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Improved Most Likely Heteroscedastic Gaussian
Process Regression via Bayesian

Residual Moment Estimator
Qiu-Hu Zhang and Yi-Qing Ni

Abstract—This paper proposes an improved most likely het-
eroscedastic Gaussian process (MLHGP) algorithm to handle a
kind of nonlinear regression problems involving input-dependent
noise. The improved MLHGP follows the same learning scheme
as the current algorithm by use of two Gaussian processes (GPs),
with the first GP for recovering the unknown function and the
second GP for modeling the input-dependent noise. Unlike the
current MLHGP pursuing an empirical estimate of the noise level
which is provably biased in most of local noise cases, the improved
algorithm gives rise to an approximately unbiased estimate of the
input-dependent noise. The approximately unbiased noise estimate
is elicited from Bayesian residuals by the method of moments. As
a by-product of this improvement, the expectation maximization
(EM)-like procedure in the current MLHGP is avoided such that
the improved algorithm requires only standard GP learnings to be
performed twice. Four benchmark experiments, consisting of two
synthetic cases and two real-world datasets, demonstrate that the
improved MLHGP algorithm outperforms the current version not
only in accuracy and stability, but also in computational efficiency.

Index Terms—Gaussian process regression, most likely
heteroscedastic Gaussian process, input-dependent noise, Bayesian
residual, method of moments.

I. INTRODUCTION

GAUSSIAN process (GP) has been proven to be a powerful
Bayesian nonparametric method for solving nonlinear

regression or multi-class classification problems [1]. It enables
the realization of a probabilistic prediction within an elegant
inference framework while holding excellent resilience to over-
fitting that often occurs in machine learning. In a standard GP
regression model, the noise level is typically presumed to be con-
stant throughout the input space. In many real-world problems
[2]–[6], however, the observation variability heavily depends on
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the input. The misuse of such a strong assumption may give
rise to a GP model with poor capability in the interpretation of
heteroscedastic data. Moreover, it is likely to invalidate statistical
hypothesis tests where the observed data is postulated to be
independent and identically distributed.

Over the past two decades, various heteroscedastic Gaussian
process (HGP) models [7]–[16] have been proposed to release
the constant-noise assumption and allow the noise level to be
variant across the input space. The HGP configuration typically
makes use of two GPs, with one for modeling the latent function
and the other for learning the input-dependent noise. A combi-
nation of the two GPs will generate a joint posterior distribution
over the latent function and the input-dependent noise, that is
non-Gaussian and no longer analytically intractable.

To obtain the numerical solution, we usually resort to Markov
chain Monte Carlo (MCMC) samplings [7], [8] or analytical ap-
proximations [9]–[17]. The MCMC samplings are often viewed
as a principled “gold standard” for inference in that the solutions
of the MCMC samplings can converge to the exact non-Gaussian
posterior when the sample size tends to infinity. However, the
MCMC methods can be prohibitively expensive in large datasets.
Rather, analytical approximations are recently more preferred as
they achieve a trade-off between computational accuracy and
efficiency. The expectation propagation (EP) approximations
[9]–[11] are much faster than MCMC samplings, but they remain
very costly for large-scale regression problems. The Laplace
approximation [12] is more straightforward, utilizing a Gaussian
distribution to approximate the joint posterior via the second-
order Taylor expansion. This method, however, may produce
a poor posterior approximation when it is highly skewed. A
better analytical approximation with computational cost com-
parable to the Laplace method, is the variational heteroscedastic
Gaussian process (VHGP) [13] in which the joint posterior is
approximated by a two-factor variational distribution. The most
likely noise approaches [14], [15] are deemed the most compu-
tationally attractive approximation, in which the noise posterior
is simply replaced by a point estimate at its most likely level
such that the predictive posterior distribution can be obtained
analytically. Nevertheless, the most likely noise approaches may
suffer from numerical inaccuracy and instability. For example,
the most likely heteroscedastic Gaussian process (MLHGP) [14]
as a typical representative of the most likely noise approaches,
is not guaranteed to converge but rather might oscillate due to
empirical estimation of the input-dependent noise. This flaw was
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later dealt with in the maximum a posteriori heteroscedastic
Gaussian process (MAPHGP) [15], by introducing marginal
likelihood of the data to penalize improper noise level. However,
the MAPHGP tends to overfit severely when there exist many
latent noise variables to learn. Other approximative approaches
are also available in the literature and interested readers may
refer to references [16]–[19].

While the most likely noise approaches have deficiency in
numerical inaccuracy and instability, their computational effi-
ciency is highly attractive as they require only standard GP
inference. Therefore, there has been much interest in the use
of the most likely noise approaches in practical applications
[20]–[25]. With the intent to overcome numerical inaccuracy
and instability of the most likely noise approaches, this study
develops an improved MLHGP algorithm in terms of the mo-
ment estimation of Bayesian residuals. After attesting to the
fact that the empirical estimate of the noise level in the cur-
rent MLHGP is biased for most input-dependent noises, an
approximately unbiased noise estimate is proposed based on the
method of moments for Bayesian residuals. This refinement in
the noise estimate can significantly benefit the most likely noise
approaches in algorithmic accuracy and stability when dealing
with regression problems with input-dependent noise. Moreover,
the expectation maximization (EM)-like learning procedure in
the current MLHGP is exempted such that the computational
cost of the improved algorithm is only twice that of a standard
GP. To validate the superiority and effectiveness of the proposed
MLHGP, benchmark examples using synthetic datasets and
real-world datasets are provided.

The rest of this paper is organized as follows. In Section II,
the GP regression model is briefed. In Section III, the current
MLHGP is introduced, followed by the improved algorithm
proposed in this study. In Section IV, the improved MLHGP
is validated by using four benchmark experiments in conjunc-
tion with detailed comparisons to the standard GP, VHGP and
MLHGP. Finally, conclusions and further lines of research are
presented in Section V.

II. GAUSSIAN PROCESS

The nonlinear regression is aimed at recovering an unknown
function f : Rd → R from a dataset D = {xi, yi}ni=1, where
xi ∈ Rd denotes the input vector of dimension d and yi ∈ R
denotes a scalar of the observed output such that

yi = f (xi) + εi with εi ∼𝒩
(
0, g2 (xi)

)
(1)

where the observation error εi is typically assumed to be inde-
pendently and normally distributed with mean zero and variance
g2(xi). The noise variance g2(xi) can be constant or varying
across the input space. For the sake of brevity, we denote here the
true function value fi = f(xi) and the noise standard deviation
gi = g(xi). The inputs, outputs, function values and noise stan-
dard deviations are then aggregated into X = (x1, . . . ,xn)

T,
y = (y1, . . . , yn)

T, f = (f1, . . . , fn)
T and g = (g1, . . . , gn)

T,
respectively. In this study, we consider the general regression
problems, mapping from an input xi to an output f(xi), which
do not involve specific application backgrounds such as robotic
control with initial conditions or output constraints.

The GP is a nonparametric Bayesian modeling for the un-
known function, that can be fully specified by a mean function
m(x) and a covariance function k(x,x′) [1]. A simplifying
assumption is to place a zero-mean GP prior over the function
value, given as

p (f |X) =𝒩 (0,K) (2)

where K is the covariance matrix with entries [K]ii calculated
from the covariance function k(xi,xj) at input pointsxi andxj .
Many covariance functions are available to define a GP prior,
such as squared exponential (SE) or Matérn kernels [1]. The
present study is mainly focused on the SE kernel that is infinitely
differentiable, expressed by

k (xi,xj) = η2exp
[‖xi − xj‖2/

(
2l2

)]
(3)

where ‖ · ‖ denotes the Euclidean distance between input loca-
tionsxi andxj , η is the signal amplitude, and l is the characteris-
tic length-scale. The SE kernel parameterized byθf = {η, l} is a
measure of similarity between two observations. The observed
output y and the function value f∗ at test input x∗ are jointly
Gaussian distributed as

[
y

f∗

]

∼𝒩

([
0

0

]

,

[
K+ S k∗
kT
∗ k∗∗

])

(4)

where S is the diagonal matrix of noise variances with entries
[S]ii = g2i , k∗ is the covariance vector calculated by k(x∗,xi)
between test input x∗ and training input xi, and k∗∗ is the prior
variance calculated from k(x∗,x∗) at x∗. The use of the condi-
tional identity of a multivariate Gaussian distribution results in
the posterior distribution of the function value f∗ at test input
x∗ as

p (f∗|x∗,θf ,g, D) =𝒩
(
μf∗ , σ

2
f∗

)
, where (5)

μf∗ = kT
∗ (K+ S)−1y (6)

σ2
f∗ = k∗∗ − kT

∗ (K+ S)−1k∗ (7)

The posterior distribution over the test output y∗ can simply
be obtained by adding the noise variance g2∗ at test location x∗
to the posterior variance of the function value f∗ as

p (y∗|x∗,θf ,g, g∗, D) =𝒩
(
μy∗ , σ

2
y∗

)
, where (8)

μy∗ = μf∗ = kT
∗ (K+ S)−1y (9)

σ2
y∗ = σ2

f∗ + g2∗ = k∗∗ − kT
∗ (K+ S)−1k∗ + g2∗ (10)

In realistic modeling situations, there is no access to either
the kernel parameters θf or the noise level g(x), and they
must be learned from the data. In the standard GP, the noise
level is assumed to be constant throughout the input space, and
thus we have the noise power g2(x) ≡ σ2

n and the noise matrix
S ≡ σ2

nI. The unknown parameters, including kernel parameters
θf and noise variance σ2

n are then collectively referred to as
hyperparameters of the GP model, denoted as θy = {θf , σ

2
n},

that can be learned by maximizing the log marginal likelihood
of the data

logp (y|X,θy) = − 1

2
yT

(
K+ σ2

nI
)−1 − 1

2
log

∣
∣K+ σ2

nI
∣
∣

− n

2
log (2π) (11)



3452 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

This is known as the type II maximum likelihood (ML-II)
estimate of the hyperparameters θy , which can be obtained by
an optimization algorithm [26] in pursuit of an acceptable local
maximum or a global optimum if possible.

In the HGP, another GP needs to be built for modeling the
log noise level zi = logg2i , with a separate covariance function
kz(x,x

′) parameterized by θz . As a result, two GPs are involved
in the HGP, with the first for recovering the unknown function
(the y-process) and the second for learning the input-dependent
noise level (the z-process). The resulting predictive posterior
distribution over test output y∗ is given by the following integral

p (y∗|x∗,θf ,θz, D)

=

∫∫
p (y∗|x∗,θf , z, z∗, D) p (z, z∗|x∗,θz, D) dzdz∗

(12)

where z = (z1, . . . , zn)
T are the log noise variances at training

inputsX , and z∗ is the log noise variance at test input x∗. Given
the noise levels (z, z∗), the integral in Eq. (12) is analytically
tractable and the posterior distribution of the test output y∗
remains Gaussian with the posterior mean and variance given
by Eqs. (9) and (10), respectively. Nevertheless, in regard to the
full posterior of the noise levels p(z, z∗|x∗,θz, D) the integral
is no longer solvable analytically and thus one has to employ
the MCMC samplings or analytical approximations as afore
mentioned. In the next section, after introducing the current
MLHGP, we will present an improved algorithm based on the
method of moments for Bayesian residuals.

III. HETEROSCEDASTIC GAUSSIAN PROCESS

The MLHGP [14] is very simple and computationally attrac-
tive in dealing with regression problems with input-dependent
noise, in that the full posterior distribution of the varying noise is
simply replaced by a point estimate at the most likely value such
that the predictive posterior over the test output can be treated an-
alytically. In the MLHGP, the noise posterior p(z, z∗|x∗,θz, D)
is approximated as

p (z, z∗|x∗,θz, D) ≈ δ (z̃, z̃∗) (13)

where (z̃, z̃∗) is the most likely log noise level, and δ is the
Dirac delta function with δ(z̃, z̃∗) = 1 when z̃ = z̃∗ and zero
otherwise. The integral in Eq. (12) is thus approximated as

p (y∗|x∗,θf ,θz, D)

≈
∫∫

p (y∗|x∗,θf , z, z∗, D) δ (z̃, z̃∗) dzdz∗

≈ p (y∗|x∗,θf , z̃, z̃∗, D) (14)

The most likely noise level is typically at the mode of its noise
posterior, given by

(z̃, z̃∗) = argmaxlog
(z,z∗)

p (z, z∗|x∗,θz, D) (15)

As the input-dependent noise is modeled by a GP as well, its
posterior is also normally distributed and thus the most likely

Algorithm 1: Most Likely Heteroscedastic Gaussian
Process.

1. Train a standard GP G1 on the training dataset
D = {xi, yi}ni=1 and estimate the posterior
distribution over training outputs
yi|xi,θy, D ∼𝒩(μyi

, σ2
yi
);

2. Estimate empirically noise variances
g2i = 1

2 [(yi − μyi
)2 + σ2

yi
] and build a new training

dataset D′ = {xi, zi}ni=1 with zi = logg2i ;
3. Train another standard GP G2 on the new dataset D′

and estimate log noise variances
zi|xi,θz, D

′ ∼𝒩(μzi , σ
2
zi
);

4. Train a heteroscedastic GP G3 on the dataset D with
the most likely noise variances g̃2i = eµzi to update the
posterior distribution over training outputs
yi|xi,θ

′
f , g̃

2, D ∼𝒩(μ′
yi
, σ′2

yi
);

5. If not converged, set G1 = G3 and go back to step 2.
Otherwise, make prediction on future observations
y∗|x∗,θ′

f , g̃
2, g̃2∗ , D ∼𝒩(μy∗ , σ

2
y∗).

noise level is simply given as

(z̃, z̃∗) = (μz, μz∗) (16)

where μz and μz∗ are respectively the posterior means of log
noise levels at training points X and test point x∗. The integral
in Eq. (12) is thus

p (y∗|x∗,θf ,θz, D) ≈ p (y∗|x∗,θf , z̃, z̃∗, D)

= p (y∗|x∗,θf ,μz, μz∗ , D) (17)

Hence, the predictive posterior distribution of the test output
is Gaussian, with its mean and variance given by Eqs. (9) and
(10), respectively.

A. Noise Estimation in Current MLHGP

The estimation of the most likely noise level is at the core of
the MLHGP approach. An empirical estimate of the noise level
is employed in the current MLHGP [14] as

g2i =
1

s

s∑

j=1

0.5(yi − yji )
2 (18)

where s is the sample size, and yji are samples from the posterior
predictive distribution of the training output yi that is Gaussian
with mean μyi

and variance σ2
yi

given in Eqs. (9) and (10) re-
spectively. In fact, the above empirical estimate can be simplified
by the Gaussian identity as

g2i =
1

2

[
(yi − μyi

)2 + σ2
yi

]
(19)

This simplification can not only reduce the computational
cost of the current MLHGP, but also can significantly en-
hance numerical stability of it. As such, a new training dataset
D′ = {xi, zi}ni=1 with zi = log{ 1

2 [(yi − μyi
)2 + σ2

yi
]} can be

built to train another GP for estimating the most likely noise



ZHANG AND NI: IMPROVED MOST LIKELY HETEROSCEDASTIC GAUSSIAN PROCESS REGRESSION 3453

variance, given by g̃2i = eµzi . The current MLHGP is delineated
in Algorithm 1.

The MLHGP is much simpler and computationally more
efficient compared to MCMC sampling methods and other
analytical approximations, but the algorithm is not guaranteed
to converge as the empirical estimate of the noise level given
in Eq. (19) is biased. The expectation of the empirical noise
estimate is

E

{
1

2

[
(yi − μyi

)2 + σ2
yi

]}

= E

{
1

2

[
(yi − μyi

)2 + σ2
fi
+ σ2

n

]}

= E

{
1

2

[
(yi − fi + fi − μfi)

2 + σ2
fi
+ σ2

n

]}

= E

{
1

2

[
(εi + fi − μfi)

2 + σ2
fi
+ σ2

n

]}

= E

{
1

2

[
ε2i + 2εi (fi − μfi) + (fi − μfi)

2 + σ2
fi
+ σ2

n

]}

=
1

2

[
g2i + (fi − μfi)

2 + σ2
fi
+ σ2

n

]
(20)

where μfi and σ2
fi

are respectively the posterior mean and
variance of the function value fi at training input xi, given by
Eqs. (6) and (7); σ2

n is the global noise variance estimated in
the y-process; and g2i is the true noise variance at xi. The item
(fi − μfi) being the difference between the true function value
and its expected value is termed herein the modeling error. When
the training data are enough and the first GP for learning the
function value is well defined, the modeling error (fi − μfi) and
the modeling variability σ2

fi
can be neglected. The expectation

of the empirical noise estimate is approximated as

E

{
1

2

[
(yi − μyi

)2 + σ2
yi

]}
≈ 1

2

(
g2i + σ2

n

)
(21)

When the noise level is fixed, the global noise variance σ2
n

estimated in the y-process can be a good approximation for each
local noise level g2i and thus

E

{
1

2

[
(yi − μyi

)2 + σ2
yi

]}
≈ g2i (22)

In such case, the empirical noise estimate in Eq. (19) can
be approximately unbiased. However, when the noise level is
input-dependent, the majority of local noise levels g2i will not
be equal to the estimated global noise variance σ2

n and thus we
have

E

{
1

2

[
(yi − μyi

)2 + σ2
yi

]}

= g2i (23)

Clearly, the empirical noise estimate in the current MLHGP is
biased for most of local noise cases if the noise level is varying
in the input domain.

B. Noise Estimation in Improved MLHGP

In this section, an approximately unbiased noise estimate is
proposed based on the moment estimation of regression resid-
uals. In Gaussian process regression, residuals ri are the dif-
ference between the observed outputs yi and the corresponding
posterior means μyi

at xi [27], [28],

ri = yi − μyi
(24)

These residuals are referred to as Bayesian residuals by con-
trast with classical residuals in ordinary least square regression
[29]; the latter are the difference between the observed outputs
yi and the corresponding point estimates ŷi. The Bayesian
residuals ri can be rewritten as

ri = yi − μyi
= yi − fi + fi − μyi

= εi + (fi − μfi) (25)

Apparently, each Bayesian residual ri comprises two items:
εi which is the observation error and (fi − μfi) which is the
modeling error. The observation error εi is a random variable,
while the modeling error (fi − μfi) is a deterministic variable.
Thus, each Bayesian residual ri is also a random variable, which
is normally distributed with mean μri = fi − μfi and variance
σ2
ri

= g2i ,

ri ∼𝒩
(
μri , σ

2
ri

)
(26)

The residual ri and the expected function value μfi are
available in the first GP, while the true function value fi and
the local noise variance g2i have to be estimated from the data.

Regression residuals can be utilized to estimate the input-
dependent noise in that the dispersion of the residual series
is controlled by the varying noise level. Assuming the input-
dependent noise can be depicted by a smooth function, one
can extend regression techniques originally for recovering the
underlying function f(xi) to estimate the noise function g(xi).
Typically, regression techniques are performed on the trans-
formed residuals zi = T(ri) such as the absolute residuals
zi = |ri| or the squared residuals zi = |ri|2, rather than the raw
residuals ri, to facilitate recognition of the dispersion pattern
of the residuals (z-function). Yet, the obtained z-function by
fitting a curve for the transformed residuals zi may not provide
an unbiased estimate for the noise function g(xi), depending
upon the adopted transformation function T(ri). Therefore, it
is necessary to calibrate the obtained z-function and make it
unbiased for the input-dependent noise. Otherwise, the input-
dependent noise level g(xi) could be globally underestimated
or overestimated.

The method of moments is a common practice for parameter
estimation in statistics [30] and it enables to provide an unbiased
estimate for the parameters of interest. For the input-dependent
noise, its local levels can be derived from statistical moments
of Bayesian residuals. Various moments, such as raw or central
moments, and raw or central absolute moments, of Bayesian
residuals are available to estimate the local noise levels. In
this study, the raw absolute moments of the residuals are pre-
ferred because each order of the raw absolute moments of the
residuals contains information about the noise power. The vth
raw absolute moment of the residual ri at training point xi is
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TABLE I
TYPICAL VALUES OF APPROXIMATE CORRECTION FACTOR

given by

E {|ri|v} = σv
ri
/s (v) = gvi /s (v) (27)

where the correction factor s(v) depends on the moment order
v, given by [31]

s (v) =
√
πψ

(−v/2, 1/2;−μ2
ri
/
(
2σ2

ri

))

/[
2v/2Γ ((v + 1)/2))

]
(28)

where ψ(·) is the Kummer’s confluent hypergeometric function
and Γ(·) is the gamma function. The local noise level gvi is thus
obtained as

gvi = E {|ri|v} s (v) (29)

Clearly, E{|ri|v}s(v) is an unbiased estimate of the local
noise level gvi at xi.

When the first GP in the y-process for learning the function
value is well defined, the modeling error μri = fi − μfi can be
neglected and we have ψ(−v/2, v/2; 0) = 1. The raw absolute
moment of the residual degenerates to the central absolute
moment of it. The correction factor can be approximated as

s (v) ≈ √
π/

[
2v/2Γ ((v + 1)/2))

]
(30)

Table I gives some typical values of the approximate correc-
tion factor. Particularly, the first raw absolute moment of the
residual (v = 1) is the absolute residual, while the second raw
absolute moment of the residual (v = 2) is the squared resid-
ual. An approximately unbiased estimate of the noise standard
deviation gi at training point xi is

gi = E {|ri|} s (1) ≈
√
π/2E {|ri|} (31)

Similarly, an approximately unbiased estimator of the noise
variance g2i at xi is

g2i = E
{
|ri|2

}
s (2) ≈ E

{
r2i
}

(32)

As a result, a new data D′ = {xi, zi}ni=1 with zi = |ri|v can
be built to train a second standard GP to estimate the most likely
noise levels g̃vi = μzis(v) at training point xi and g̃v∗ = μz∗s(v)
at test point x∗. Interestingly, it is seen that zi = |ri|v is just
what we need to transform the residuals ri before using a
regression technique to estimate the noise function g(xi). How-
ever, it should be noted that in the second GP, we are using a
Gaussian approximation to the transformed residuals zi = |ri|v
that are in general non-Gaussian and even non-negative. Such
approximation can be reasonable in the improved MLGHP as
we care only the mean function of the second GP (it defines

Algorithm 2: Improved Most Likely Heteroscedastic Gaus-
sian Process.

1. Train a standard GP G1 on the training dataset
D = {xi, yi}ni=1 and estimate the posterior
distribution over training outputs
yi|xi,θy, D ∼𝒩(μyi

, σ2
yi
);

2. Calculate regression residuals ri = yi − μyi
and build

a new training dataset D′ = {xi, zi}ni=1 with
zi = |ri|v;

3. Train another standard GP G2 on the new dataset D′

and estimate the input-dependent noise levels
zi|xi,θz, D

′ ∼𝒩(μzi , σ
2
zi
);

4. Update the most likely noise levels
g̃vi = max(0, μzis(v)) with
s(v) ≈ √

π/[2v/2Γ((v + 1)/2))];
5. Make prediction on future observations
y∗|x∗,θf , g̃, g̃∗, D ∼𝒩(μy∗ , σ

2
y∗).

the most likely noise levels), rather than the full distribution of
it. Thus, the most likely noise levels are required to be refined
to g̃vi = max(0, μzis(v)) or g̃v∗ = max(0, μz∗s(v)) to ensure a
nonnegative noise level. Besides the input-dependent noise level
being better estimated, the EM-like iteration algorithm required
in the current MLHGP for iteratively learning the function
value and the noise level is avoided. The improved MLHGP
is elucidated in Algorithm 2. In principle, any order of the raw
absolute moment of Bayesian residuals is acceptable to estimate
the input-dependent noise level, but in practice lower orders
(v = 1 or v = 2) are preferable because they are easy to compute
and numerically more stable.

IV. EXPERIMENTS

In this section, the performance of five GPs will be com-
pared, which are: GP—the standard Gaussian process, VHGP—
the variational heteroscedastic Gaussian process, MLHGP—
the current most likely heteroscedastic Gaussian process,
IMLHGP1—the improved MLHGP using absolute residual
(v = 1), IMLHGP2—the improved MLHGP using squared
residual (v = 2). The first GP is said to be homoscedastic,
while the other four GPs are heteroscedastic. The predictive
performance of the five GPs is assessed by using four bench-
mark experiments, consisting of two synthetic cases and two
real-world datasets, that have been employed to verify other
HGPs [7], [8], [14], [15].

A. Benchmark Experiments

The two synthetic benchmark experiments (U1 and U2) are
both one-dimensional nonlinear regression problems with input-
dependent noise. In the first synthetic experiment [7] the noise
rate increases linearly with the input; but in the second one [8]
the noise rate depends nonlinearly on the input. For the sake of
simplicity, the observed output yi is rewritten as

yi = fi + giei with ei ∼𝒩 (0, 1) (33)
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TABLE II
DESCRIPTION OF TWO SYNTHETIC BENCHMARK EXPERIMENTS

Fig. 1. Examples of training datasets in the two synthetic benchmark experi-
ments, with solid red lines depicting the true function values.

where fi is the true function value at input xi, gi is the true noise
standard deviation at the same location, and ei is a standard
normal random variable. More detailed information about the
two synthetic experiments is given in Table II.

For each of the synthetic experiments, 100 training datasets
were generated using the same program but different random
seeds, with each training dataset consisting of n = 500 samples
uniformly drawn from the input range [0,1]. Fig. 1 gives exam-
ples of the training datasets in the two synthetic experiments.
A test dataset with N = 1000 samples was also generated to
evaluate the performance of a trivial GP model.

Benchmark experiments were also conducted on Silverman’s
motorcycle accident dataset [2] and Sigrist’s lidar dataset [3].
The motorcycle dataset consists of 94 observations (Fig. 2(a)),
while the lidar dataset is composed of 221 observations
(Fig. 2(b)). For the two real-world datasets, 100 training datasets

Fig. 2. Real-world heteroscedastic datasets for benchmark experiments.

were generated, using 90% of the observations for training and
the remaining 10% for testing.

B. Predictive Performance Assessment

To quantify predictive performance of the five GPs in deal-
ing with input-dependent regression problems, the standardized
mean squared error (SMSE) with respect to the true function
values in relation to a trivial GP model is first calculated as

SMSE (f) =
1

N

N∑

i=1

(
μf∗,i − f∗,i

)2

var (f∗)
(34)

where μf∗,i is the posterior mean of the function value f∗,i at test
input x∗,i, var(f∗) is the variances of the true function values at
all test points X∗ = (x∗,i, . . . ,x∗,N )T, and N is the test dataset
size. As for real-world data, the true function values f∗,i may not
be available and one may have to use their noisy values y∗,i (the
testing outputs) as alternatives. In this regard, SMSE(f) should
be replaced by SMSE(y). Then the SMSE with respect to the
true noise standard deviation is computed by

SMSE (g) =
1

N

N∑

i=1

(
μg∗,i − g∗,i

)2

var (g∗)
(35)
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where μg∗,i is the posterior mean of the noise standard deviation
g∗,i at input x∗,i, and var(g∗) is the variances of the true noise
standard deviations at all test points. As for real-world data,
the SMSE(g) is not available. Finally, the average negative log
probability density (NLPD) of the test outputs in regard to a
trivial GP model is evaluated as

NLPD (y) = − 1

N

N∑

i=1

logp (y∗,i|x∗,i, D)

=
1

2N

N∑

i=1

log
(
2πσ2

y∗,i

) 1

N

N∑

i=1

(
y∗,i − μy∗,i

)2

2σ2
y∗,i

(36)

where μy∗,i and σ2
y∗,i are respectively the posterior mean and

variance of the test output y∗,i at x∗,i.
The SMSE(f), SMSE(g) and NLPD(y) are three quantities to

measure regression losses when a trivial GP model is preferred.
Lower losses indicate better predictive performance. In the next
section, the predictive performance of the five GPs on the four
benchmark experiments will be evaluated in detail through the
following criteria: the SMSE(f) loss on recovering the unknown
function; the SMSE(g) loss on recovering the noise standard
deviation if available; and the NLPD(y) loss on predicting the
future observation.

C. Results

For each benchmark experiment, the five GPs are successively
applied on the 100 training datasets to recover the unknown
function and the input-dependent noise. The hyperparameters
associated with the five GPs are all determined by a conjugate
gradient optimizer. As a local search strategy, the gradient-based
optimizer may yield a local optimum for the hyperparame-
ters. To reduce the risk of getting trapped in local minima, a
multi-starting point strategy [32] is adopted in conjunction with
the conjugate gradient optimizer for hyperparameter estima-
tion. New emerging nature-inspired metaheuristic algorithms
such as cuckoo search [33] and bat algorithm [34] would be
more promising in searching global optimum solution of the
hyperparameters.

For the two synthetic benchmark experiments, the average
function values, the noise standard deviations, the SMSE(f)
losses on recovering the noise-free function, the SMSE(g) losses
on recovering the noise standard deviation, and the NLPD(y)
losses on predicting the future observations are obtained, re-
spectively, as shown in Figs. 3 and 4 for U1 and Figs. 5 and 6
for U2. It can be observed that standard GP and HGPs exhibit
very similar performance on recovering the function values. The
average function values recovered by the five GPs are almost
identical, which are all very close to the true function values
as Figs. 3(a) and 5(a) show. The SMSE(f) losses in regard to
function recovery from the five GPs are nearly at the same level,
with similar medians and variabilities (boxplot widths) as shown
in Figs. 4(a) and 6(a).

Fig. 3. Average function values and noise standard deviations over 100 random
trials by the five GPs in U1.

By contrast, the examined HGPs significantly outperform the
standard GP on recovering the noise level and on predicting
future observations. As Figs. 3(b) and 5(b) show, the standard
GP tends to overestimate weaker noise but to underestimate
stronger noise in the two benchmark experiments. The improper
assumption is released in HGPs, giving rise to better predictive
performance on recovering the noise level and on predicting the
future observations as shown in Figs. 4(b–c) and 6(b–c).

The MLHGP outperforms the standard GP on recovering the
noise level and on predicting the future observations, whereas
its performance is very variable, resulting in larger and more
deconcentrated SMSE(g) and NLPD(y) losses than other HGPs.
In one training dataset case, the current MLHGP is likely to per-
form even worse than the standard GP, giving outlier SMSE(g)
and NLPD(y) losses larger than those from the standard GP. The
MLHGP tends to underestimate the overall noise level, and such
observation was also made by other researchers [18].

The improved MLHGPs, including IMLHGP1 (v = 1) and
IMLHGP2 (v = 2) clearly outperform the standard GP and
MLHGP on recovering the noise level and on predicting future
observations. They give the average noise standard deviations
that are much closer to the true noise level. Moreover, their
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Fig. 4. Performance test results of the five GPs in U1 by running 100 random
trials.

SMSE(g) and NLPD(y) losses are much smaller and more con-
centrated than MLHGP. The improved MLHGPs perform better
than the standard GP and MLHGP in both synthetic benchmark
experiments. Nevertheless, they do not necessarily outperform
VHGP. For example, VHGP exhibits the best performance on re-
covering the noise level and on predicting the future observations

Fig. 5. Average function values and noise standard deviations over 100 random
trials by the five GPs in U2.

in the first synthetic experiment, while the improved MLHGPs
outperform VHGP only in the second synthetic experiment.

For the benchmark experiments with real-world datasets, only
the SMSE(y) losses on recovering the noisy function and the
NLPD(y) losses on predicting future observations are available,
as shown in Fig. 7 for the motorcycle dataset and Fig. 8 for
the lidar dataset. It is observed that the standard GP and HGPs
exhibit similar performance on recovering the function values
even when the datasets come from the real world. The SMSE(y)
losses regarding the noisy function recovery obtained from the
five GPs are close to each other, with similar medians and
variabilities as shown in Figs. 7(a) and 8(a).

The examined HGPs again noticeably outperform the stan-
dard GP on predicting future observations, as shown in Figs. 7(b)
and 8(b). The NLPD(y) losses from the four HGPs are much
smaller than those from the standard GP. Even though the
motorcycle and lidar datasets are not massive, it is still able
to observe that the improved MLHGPs outperform the current
version on predicting future observations and their NLPD(y)
losses are even comparable to those from VHGP.

Table III provides the average training times of the five GPs
on the four benchmark experiments. It is found that the training
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Fig. 6. Performance test results of the five GPs in U2 by running 100 random
trials.

times of the five GPs can be quite different, though their basic
computational complexity all scales in the form of O(n3) with
n being the number of training data points. Among the five GPs,
the standard GP is found to be computationally the most efficient,
taking the least average time to obtain a trivial regression model.
The improved MLHGPs (IMLHGP1 and IMLHGP2) are also
very attractive, taking about twice the time of a standard GP.
The MLHGP is required to perform a sophisticated EM-like

Fig. 7. Performance test results of the five GPs in U3 by running 100 random
trials.

TABLE III
TRAINING TIMES OF FIVE GP MODELS FOR BENCHMARK EXPERIMENTS

(IN SECONDS)

The training times have been averaged over 100 random trials, running on a
Dell Precision T5810, with CPU Intel Xeon E5-1620 at 3.5GHz and memory
16.0 GB.

iteration learning procedure such that it costs more than seven
times the training time of a standard GP on the four benchmark
experiments. The VHGP is computationally the most expensive
among the five GPs, costing at least thirty times the training
effort of a standard GP. This can be attributed to the fact that there
are numerous unknown hyperparameters to be learned, includ-
ing not only model hyperparameters but also many variational
parameters.
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Fig. 8. Performance test results of the five GPs in U4 by running 100 random
trials.

V. CONCLUSION

In this paper, an improved MLHGP algorithm is proposed to
deal with a kind of nonlinear regression problems with input-
dependent noise. The improved model follows the same idea
in the current MLHGP that adopts a point estimate to replace
the full noise posterior distribution. The improved MLHGP,
however, affords an approximately unbiased estimate for the
most likely noise level, differing from the biased estimate in the
current model. The approximately unbiased noise estimate is
elicited by the method of moments for Bayesian residuals. This
refinement brings about a significant improvement in the noise
estimate and exempts the EM-like learning from the current
MLHGP.

To validate the feasibility and effectiveness of the improved
MLHGP, we have compared its performance with the standard
GP, the VHGP and the current MLHGP by addressing two
synthetic and two real-world benchmark experiments, in terms
of regression losses on function and noise recoveries, future
prediction and computational cost. The experiment results show
that the improved MLHGP clearly outperforms the current ML-
HGP in algorithmic accuracy, stability and computational cost.
Though the improved MLHGP may not necessarily outperform
the variational approach, it is much simpler in implementation
and more computationally efficient.

While the improved MLHGP algorithm is quite powerful for
pursuing regression problems with input-dependent noise, the
computational constraint of it remains a major hurdle to practical
applications where the datasets are extremely large. In addition,
there exist more challenging regression problems in practical
applications, such as non-Gaussian noises [8], output constraints
[35] and observation outliers [36]. It would be desirable in
the future to attempt sparse approximations or non-Gaussian
likelihoods in the face of these highly demanding applications.
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