fluorescence analysis and bioassays. 

 

2.3 Characterization of the DNA binding ligands 1-3 

Ligand 1: 1-methyl-4-((Z)-(3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)-2-((E)-styryl) quinolin-

1-ium iodide was obtained as dark red solid with yield 85 %. Melting point: 230-234 oC. 1H NMR 

(400 MHz, DMSO) δ 8.76 (d, J = 8.2 Hz, 1H), 8.17 (d, J = 8.2 Hz, 1H), 8.06 (t, J = 8.6 Hz, 1H), 7.99 

(m, 1H), 7.94 (m, 2H), 7.76 (m, 3H), 7.67 (s, 1H), 7.63 – 7.57 (m, 2H), 7.56 – 7.47 (m, 3H), 7.39 (t, 

J = 8.6 Hz, 1H), 6.90 (s, 1H), 4.15 (s, 3H), 3.99 (s, 3H). 13C NMR (101 MHz, DMSO) δ 160.06, 

152.47, 148.36, 141.20, 141.05, 139.54, 135.70, 133.77, 130.71, 129.43, 128.90, 128.56, 126.99, 

125.73, 124.74, 124.33, 124.04, 123.48, 122.35, 119.03, 113.20, 108.58, 88.43, 38.58, 34.19. ESI-MS 

for [M–I]+ ( C28H25N2S
+): calculated m/z = 407.2, found m/z = 407.0. HPLC retention time with an 

eluent CH3CN: 0.5% CH3COOH(aq) = 53:47 (v/v) was 4.89 min. The purity of the compound was 

higher than 95 %. 

Ligand 2: 1-methyl-4-((Z)-(3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)-2-((E)-2-(naphth aalen-

2-yl)vinyl)quinolin-1-ium iodide was obtained as black solid with 85 %. Melting point: 299-304 oC.  

1H NMR (400 MHz, DMSO) δ 8.78 (m, 1H), 8.41 (s, 1H), 8.18 (t, J = 8.6 Hz, 2H), 8.11 – 8.04 (m, 

2H), 8.01 (m, 3H), 7.91 (s, 1H), 7.85 (s, 1H), 7.75 (t, J = 8.6 Hz, 2H), 7.67 (s, 1H), 7.65 – 7.56 (m, 

3H), 7.40 (m, 1H), 6.94 (d, J = 7.4 Hz, 1H), 4.20 (s, 3H), 3.99 (s, 3H). 13C NMR (100 MHz, DMSO) 

δ 159.99, 152.42, 148.28, 141.24, 141.06, 139.55, 134.15, 133.76, 133.39, 133.34, 130.41, 129.05, 

128.89, 128.56, 128.30, 127.90, 127.44, 126.99, 125.73, 124.72, 124.58, 124.32, 124.05, 123.52, 

122.55, 119.06, 113.19, 108.52, 88.44, 38.63, 34.18. ESI-MS for [M–I]+ ( C31H25N2S
+): calculated 
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m/z = 457.2, found m/z = 457.0, HPLC retention time with an eluent CH3CN: 0.5% CH3COOH(aq) = 

53:47 (v/v) was 6.90 min. The purity of the compound was higher than 95 %. 

Ligand 3: 1-methyl-4-((Z)-(3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)-2-((1E,3E)-4- 

phenylbuta-1,3-dien-1-yl)quinolin-1-ium iodide was obtained as a dark brown solid with 79 %. 

Melting point: 254-257 oC. 1H NMR (400 MHz, DMSO) δ 8.73 (m, 1H), 8.10 (dd, J = 12, 6 Hz, 2H), 

7.97 – 7.92 (m, 1H), 7.74–7.68 (m, 2H), 7.67–7.61 (m, 2H), 7.60–7.51 (m, 3H), 7.45 (dd, J = 12, 6 

Hz, 2H), 7.42–7.35 (m, 3H), 7.31 (m, 2H), 6.83 (d, J = 7.4 Hz, 1H), 4.06 (s, 3H), 3.97 (s, 3H). 13C 

NMR (100 MHz, DMSO) δ 159.64, 151.84, 147.88, 141.95, 141.06, 140.24, 139.50, 136.52, 133.65, 

129.66, 129.53, 128.60, 128.54, 127.64, 126.90, 125.64, 125.09, 124.64, 124.24, 123.96, 123.48, 

118.98, 113.11, 108.00, 88.23, 38.24, 34.12. ESI-MS for [M–I]+ (C29H25N2S
+): calculated m/z = 433.2, 

found m/z = 433.2. HPLC retention time with an eluent CH3CN: 0.5% CH3COOH(aq) = 53:47 (v/v) 

was 1.70 min. The purity of the compound was higher than 95 %. 

 

2.4 Fluorescent quantum yields 

The fluorescent quantum yields of the binding ligands in the presence of DNA were calculated using 

fluorescein in 0.1 N NaOH ethanol as standard (= 0.85).[51] Absorbance and fluorescence values 

were recorded after adding five solutions with an increasing concentration of a selected sample into 

fixed a concentration of DNA solution. Quantum yields were calculated according to the equation 

[52]: x = ST (Gradx / GradST) 
x /

ST; where the subscripts ST and X denote the standard and 

test respectively; is the fluorescence quantum yield; Grad is the gradient from the plot of integrated 

fluorescence intensity versus absorbance, and is the refractive index of the solvent. 

 

2.5 Fluorescence binding assays 

In the fluorescence titration experiments, the excitation wavelength (λex) used was 510 nm and the 

emission wavelength (λem) 1, λem = 620 nm; 2, λem = 530 nm and 3, λem = 550 nm. For fluorescence 

titration assays, the final concentration of the binding ligand used was fixed at 5 μM in a Tris–HCl 

buffer containing 60 mM KCl. Measurements were taken after incubated for 10 min at 25 °C. With 

the data obtained through fluorimetric titrations, the binding constants were analyzed according to the 

independent site model by nonlinear fitting to the equation [53]: F/F0 = 1+(Q-1)/2, where F0 is the 

fluorescence intensity of 1–3 in the absence of DNA, Fmax is the fluorescence intensity upon saturation 

of DNA, Q = Fmax(F0)
-1, A = (KeqCdye)

-1, and x = nCDNA(Cdye)
-1; n is the putative number of binding 

sites on a given DNA matrix. The parameters Q and A were found via the Levenberg−Marquardt 
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fitting routine in the Origin 8.5 software, whereas n was varied to obtain the best fit.[54] The calculated 

binding stoichiometry of the ligands with G-quadruplex telo21 was listed in Table S2 in supporting 

information. 

 

2.6 Molecular docking study 

Molecular docking study was performed using the solution structure of anti-parallel human telomeric 

DNA G-quadruplex (PDB ID: 2mb3) [55]. The first two thymine residues at the 5’-end and the last 

residue adenine at the 3’-end were deleted to produce 21-mer G-quadruplex. The NMR structure of 

duplex DNA 5’-d(CGCTAGCG)-3’ in complex with homodimeric thiazole orange dye (TO) (PDB 

ID: 108D) was used for the modeling of intercalation interaction.[56] The 3D structures of the small 

molecules were generated with DS viewer 3.5. Autodock Tools (ver. 1.5.6) was used to convert the 

structure files to pdbqt format.[57] Docking was performed using the AUTODOCK vina program.[58] 

The dimensions of the active site box were chosen to be large enough to encompass the entire G-

quadruplex structures. An exhaustiveness of 100 was used and other parameters were left as default. 

 

2.7 Circular dichroism (CD) measurement 

The concentration of telo21 was 5 μM in 10 mM Tris–HCl, 60 mM KCl, pH = 7.4 and the 

concentration of the ligand was 1 to 3 folds in 5 mM Tris-HCl with 60 mM KCl at pH 7.4. The CD 

spectra were carried out using a Chirascan spectrophotometer (Applied Photophysics). The quartz 

cuvette with 4 mm path length was employed for the spectra recorded over a wavelength range of 230 

to 450 nm at 1 nm bandwidth, 1 nm step size, and 0.5 s per point. The CD spectra were obtained by 

taking the average of at least three scans made from 230 to 450 nm at 25 °C. Final analysis of the data 

was carried out with Origin 7.5 (OriginLab Corp.). 

 

2.8 FRET assay conditions 

The FRET assay was performed as a high-throughput screen following previously published 

procedures.[44] The labeled oligonucleotides F21T: 5’-FAM-d(GGG[TTAGGG]3)-TAMRA-3’ 

(donor fluorophore FAM is 6-carboxyfluorescein; acceptor fluorophore TAMRA is 6-

carboxytetramethylrhodamine; HEG linker is (–CH2–CH2–O–)6 used as the FRET probes were diluted 

from stock to the correct concentration (0.4 μM) in buffer and then annealed by heating to 95 °C for 

5 min, followed by cooling to room temperature. Samples were prepared by aliquoting 15 μL of the 

annealed F21T (at 2 × concentration, 0.4 μM) into LightCycler 96, followed by 15 μL of the ligand 
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solution (at 2 × concentration, 0.2–2.0 μM) and further incubated for 1 h. Fluorescence melting curves 

were determined with a Roche LightCycler real-time PCR machine with excitation at 470 nm and 

detection at 530 nm. Fluorescence readings were taken at intervals of 3 °C over the temperature range 

of 37–93 °C, with a constant temperature being maintained for 300 s prior to each reading to ensure a 

stable value. 

 

2.9 MTT experiment conditions 

The cell lines at logarithmic growth stage were inoculated into two 96-well plates with a cell density 

of about 5000 cells per hole and then exposed to 37 °C and 5 % CO2 respectively. After 48 h of 

inoculation, the medium was discarded, washed three times with PBS buffer, and then added to the 

medium containing different concentrations of gradient the compounds 1-3. After incubation for 48 

h, MTT (thiazole blue) solution (5 mg/mL) 20 μL was added into each hole (blank group without 

MTT coloration and control group without medicine). Continue incubation for 4 h at 37 C and 5% 

CO2, the supernatant was discarded and DMSO 100 μL was added into each hole. After 15 s of 

oscillation, the chlamydia was fully dissolved. Finally, the absorbance of each hole at 492 nm was 

measured by enzyme labeling instrument, and the experimental results were recorded. The IC50 value 

of the compound can be obtained by mapping the cell viability. 

 

3. Results and discussion 

The fluorescent DNA binding ligands as shown in Scheme 1 were designed to bear a rotatable 

and π–conjugated substituent group at the 2-position of 1-methylquinolinium moiety of thiazole 

orange (TO). The ligands possess an extended π–conjugated molecular structure compared with 

thiazole orange. In the molecular design, the extended substituent groups including styrenyl, 2-

vinylnaphthalenyl and 4-phenylbuta-1,3-dien-1-yl were designed systematically to increase the 

flexibility of the thiazole orange-based molecular scaffold as the substituent group was connected with 

thiazole orange via an ethylene bridge, which is more flexible than the methylene bridge in the parent 

thiazole orange scaffold. The resulting molecular structure of the new ligands is thus freely rotatable 

in solution. Moreover, three substituent groups have different size and length of bridge for the 

comparison study of binding site matching of G4-DNA. These factors may possibly contribute to the 

degree of fluorescent signal discrimination (G4-DNA versus duplex-DNA) in the in vitro ligand-DNA 

interaction. The compounds synthesized were purified with flash column chromatography and the 

isolated yields were found to be 79-85%. The compounds were characterized unambiguously with 1H 
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and 13C NMR and mass spectrometry before evaluated in the ligand-DNA interaction study and 

bioassays.  

 

 

Scheme 1. The molecular structures of the fluorescent DNA binding ligands. 
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Figure 1. (A) The absorption spectra of ligands 1-3; (B), (C) and (D) showed the fluorescent signal 

changes of ligands in the medium with different viscosity (glycerol/water, v/v %). 
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The UV-vis absorption of the compounds 1-3 were measured in a Tris-HCl buffer solution (pH 

7.4). The major absorption peak (λmax) observed in the long wavelength region was in the range of 

499-525 nm as shown in Figure 1 (A). The ligands dissolved in the buffer solution display almost no 

background fluorescence because the molecular fragments of benzothiazole and the substituent group 

are freely rotatable and therefore cause radiationless decays when the ligand is in excited electronic 

states. However, when these rotations are restricted, it results the termination of the non-radiative 

decay channel and the fluorescence of the ligands that possess a π–conjugated aromatic system is 

restored.[59] The fluorescence feature of the new ligands is therefore sensitive to the rigidity of the 

environment. To demonstrate this fluorescence property, the ligands were dissolved in aqueous 

medium mixed with glycerol (v/v %). The water-glycerol ratio was adjusted to regulate the viscosity 

of the medium. The changes of fluorescence intensity of the ligands with excitation wavelength (λex) 

at 510 nm were measured in the medium. As shown in Figure 1 B-D, the ligands in water medium 

showed very low background emission signal. However, the fluorescence intensity was increased 

gradually as increasing the content of glycerol in the medium, which indicated the increasing of 

viscosity of the medium. Moreover, the fluorescence intensity reached maximum in 100 % glycerol 

because of its high viscosity. The results may support that the fluorescence property of the ligand is 

sensitive to rigidity of the environment and the restoration of fluorescence may be mainly due to the 

significant restricted molecular rotation is in the highly viscous glycerol medium.[60] This implies 

that when the ligands interact with G4-DNA with significant binding affinity, it may be able to 

suppress the radiationless decays because the ligand-DNA interaction may induce high barrier for the 

intramolecular torsional motion, resulting fluorescence signal regarding to the interaction, which is 

important for both in vitro or in vivo molecular recognition and sensing.  

The fluorescence change and binding affinity of the ligands were investigated with a series of 

DNA substrates in Tris-HCl buffer solution under room temperature conditions. In the fluorescence 

assays, two single-stranded DNAs (dt21, da21), four double-stranded DNAs (4a4t, 4at, ds12, ds26), 

and thirteen G4-DNAs (telomere DNA: htg22, telo21, 4telo, human12, oxy12, oxy28; promoter DNA: 

pu27, bc12, pu18, VEGF, RET, cik-1, ckit-2) were studied. Ligands 1-3 treated independently with 

these DNA substrates were excited (λex = 510 nm) and their enhanced fluorescence signals were 

measured for the comparison of interaction selectivity. From Figure 2, it was found that different 

degree of fluorescence signals were observed upon the ligand bound with different DNA substrates, 

which may indicate that the ligands exhibit certain recognition selectivity. The enhanced fluorescence 

signal intensity revealed the in-situ ligand-DNA interactions [61, 62] and this induced signal is an 



11 
 

indicator for the  target specificity. With respect to the fluorescence screening results, it is generally 

observed that the telomeric G4-DNA substrates gave much higher induced fluorescence signal than 

the double-stranded DNA (dsDNA) while the promoter G4-DNA was just slightly better than dsDNA. 

Moreover, the single-stranded DNA (ssDNA) substrates were only induced very weak fluorescence 

signal upon bound with the ligands. It is noteworthy that ligand 1 displayed the best performance in 

the recognition selectivity for telomeric G4-DNA versus dsDNA because the induced interaction 

signal of 1 with telomeric G4-DNA is at least 2-fold higher than that of dsDNA (Figure 2).  

To further understand the discrimination ability of the ligands towards different types of DNA, 

the representative substrates were selected for comparison in the fluorescence titrations. The typical 

nucleic acid substrates including telo21 (G4-DNA), ds26 (double-stranded DNA), da21 (single-

stranded DNA) and RNA were investigated for their interactions with the ligands. From the titration 

experiments, the interaction signals were observed (F/F0) and the ligands generally have a higher 

binding selectivity towards telo21 than ds26, while both ssDNA and RNA exhibited much weaker 

interaction signal (Figure 3). Previous study demonstrated that thiazole orange showed no significant 

fluorescent discrimination ability between telomeric G4-DNA and dsDNA.[37] This suggested that 

the observed binding selectivity for the ligands with various DNA substrates could be possibly 

attributed to the introduced substituent of the thiazole orange scaffold. We speculated that whether 

the whole molecule could be located inside the G4-binding pocket may be one of the critical factors 

to induce fluorescent discrimination ability because the structural environment of the G4-DNA 

binding site (G-quartet) is relatively rigid. Considering that if the molecular scaffold of the ligand with 

a suitable sized substituent group, it could be well matched for end-stacking onto the planar surface 

of G-quartet and may also establish a good binding affinity to achieve better fluorescent discrimination 

ability against other type of nucleic acids. 
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Figure 2. Comparison of DNA selectivity of ligands towards different nucleic acids in a Tris-HCl buffer solution containing 60 mM KCl. The final 

concentration of ligand was at 5 μM and DNA concentration used was 10 μM. The excitation wavelength (λex) was 510 nm and the fluorescence 

signal (λem) was recorded at emission maxima: 1, λem = 620 nm; 2, λem = 530 nm and 3, λem = 550 nm. The interaction signals were measured after 

incubation for 10 min at 25 °C. 
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Figure 3. The equilibrium binding study of ligands with representative nucleic acids (ssDNA: da21, dsDNA: ds26, G4-DNA: telo21, and RNA) at 

various concentrations. In the fluorescence titrations, the excitation wavelength was λex = 510 nm and the fluorescence signal (λem) was recorded at 

emission maxima of ligands: 1, λem = 620 nm; 2, λem = 530 nm and 3, λem = 550 nm. The final concentration of ligand was fixed at 5 μM in a Tris–

HCl buffer containing 60 mM KCl. Measurements were taken after incubated for 10 min at 25 °C. 
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Table 1. Comparison of quantum yields of the ligand-DNA complex formed in vitro and their 

equilibrium binding constants.a 

Ligand 
ε510 nm,

 b 

M-1cm-1 

Emission 

λem (nm) 

Quantum yield,  

f
  c 

Ktelo21  

(x105 M-1) d 

Kds26  

(x105 M-1) c 
Ktelo21 / Kds26

  

1 27400 620 0.051 1.05±0.09 0.24±0.07 4.4 

2 13500 530 0.054 0.89±0.14 0.32±0.05 2.7 

3 7030 550 0.021 1.44±0.21 0.78±0.11 1.8 

a Experiments were performed in 10 mM Tris-HCl buffer at pH 7.4 at 25 °C.  

b Molar extinction coefficient (ε) at 510 nm. 

c Relative fluorescence quantum yield of ligand upon addition of 3 µM telo21. The standard used for 

the determination of relative fluorescence quantum yields was fluorescein (f = 0.85, in 0.1 N 

NaOH(aq)).[51]  
d Equilibrium binding constant (Ktelo21) between the ligand and telo21 G4-DNA. 
e Equilibrium binding constant (Kds26) between the ligand and double-stranded DNA ds26. 

 

From the titration experiments shown in Figure 3, the ligands upon bound to telo21 or ds26 

induced significant fluorescence signals, indicating the in-situ formation of ligand-DNA complex. 

The quantum yields of the ligand-telo21 complexes were found in the range of 0.021-0.054. In 

addition, the equilibrium binding constants of the ligands interacting with telo21 and ds26 were 

estimated. However, for substrates da21 and RNA, their fluorescence interaction signals were found 

too weak for estimating equilibrium binding constants with reasonable accuracy. From Table 1, the 

Ktelo21 values were found in the range of 0.89 – 1.44 x 105 M-1, which is generally higher than that of 

Kds26 (0.24 – 0.78 x 105 M-1). By comparing the equilibrium binding constants, it may suggest that the 

ligands exhibit higher binding affinity and selectivity towards G4-DNA over duplex DNA. Moreover, 

as indicated from Ktelo21/Kds26 ratio = 4.4, ligand 1 showed the better binding selectivity for G4-DNA 

against dsDNA. Among the ligands sharing the same thiazole orange core scaffold but bearing 

different substituent groups, ligand 1 has the smallest molecular size that may lead to better binding 

selectivity towards G4-DNA over dsDNA. This could be probably due to its molecular size matched 

well with the rigid G4-DNA binding pocket. To get better understanding on this speculation, 

molecular docking study was thus performed to compare the possible mode of ligand binding with the 

G-quartet.  

The molecular docking results of the three ligands in complex with telo21 G4-DNA and ds26 

duplex DNA were shown in Figure 4. The three ligands are able to stack on the telo21 G-quartet in a 
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very similar way as our previous report [37], while subtle differences can be found. Ligand 1 is well-

matched with the G-quartet and is completely embedded in the G-quartet binding pocket (Figure 4 A), 

suggesting a good binding affinity and fluorescent property upon interaction. It seems that the size of 

2 with a naphthalene substituent is slightly bigger than the G-quartet, while a strong stacking 

interaction can still be visualized with two major pharmacophores (TO and napthalene) (Figure 4 B). 

However, it is observed that the oversized 3 along with its flexible diene linkage would result less 

matched in the binding site of G-quartet. The homodimeric TO  is known to intercalate in the ds26 

duplex DNA with the 5’-CpT-3’ binding site being stacked by TO chromophore [56]. In the present 

study, all three ligands intercalate in the 5’-CpT-3’ binding site in the same way and orientation with 

their substituent groups at the 2-position of TO pointing out of the binding site (Figure 4 D, E, F). The 

substituent groups outside the binding pocket are likely to interact with solvent and thus lead to 

negative effects on both binding affinity and fluorescence signal [63]. The ligands may be more 

loosely bound with duplex DNA as compared to the situation when bound with G-quadruplex. These 

docking results indicate that the three ligands have selectivity towards G4-DNA over dsDNA. 

 

Figure 4. (A, B, C) The binding mode of the ligands (1, 2 and 3) with telo21 G4-DNA (PDB ID: 

2mb3) and (D, E, F) ds26 duplex DNA (PDB ID: 108D).  
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To understand the possible G4-structure conformation influence caused by the ligand upon 

binding, circular dichroism (CD) spectroscopy was utilized to investigate the interaction between 

ligand 1 and telo21. From the CD spectra shown in Figure 5 A, with telo21 alone, it shows that a small 

positive absorption peak at 245 nm, a major negative absorption peak at 261 nm and a major positive 

and broad absorption peak at 292 nm. These characteristic absorption patterns may indicate that the 

anti-parallel type of topology of telo21 was formed mainly in the buffered solution with K+ ions. 

Moreover, a pair of very weak absorption peaks found at 235 nm (native peak) and 269 nm (positive 

peak) may reveal the presence of parallel G4-structure.[63] Therefore, both parallel and anti-parallel 

types of topology may co-exist in the buffered solution while the anti-parallel G4-structure is more 

favorable. With the addition of 1 to bind to telo21, the absorption peak at 269 nm was influenced and 

became smaller while the peak at 261 nm became more negative. The CD results may indicate that 

the anti-parallel G4-structure has no significant influence upon binding to the ligand whereas the 

parallel G4 could possibly change to anti-parallel in order to adopt a more stable complex in solution.  

In addition, fluorescence-based (FRET) melting assays were performed to evaluate the 

stabilization ability of ligands 1-3 for G4-structure. The normalized FRET melting curves of G4-DNA 

F21T at different concentration of ligands were shown in Figure S5. With the addition of the ligands 

at 2 M, the Tm values shown in Figure 5 B were increased in the range of 3.3-11.2 C generally. 

The control experiments using F10T (duplex DNA) showed that the Tm values obtained were slightly 

increased from 1.1-1.6 C under the same conditions, which are significantly less than that of G4-

DNA F21T. The results of FRET melting assays may suggest that the binding ligands, particularly 1 

and 2, could stabilize G4-structure better than double-stranded DNA.[63] 

Taking together all the results obtained from equilibrium binding constants, increased Tm values 

and molecular docking study, it may suggest that the ligands generally exhibit a favorable interaction 

with G4-structure over duplex DNA in vitro. We therefore investigated their cytotoxicity against 

cancer cells and evaluated the potential of these molecular scaffolds in anticancer application and drug 

design. MTT assays were performed to evaluate the cytotoxicity of the ligands in two selected cancer 

cell lines (human prostate cancer cell (PC3) and human hepatoma cell (hepG2). The inhibitory effects 

on cell growth were shown in Table 2. The IC50 values obtained were in the range of 6.3–12.5 μM, 

which may indicate that the ligands display relatively high cytotoxicity towards both PC3 and hepG2 

cells. The inhibitory mechanism of the ligands is not clear at this stage but the cytotoxicity observed 

against the cancer cells could be potentially attributed to the in vivo DNA-ligand interactions, such as 

binding to the DNA G-quadruplexes and/or double-stranded DNA, and thus interrupting the cell 
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growth.[64] However, a more in-depth investigation is necessary in order to understand better the 

underlying mechanism. 
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Figure 5. (A) The CD spectra of the DNA binding ligand 1 bound to telo21 (5 M) in a buffered 

solution of 10 mM Tris–HCl and 60 mM KCl at pH = 7.4; (B) The stabilization of telomere G-

quadruplex DNA structure with the ligands in FRET-melting assays.  

 

 

Table 2. Evaluation of cytotoxicity (IC50) the DNA binding ligands against cancer cells with MTT 

assays.a   

Ligand 
IC50, μM 

PC3 HepG2 

1 9.8 6.3 

2 12.4 8.8 

3 12.5 9.4 

a Inhibition rate (%) = (Control group average OD - Experimental group average OD)/Control group 

average OD x 100%. lgIC50 = Xm-I (P-(3-Pm-Pn)/4). Where Xm: lg(maximum dose); I: lg(maximum 

dose/adjacent dose); P is the sum of positive response rates; Pm is the largest positive response rate; 

Pn is the smallest positive response rate. 

 

 

Conclusion 

In conclusion, three new fluorescent DNA binding ligands were synthesized by the introduction of a 

small and conjugated group at the 2-position of the 1-methylquinolinium moiety of thiazole orange. 

The ligands were investigated in fluorescence binding assays and showed significant recognition 

selectivity towards G4-DNA over duplex-DNA, which is found in accord with the results obtained 

from the equilibrium binding study, the G4-DNA stabilization ability study with FRET melting assays 

and molecular docking. Among the ligands, the molecular structure of 1 showed better binding site 

(A) (B) 
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matching with the G-quartet. In addition, the cytotoxicity (IC50) of these fluorescent DNA binding 

ligands evaluated in MTT assays against the cancer cell lines of human prostate cancer cell (PC3) and 

human hepatoma cell (hepG2) was found in the range of 6.3–12.5 μM, which indicated that the ligands 

may have relatively high cytotoxicity towards the tested cancer cells. 
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Figure S1a. 1HNMR spectrum of ligand 1 (400 MHz, in DMSO-d6) 

 

 

Figure S1b. 13C NMR spectrum of ligand 1 (100 MHz, inDMSO-d6) 
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Figure S1c. ESI-MS analysis of ligand 1 

 

 

 

Figure S1d. HPLC analysis of ligand 1 
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Figure S2a. 1H NMR spectrum of ligand 2 (400 MHz, in DMSO-d6) 

 

 

 
Figure S2b. 13C NMR spectra of ligand 2 (100 MHz, in DMSO-d6) 
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Figure S2c.  ESI-MS analysis of ligand 2 

 

 

 

 
Figure S2d.  HPLC analysis of ligand 2 
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Figure S3a. 1H NMR spectrum of ligand 3 (400 MHz, in DMSO-d6) 

 

 

 
Figure S3b. 13C NMR spectrum of ligand 3 (100 MHz, in DMSO-d6) 

 



S8 
 

 
Figure S3c.  ESI-MS analysis of ligand 3 

 

 

 

 
Figure S3d.  HPLC analysis of ligand 3 
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Figure S4. UV-vis and fluorescence titration spectra for ligands 1-3 with G-quadruplex DNA telo21. 

The final concentration of ligand was fixed at 5 μM in a Tris–HCl buffer containing 60 mM KCl. 

Measurements were taken after incubated for 10 min at 25 °C. (In the fluorescence titrations, the 

excitation wavelength was λex = 510 nm and the fluorescence signal (λem) was recorded at emission 

maxima of ligands: 1, λem = 620 nm; 2, λem = 530 nm; 3, λem = 550 nm.)  
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Figure S5. Normalized FRET melting curves of G-quadruplex F21T (0.4 M) with the addition of 

different concentration of the DNA binding ligands 1-3 (0.2–2.0 M) in 10 mM Tris–HCl, 60 mM 

KCl, pH = 7.4. 
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Figure S6. Fluorescence intensities at 630 nm (ex = 475 nm) of thiazole orange with different 

nucleic acids in Tris–HCl buffer containing 60 mM KCl. Single-stranded DNA: da21, dt21; duplex 

DNA: 4a4t, 4at, ds12, and ds26; telomere G-quadruplex DNA: htg22, telo21, 4telo, human 12, 

oxy12, and oxy28; promoter G-quadruplex DNA: bcl2, ckit-1, ckit-2, Pu27, Pu18, RET and VEGF. 

Concentration of dye was 5M and DNA concentration was 10M. Results were adopted from [1] 

for comparison purpose only. 
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Figure S7. Equilibrium binding isotherms of thiazole orange with representative nucleic acids 

(ssDNA: da21, dsDNA: ds26, G4-DNA: telo21, and RNA) at various concentrations. The 

concentration of dyes was 5 M in Tris–HCl buffer containing 60 mM KCl. Fluorescence signal 

was measured at 630 nm (ex = 475 nm) at 25 °C. Results were adopted from [1] for comparison 

purpose only. 
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Figure S8. Molecular docking study of thiazole orange interacted with duplex DNA. The result was 

adopted from [1] for comparison purpose only. 
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Table S1. Sequences of oligonucleotides used in the present study 

Abbreviation Sequence (5’ to 3’) Structure/origin 

da21 AAAAAAAAAAAAAAAAAAAAA single-stranded 

dt21 TTTTTTTTTTTTTTTTTTTTT single-stranded 

4a4t AAAATTTT Duplex 

4at ATATATATATAT Duplex 

ds12 GCGCAATTGCGC Duplex 

ds26 CAATCGGATCGAATTCGATCCGATTG Duplex 

htg22 AGGGTTAGGGTTAGGGTTAGGG Telomere G-quadruplex 

oxy28 GGGGTTTTGGGGTTTTGGGGTTTTGGGG Telomere G-quadruplex 

telo21 GGGTTAGGGTTAGGGTTAGGG Telomere G-quadruplex 

oxy12 GGGGTTTTGGGG Telomere G-quadruplex 

Human12 TTAGGGTTAGGG Telomere G-quadruplex 

4telo GGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG Telomere G-quadruplex 

bcl2 GGGCGCGGGAGGAAGGGGGCGGG Promoter G-quadruplex 

ckit1 AGGGAGGGCGCTGGGAGGAGGG Promoter-G-quadruplex 

ckit2 GGGCGGGCGCGAGGGAGGGG Promoter G-quadruplex 

pu27 TGGGGAGGGTGGGGAGGGTGGGGAAGG Promoter G-quadruplex 

pu18 AGGGTGGGGAGGGTGGGG Promoter G-quadruplex 

VEGF GGGGCGGGCCGGGGGCGGGG promoter G-quadruplex 

RET GGGGCGGGGCGGGGCGGGGG Promoter G-quadruplex 

RNA 16S- and 23S-Ribosomal from E. coli Duplex 

F21T FAM-(G3[TTAGGG]3)-TAMRA Telomere G-quadruplex 

F10T FAM-TATAGCTA-HEG-TATAGCTATAT-TAMRA Duplex 
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Table S2. The binding stoichiometry and the parameters of A and Q calculated for the fluorimetric 

titrations with ligands and telo21 G-quadruplex DNA. 

Parameters Ligand 

 1 2 3 

A 81.05 64.36 106.36 

Q 25.48 20.45 38.05 

n 

 (binding stoichiometry) 
0.92 0.95 1.06 

 

With the data obtained from fluorimetric titrations, the binding constants were analyzed according to 

the independent site model by nonlinear fitting to the following equation [2,3]: 

F/F0 = 1+(Q-1)/2{A+1+x-[(x+1+A)2-4x]1/2}  

Where F0 is the fluorescence intensity of ligands 1, 2 and 3 in the absence of DNA;  

Fmax is the fluorescence intensity upon saturation of DNA;  

Q = Fmax(F0)
-1;  

A = (KeqCdye)
-1   and 

x = nCDNA(Cdye)
-1;  

n is the putative number of binding sites on a given DNA matrix. 

The parameters, Q and A, were obtained via the Levenberg−Marquardt fitting routine in the Origin 

8.5 software, whereas n was varied to obtain the best fit.  
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