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Abstract: Cholesterol plays an important role in cellular homeostasis by maintaining the rigidity of
cell membranes, providing a medium for signaling transduction, and being converted into other vital
macromolecules, such as sterol hormones and bile acids. Epidemiological studies have shown the
correlation between cholesterol content and cancer incidence worldwide. Accumulating evidence
has shown the emerging roles of the dysregulation of cholesterol metabolism in cancer development.
More specifically, recent reports have shown the distinct role of cholesterol in the suppression of
immune cells, regulation of cell survival, and modulation of cancer stem cells in cancer. Here, we
provide a comprehensive review of the epidemiological analysis, functional roles, and mechanistic
action of cholesterol homeostasis in regard to its contribution to cancer development. Based on the
existing data, cholesterol homeostasis is identified to be a new key player in cancer pathogenesis.
Lastly, we also discuss the therapeutic implications of natural compounds and cholesterol-lowering
drugs in cancer prevention and treatment. In conclusion, intervention in cholesterol metabolism may
offer a new therapeutic avenue for cancer treatment.

Keywords: cancer; cancer stem cells; cholesterol homeostasis; cholesterol esters; cholesterol-lowering
drugs; oxysterols; immunotherapy; lipoproteins; statins

1. Introduction

Cholesterol is gaining increasing attention in cancer research due to its targetable therapeutic
implications in both the prevention and treatment of cancer. However, the role of cholesterol in
tumorigenicity remains controversial [1]. Researchers have reported a distinctively contradictory role
of cholesterol in cancer development, showing that the correlation of cholesterol in carcinogenicity can
be cancer-type specific [2]. High cholesterol or hypercholesteremia has positive correlations in breast and
prostate cancers [3,4], while some prospective cohort studies show an inverse association [5,6]. Therefore,
this review aims to discuss the current understanding of cholesterol homeostasis, to summarize the
key findings of recent pre-clinical and clinical studies investigating cholesterol metabolism in cancer,
and to provide up-to-date therapeutic implications of natural compounds and cholesterol-lowering
drugs in cancer treatment.

2. Physiological and Functional Roles of Cholesterol Homeostasis

As a subtype of lipid, cholesterol exists in every type of mammalian cell, ranging from fundamental
components of cell membranes by maintaining integrity and stability to precursors of different forms
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of vital sterol compounds, like vitamins and hormones. Akin to other important molecules, cellular
cholesterol levels are tightly regulated through metabolic processes, namely de novo biosynthesis,
intake, export, and esterification of excess free cholesterol [7].

The de novo cholesterol biosynthesis, or the mevalonate pathway in some contexts (Figure 1a),
consists of more than 20 enzymatic steps. It all starts from combining three acetyl-CoA molecules
to form one 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA). Under the first rate-limiting
catalytic enzyme, HMG-CoA reductase (HMGCR) converts HMG-CoA into mevalonate, which is
then transferred to farnesyl pyrophosphate (FPP), squalene, and finally cholesterol through a series of
enzymatic reactions. Noteworthy, FPP, apart from transferring into downstream sterols and all other
nonsterol isoprenoids, is capable of converting into geranylgeranyl pyrophosphate (GGPP), which are
both important effectors in protein prenylation [8,9].
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Figure 1. Cholesterol metabolism and key oncogenic pathways related to cancer development.
(a) Cholesterol de novo biosynthesis. Starting from three molecules of acetyl-coenzyme A (CoA),
cholesterol is synthesized in more than 20 enzymatic steps, whereas 3-hydroxy-3-methylglutaryl-CoA
reductase (HMGCR) and squalene epoxidase (SQLE) act as rate-limiting enzymes. (b) Systematic
diagram showing the cholesterol metabolism in relation to key oncogenic molecular pathways.
Sterol-regulatory element binding protein 2 (SREBP2) regulates the transcriptional activity of cholesterol
biosynthesis genes, low density lipoprotein receptor (LDLR)-mediated cholesterol influx, and Nod-like
receptor protein 3 (NLRP3) inflammasome-associated inflammation. Embedded in SREBP2 gene,
microRNA (miRNA)-33 can positively regulate SREBP2 expression. The over-activated cholesterol
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biosynthesis contributes to uncontrolled cell growth. Overexpressed proprotein-convertase-subtilisin-
kexin type-9 (PCSK9) facilities the lysosomal degradation of LDLR, induces hypercholesterolemia, and
eventually leads to the development of hepatocellular carcinoma. Excess cholesterol is exported via
ATP-binding cassette (ABC) subfamily A member 1 (ABCA1) under liver X receptor (LXR) activation.
However, in cancercells, ABCA1 is prohibited by the phosphoinositide 3-kinase (PI3K)/protein kinase
B (Akt)/mammalian target of rapamycin complex 1 (mTORC1) pathway. The overall retention
of intracellular cholesterol facilitates acyl-CoA:cholesteryl acyltransferase 1 (ACAT1), converting
cholesterol into cholesteryl esters, leading to the development of different types of cancer. ABCA1
can also be inhibited by miRNA-27 and miRNA-183. TP53-mediated SREBP2 activation increases
the production of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) in the
mevalonate pathway, resulting in prenylation of small Ras family GTPases and their downstream
effectors. An increased SQLE level under high nuclear SREBP2 (nSREBP2) induction inhibits
phosphatase and tensin homolog (PTEN) activity and sequentially allows the PI3K/Akt/mTORC1
signaling cascade. Lastly, cholesterol or its oxidative derivatives activate Smoothened receptor (SMO) in
the sonic hedgehog (SHH) pathway. The overall alterations in these pathways increase the proliferation
rate and the migration and invasion capacities, allow cell survival, and induce tumor formation.

Meanwhile, the mevalonate pathway is supervised by a master transcriptional regulatory protein
called sterol-regulatory element binding protein 2 (SREBP2) in a negative feedback loop [10]. SREBP2 is
synthesized in a premature format in the endoplasmic reticulum (ER) membrane [11]. The maturation of
SREBP2 requires a two-step proteolytic cascade that occurs in the Golgi apparatus, where site 1 protease
(S1P) and S2P act consecutively to release the N-terminal fragment of SREBP2 [11,12]. This N-terminal
fragment, or nuclear SREBP2 (nSREBP2), enters the nucleus and binds to the genes containing
sterol regulatory elements at the promoter region, subsequently enhancing their transcriptional
levels [13]. Those genes are therefore involved in cholesterol biosynthesis, such as HMGCR, low
density lipoprotein receptor (LDLR), and squalene synthase [13]. The activation of SREBP2 occurs
only when the intracellular cholesterol level is low so that the SREBP cleavage-activating protein
(SCAP), another ER-anchored protein, is freed from cholesterol and insulin-induced gene protein 1
(INSIG1) [14,15]. The detachment of INSIG1 induces a closed conformational change of SCAP and
allows its binding to COPII-coated vesicles [16]. The SCAP-SREBP2 complex is transported to the Golgi
apparatus together with the COPII vesicles for SREBP2 activation. However, when the intracellular
cholesterol level is high enough to bind to SCAP, which sequentially recruits INSIG1, the INSIG1
attachment relaxes the conformation of SCAP, thus prohibiting the complex from binding to COPII
vesicles [16]. The transcriptional activity of nSREBP2 can also be increased by the master regulator of
anabolic reactions, mammalian target of rapamycin complex 1 (mTORC1), via inhibition of nuclear
entry of lipin1, which downregulates nSREBP2 [17]. Apart from that, the mevalonate pathway, which
is an energetically expensive metabolic process, can also be regulated through rate-limiting enzymes.
HMGCR can be phosphorylated by 5′ adenosine monophosphate-activated protein kinase (AMPK) to
abolish its activity when intracellular ATP levels are low [18]. Recently, squalene epoxidase (SQLE) has
been considered as another rate-limiting enzyme in this pathway, in which it converts squalene into
squalene epoxide [19]. The E3 ubiquitin ligase MARCH6 is recruited to degrade squalene epoxidase
when excess cholesterol is present [19].

When de novo biosynthesis remains the main source of intracellular cholesterol, most cells
acquire cholesterol from low density lipoprotein (LDL) in the circulatory system via LDLR-mediated
endocytosis [20]. Free cholesterol is then dissociated from LDL when lysosome is digested. Yet,
proprotein-convertase-subtilisin-kexin type-9 (PCSK9) induces lysosomal degradation to LDLR [21].
The very-low-density lipoproteins, the precursors of LDL, are composed in liver, where the dietary
cholesterol is transported for compartmentation. In contrast to LDLR-mediated endocytosis, enterocytes
in the intestinal lumen absorb dietary cholesterol via Niemann–Pick type C1-like 1 protein (NPC1L1)
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through a clathrin-dependent pathway [22]. The upregulation of NPC1L1 contributes to cardiovascular
diseases and symptomatic gallstone diseases [23].

When cholesterol has served its intracellular purposes, the excess cholesterol is exported via
ATP-binding cassette (ABC) subfamily A member 1 (ABCA1) or ABC subfamily G member 1 (ABCG1)
to lipid-poor apolipoprotein A-I (ApoA-I) and generates high-density lipoproteins (HDLs) that are
transported back to the liver [24–27]. The transcriptional level of ABCA1 is upregulated by nuclear
liver X receptor (LXR) when the intracellular cholesterol level is high [27]. Surplus cholesterol can also
be esterified by acyl-CoA:cholesteryl acyltransferase 1 (ACAT1) into cholesteryl esters (CEs), which are
a less toxic form and can be stored as lipid droplets or for further processing into lipoproteins [28].

The discovery of microRNAs (miRNAs), a class of non-coding RNAs, has added complexity into
cholesterol homeostasis through regulation of different key components in the system [29]. miR-33a,
an embedded intronic microRNAs, is located within SREBP2 gene [30]. In a low sterol condition,
akin to SREBP2, miR-33a is transcribed up to 2- to 3-fold higher to regulate cholesterol export and
HDL metabolism gene by targeting ABCA1 for post-transcriptional repression [30]. On the other
hand, miR-223 controls cholesterol level by inhibiting the synthesis and enhancing the cholesterol
efflux by elevating the expression of ABCA1 [31]. miRNA-122 is highly expressed in hepatocytes,
accounting for 70% of all liver miRNA [32]. Inhibition of miRNA-122 substantially suppresses total
plasma cholesterol [32]. However, the direct target of miRNA-122 is yet to be elucidated [32]. Apart
from these miRNAs, miR-27a has been shown to specifically interact with HMGCR 3′ untranslated
region to inversely regulate HMGCR expression by posttranslational inhibition followed by mRNA
degradation [33]. Strikingly, the application of genome-wide association studies has allowed the
discovery of more miRNAs in abnormal levels of cholesterol-lipoprotein circulation, such as LDLR
and ABCA1 [34]. These mRNAs include miR-128-1, miR-148a, miR-130b, and miR-301b [34]. Taken
all together, these findings have suggested the potential involvement of miRNAs in regulation of
cholesterol metabolism, and they may contribute to an abnormal cholesterol level if left unregulated.

3. The Relationship between Cholesterol and Cancer Incidence

As an essential macromolecule in metabolism, cholesterol has been suspected to play an important
role in inducing cancer. Since the 1980s, such a relationship has been extensively monitored and
examined in different clinical cohort studies. However, the results have indicated that the relationship
between cholesterol and cancer is type- and stage-specific, both to the tumor originating site and the
form of lipoproteins being examined. Cholesterol circulates in the body mainly in two different forms:
LDL or HDL. Researchers have examined them separately or inclusively as total cholesterol (TC) to
determine their tumorigenicity effect (Table 1).

Table 1. Clinical and epidemiological studies linking cholesterol, statin use, and cancer risks.

Year Study Design Population Group Number Main Findings Reference

1967–1999 Prospective cohort
study Finland >9000

High dietary cholesterol intake
was associated with increased risk

of colorectal cancer
[35]

1970–2007 Prospective cohort
study

Scotland, United
Kingdom >12,000

Plasma cholesterol was positively
related to risk of high-grade

prostate cancer incidence
[36]

1972–2005 Cohort study Norway, Austria,
and Sweden >500,000

Total serum cholesterol level was
inversely associated with risk of

overall cancer in females and with
risk of liver, pancreas, and

melanoma cancers in males

[37]

1972–2012 Prospective cohort
study Norway >2000

An inverse association was found
between cholesterol level and risk

of prostate cancer
[5]

1984–2009 Randomized
controlled trials

28 pharmacologic
intervention arms

and 23 control arms
>600,000

An inverse association was found
between HDL-C level and risk of

cancer incidence
[38]
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Table 1. Cont.

Year Study Design Population Group Number Main Findings Reference

1985–2002 Prospective cohort
study Finland >20,000

No association between total
cholesterol and risk of

non-Hodgkin lymphoma (NHL),
but an inverse association between

HDL-C and NHL

[39]

1988–2002 Prospective study Japan >2000
An inverse correlation between
serum cholesterol level and the

incidence of gastric cancer
[6]

1990–2012 Meta-analysis
12 case-control
studies and 4
cohort studies

>4000
Dietary cholesterol intake

contributed to higher risk of
pancreatic cancer

[40]

1992–2006 Prospective study Korea >1,000,000

High cholesterol was related to
prostate, colon, and breast cancers
and inversely related to lung, liver,

and stomach cancers.

[41]

1995–2013 Case-control study United Kingdom >100,000 A decreased risk of colorectal
cancer with statin use [42]

1997–2001 Population-based
case-control study Shanghai, China >800

Low HDL-C was related to higher
risk of gallbladder and bile duct

cancers.
A U-shape relationship was found
between total cholesterol level and

LDL-C with biliary tract cancers

[43]

2002–2012 Retrospective study Guangzhou, China >600

Low HDL-C was correlated with
poorer disease-free survival and

overall survival in stage II/III
colorectal cancer

[44]

2014 Meta-analysis

22 randomized
controlled trials,
5 cohorts, and 6

case-control studies

>5,000,000
A significant risk reduction of liver
cancer in all statin users, regardless

of the type of statin used
[45]

1993–2011 Meta-analysis 15 cohort and 12
case-control studies >1,000,000

A decreased risk of prostate cancer
in statin users, though long-term
statin use did not affect the total

risk of prostate cancer

[46]

2012 Meta-analysis
8 observational and
3 post-hoc analyses
of 26 clinical trials

>5000

A significant drop of over 30% in
gastric cancer with statin use;

significance remains in both Asian
and Western populations

[47]

1998–2014 Retrospective
case-control study United States >400,000

A drop of over 60% risk in
pancreatic cancer with statin use of

more than 6 months
[48]

LDL cholesterol (LDL-C) level has been suggested to be a prognostic factor of breast cancer
progression at diagnosis [49]. A prospective study on 244 women with operable breast cancer in
Portugal showed that patients with LDL-C levels as high as 117 mg/dL had poor prognosis due to the
higher proliferative rate, histological stage, and more advanced clinical stage [49]. Meanwhile, patients
with LDL-C levels above 144 mg/dL can suffer from lympho-vascular invasion as well as lymph node
metastasis [49]. Yet, in two meta-analyses involving over 1 million patients each, LDL-C showed no
association with breast cancer risk irrelevant to menopause in women [50,51]. On the other side of
the world, in a large population-based case-control study conducted in Shanghai, China, researchers
showed the relationship of LDL-C in biliary tract cancers [43]. Patients contracting bile duct cancer
had significantly higher LDL-C levels than control patients, while those patients who suffered from
gallbladder cancer had lower LDL-C. However, there was no significant difference in LDL-C level in
patients contracting carcinoma of the ampulla of Vater, a small region connecting the duodenum, bile
duct, and pancreatic duct, compared with the control group [43]. Moreover, LDL-C was positively
associated with liver metastases in colorectal cancer patients [52].

In contrast, HDL cholesterol (HDL-C) may have a clearer effect on reducing the cancer risk.
A prospective follow-up study of participants who were enrolled in the ATBC Cancer Prevention
Study showed a strong inverse association between HDL-C and non-Hodgkin lymphoma (NHL). The
researcher claimed that the risk of NHL was reduced by 15% for each 5 mg/dL increase in HDL-C
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level [39]. Participants with HDL-C levels above 55 mg/dL had over 60% lower risk of developing
NHL [39]. A similar situation was observed in biliary tract cancers in the study mentioned above.
Patients with a high HDL-C level (>40 mg/dL) had 11.6- and 16.8-fold lower risks of gallbladder and
bile duct cancers than the patients with low HDL-C levels (<30 mg/dL) [43]. Additionally, a modest
association of HDL-C with <50 mg/dL could increase the breast cancer risk among premenopausal
women in a prospective study examining over 7000 patients [53].

Taking both circulating forms into account and measuring them as the TSC level provides a
complementary, yet more elusive, picture to examine the relationship of cholesterol and cancer risk in
clinical studies. In an all-inclusive prospective study of nearly 1.2 million Korean participants, the
investigators examined several common types of cancers, including stomach, liver, pancreas, lung,
prostate, or colon cancers [41]. After adjusting for body mass index, alcohol consumption, fasting
glucose, hypertension, smoking, and physical activity, inverse associations were observed between
all-cancer incidence with total cholesterol in men (Hazard Ratio (HR), 0.84; 95% Confidence Interval
(CI), 0.81 to 0.86) and in women (HR, 0.91; 95% CI, 0.87 to 0.95) [41]. A similar result was observed
in another large prospective study consisting of seven cohorts from Norway, Austria, and Sweden,
including nearly 600,000 participants [37]. Inverse associations were demonstrated between total
cholesterol level and all cancer risk in men (HR, 0.94; 95% CI, 0.88 to 1.00) and in women (HR, 0.86;
95% CI, 0.79 to 0.93) [37]. In some individual cancer types, positive correlations could be established in
both sexes, such as prostate, colon, pancreatic, and breast cancer [37]. Particularly in prostate cancer,
men with higher cholesterol levels were at greater risk of developing a higher clinical stage of prostate
cancer [36].

4. Critical Oncogenic Pathways in Cholesterol Homeostasis

Dysregulation of key molecules in cholesterol homeostasis or cholesterol itself has not only been
associated with several well-known oncogenic pathways, but also related to inflammasome- and
miRNAs-mediated cancer development (Figure 1b). By understanding the interplay between these
parties, more effective drug interventions can be developed.

In the mevalonate pathway, production of FPP and GGPP could induce onco-protein prenylation,
which is involved in the activation of several oncoproteins, such as Ras GTPases [8,9,54]. Meanwhile,
proprotein-convertase-subtilisin-kexin type-9 (PCSK9) induces lysosomal degradation to LDLR [21].
However, the overexpression of PCSK9 contributes to hypercholesterolemia and sequentially correlates
with hepatocellular carcinoma development [55]. Hyperactivity of LXR, another key player in
cholesterol homeostasis induced by its agonists, has been shown to exert an anti-proliferative effect
in gastric cancer cells [56]. Yet, though CEs serve as a cholesterol reservoir, the accumulation of CEs
or overexpression of ACAT1 have supported a pro-tumor role. In hepatocellular carcinoma, ACAT1
elevation is identified by proteomic and phospho-proteomic analyses [57]. In xenograft models of
glioblastoma, ACAT1 ablation has reduced the tumor progression [58]. CP-113818, the ACAT1 inhibitor,
suppresses the migration capacity of breast cancer cells [59]. Furthermore, inhibition of ACAT1 has
also been shown to decrease prostate cancer progression [60].

One of the most intensively studied oncogenes, TP53 gene mutation, arising from deletion or
truncation, aggressively promotes tumor survival, invasion, migration, metastasis, and chemoresistance
in many cancers [61]. With functional p53 protein, SREBP2 activity is suppressed due to upregulation
of ABCA1, hence reducing the transcriptional levels of enzymes in the mevalonate pathway [62].
However, with respect to breast cancer, p53 disrupts the acinar morphogenesis, or tissue architecture, of
breast cells, aided by the upregulated expression of the cholesterol biosynthesis pathway. By harvesting
tumor-derived mutants of p53 in an organoid culture system, through Ingenuity Pathway Analysis
and Gene Ontology Analysis, cholesterol biosynthesis was shown to be the most overrepresented
regarding p53 downregulation [63]. A rescue experiment supplementing the essential intermediate
metabolites in the mevalonate pathway could significantly inhibit the disordered phenotype caused by
silenced p53 in breast cancer cells in 3D culture [63]. Moreover, TP53-mediated SREBP2 cholesterol
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synthesis can also enhance the prenylation of Rho GTPases, which, in turn, enhance the proliferation
and self-renewal of breast cancer cells [54,63]. Conversely, simvastatin strikingly decreased cancer cell
growth, increased cell death, reduced invasiveness, and mimicked the mutant p53 depletion in terms
of morphological changes [63].

Another example is the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mTORC1/SREBP
signaling axis, which induces overall cell growth. While the PI3K and Akt signaling pathway is
responsible for the accumulation of mass, the inhibition of mTORC1 can attenuate Akt-dependent
lipogenesis and eventually cause reductions in cell size in vitro and in vivo [64,65]. This finding was
further elaborated. The abnormal activation of the PI3K/Akt signaling pathway maintains a high
intracellular level of cholesterol via mTORC1 in inhibiting the ABCA1 efflux activity and via SREBP
overexpression, resulting in LDLR-dependent cholesterol import [66]. Moreover, a high intracellular
cholesterol level could further drive mTORC1 recruitment and activation in lysosomes via lysosomal
transmembrane protein SLC38A9 [67]. Meanwhile, in prostate cancer, the loss-of-function phosphatase
and tensin homolog (PTEN) can activate the PI3K/Akt pathway and lead to the accumulation of CEs
as a result of excess intracellular cholesterol levels after upregulation of LDLR-mediated cholesterol
influx [68]. A similar result was also seen in nonalcoholic fatty acid induced hepatocellular carcinoma.
The overexpression of SQLE can suppress PTEN activity and subsequently induce the accumulation of
CEs through Akt signaling [69]. Collectively, such an alteration is related to cell proliferation, tumor
formation, and cancer aggressiveness in terms of invasion and metastasis in cancers.

Cholesterol and its oxygenated derivatives have shown strong affinity to G protein-coupled
receptor (GPCR), i.e., Smoothened receptor (SMO), which activates the sonic hedgehog (SHH)
pathway [70]. The SHH pathway is considered an oncogenic signaling cascade, as it is capable
of promoting cell cycle progression and stem cell proliferation through increased activity of GLI1
and subsequent activation of hedgehog targeted genes, therefore enhancing tumor formation [71].
Inhibition of cholesterol synthesis by statins can successfully arrest SHH signaling in medulloblastoma
cells and fibroblasts, thus attenuating the proliferation of tumors [72].

Inflammation is an immune response to endogenous danger signals which helps to combat different
stresses [73]. The causal relationship between chronic inflammation and cancer is widely established
nowadays [74]. Inflammasomes, the large intracellular multi-protein signaling complexes, are formed
under inflammation which help to activate inflammatory protease caspase-1, pro-inflammatory
cytokines interleukin (IL)-1β and IL-18 [74]. Nod-like receptor protein 3 (NLRP3) is one of the
most well studied inflammasomes among the families and its dysregulation is associated to cancer
development. The uncontrolled formation of NLRP3, arising from different cellular challenges such as
presentation of lipopolysaccharides, viruses, or abnormal ion fluxes, induced IL-1β and IL-18 productions,
resulting in development of various cancer types, including head-and-neck squamous cell carcinoma [75],
oral squamous cell carcinoma [76], and breast cancer [77]. In colorectal cancer, cholesterol promoted colon
carcinogenesis through activating the NLRP3 inflammasome and suppression of AMPKα in macrophages,
resulting in significant increase of mitochondrial reactive oxygen species, which in turn enhanced the
NLRP3 inflammasome activity [78]. A similar positive feedback loop was observed in hepatocellular
carcinoma [79]. The enhanced production and accumulation of cholesterol in liver cancer cells activated
NF-κB signaling, which could promote the overall cholesterol production via activating SREBP2, HMGCR,
and LDLR [79]. Yet, in other cells like endothelial cells, SREBP2 is an important mediator for NLRP3
inflammasome activation and amplification via SREBP2-TIFA and SREBP2-NOX2 cascade [80,81], further
strengthening the relationship between cholesterol homeostasis and inflammation.

Accumulative evidence has demonstrated the crucial role of miRNAs in cancer development [82,83].
MiR-122 was found to regulate cholesterol homeostasis, and its overexpression is required for hepatitis
C virus propagation and accumulation through binding to the 5′ UTR of the hepatitis C virus
genome [84,85]. Meanwhile, miR-183 promoted proliferation and anti-apoptotic properties in colon
cancer cells, through retaining a high level of intracellular cholesterol via direct degradation of ABCA1
mRNA [86]. Similarly, miR-27 also exerts anti-apoptotic function in cancer cells by blocking cholesterol
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efflux or targeting ABCA1 [87]. Furthermore, MYC exerts its oncogenic effects in part by altering
mevalonate metabolism in glioma cells via induction of miR-33b [88]. However, on the other hand,
miRNAs could act as onco-suppressors. Inhibition of miR-612 induced HADHA overexpression
which in turn modified cholesterol biosynthesis via SREBP2/HMGCR cascade, eventually leading to
invadopodia formation and metastasis of HCC [89]. Lastly, miR-33a has shown to be suppressed in
tumors derived from lung cancer [90], breast cancer [91], and colorectal cancer [92]. Particularly in
colorectal cancer, cholesterol can regulate cancer development, cell cycle progression, and anti-apoptosis
via miR-33a-PIM3 signaling pathway [92].

5. The Role of Cholesterol Metabolism in the Regulation of Cancer Stem Cells

Cancer stem cells (CSCs), or tumor-initiating cells (T-ICs), have been proposed to play important
roles in tumor initiation, recurrence, and chemoresistance, in which dysregulated cholesterol metabolism
is shown to be involved [93]. Though as a small subset inside cancer cells, a growing body of evidence
of the utility of T-ICs or cells showing stem-like characteristics has tried to explain the failure of current
conventional chemotherapy in which patients or cancer cells can acquire resistance to chemotherapeutic
drugs after certain periods of drug administration, eventually leading to tumor relapse [94]. Therefore,
isolation of T-ICs and identification of their critical signaling pathways would bear clinical significance
in light of registering new targeted therapies against virtually all types of cancer.

By transforming immortalized human fibroblasts into cells bearing CSC phenotypes, cells
overexpressing some of the stemness regulator genes, such as sex determining region Y-box 2,
octamer-binding transcription factor 4, and homeobox protein, can form tumorspheres in an anchorage-
independent manner and develop tumors in immunodeficient mice [95]. Of note, a global genome
expression microarray has recognized atypical metabolic pathways when comparing the sphere-forming
cells against their differentiated counterparts. The sterol biosynthetic process, or cholesterol biosynthetic
process, has ranked in the top five out of 15 biological processes, showing the abnormal exploitation of
cholesterol in tumor formation, particularly in supporting the growth of CSCs [95].

Likewise, in cancer cell lines, cholesterol biosynthesis has intimate linkage to CSC population
proliferation. In colorectal cancer cells, LDL, which is the main carrier form of cholesterol in blood
vessels, was shown to regulate stemness in vitro by promoting stem-like characteristics, including
spheroid formation capacity, stemness-regulating genes and migration capacity [52]. Interestingly,
LDL enhanced colorectal cancer progression via the MAPK pathway, which was associated with
cell proliferation and differentiation. Apart from the elevation of cholesterol intake receptor, key
enzymes involved in cholesterol de novo biosynthesis are also shown to be altered in every aspect.
In glioblastoma, by running and comparing the RNA sequencing of patient-derived glioblastoma
sphere cells and their differentiated counterparts, the super-pathway of cholesterol biosynthesis was
shown to be predominantly upregulated [96]. Among those gene lists, enzymes involved in the
mevalonate pathway, which mainly synthesize sterols as end-products, including farnesyl-diphosphate
farnesyltransferase 1, farnesyl diphosphate synthase (FDPS), and 3-hydroxy-3-methyglutaryl-CoA
synthase 1, were highly upregulated when compared to differentiated glioblastoma cells [96]. Addition
of inhibitors (alendronate and zoledronate against FDPS) has rescued the tumor progression effects [96].
Similarly, breast cancer stem cells were also shown to be tightly regulated by this mevalonate
metabolism pathway [97]. Intriguingly, metformin, an anti-diabetes drug, has prohibited cancer cell
growth by lowering cellular cholesterol content and the stemness properties in breast cancer cells [98]
and also by reducing the numbers of tumor-initiating epithelia cell adhesion molecule (EpCAM)+

hepatocellular carcinoma cells [99]. Meanwhile, excess cholesterol can inactive lysophosphatidylcholine
acyltransferase 3 (Lpcat3), which is responsible for polyunsaturated phospholipid synthesis and drives
stem cell proliferation in intestinal cancer in vivo and ex vivo [100]. Alternatively, inhibition of Lpcat3
or overexpression of master regulator of mevalonate pathway, SREBP2, markedly promotes intestinal
tumor formation in tumor suppressor gene adenomatous polyposis coli (Apc) multiple intestinal
neoplasia (Min), or Apc min-induced tumor mice [100].
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6. The Role of Cholesterol Metabolism in Immune Cells

As an important element in the mammalian phospholipid bilayer membrane, cholesterol helps to
maintain the membrane’s rigidity and to provide a medium for proper cellular signal transmission,
particularly in lipid rafts [7,101]. To achieve high levels of proliferation and activation, the propagation
of the cell membrane is critical not only for cancer cells but also for the maturation of immune cells in
response to adverse stress. Furthermore, the receptor relocation or co-localization in the immune cells
is also critical for proper activation, in which cholesterol or its derivatives participate [102]. Regarding
cancer scenarios, the relationship of cholesterol to immune cells is again cell-type specific, as we will
discuss in this section.

T cell proliferation and activation require massive amounts of energy to support various forms of
biosynthesis, and it is reported that fatty acid biosynthesis as well as cholesterol biosynthesis are highly
upregulated in T cells [103]. When T cells receive an activation signal, SREBP2 maturation is granted,
while LXR is inactivated [104]. Following LXR inactivation, the cholesterol efflux transporter ABCG1 is
also suppressed [104,105]. Another protein inhibiting the cholesterol efflux transporter, mTOR, has also
been shown to regulate CD8+ T cell differentiation through regulating cholesterol metabolism [106]. The
overall intracellular cholesterol retention is beneficial for T cell activation, and SREBP is demonstrated
to show an important role in CD8+ T cell activation and proliferation [107]. Alteration of cholesterol
concentration can also result in insufficient composition of lipid rafts, which allow the interaction
of membrane-associated proteins. Under the administration of the lipid raft disruption mediator
Miltefosine, T cell proliferation is retarded by over half when compared to the control [108]. Cholesterol
itself can also be regarded as a signaling molecule in the T cell community. The administration of
squalene, a precursor of cholesterol, increases the population of CD4+ T cells and predisposes T cells in
response to inflammatory action [109]. In contrast, upon removal of cholesterol from either growth
medium or the mouse diet, total T cell activation and proliferation are retarded [110]. Meanwhile, the
bloodstream levels of LDL or HDL could compromise initial T cell development, as total cholesterol
is reduced [111]. The inhibition of ACAT1, which esterifies cholesterol into CEs, activates CD8+ T
cell as the total plasma cholesterol level increases [112]. Oxysterols, such as 27-hydroxycholesterol,
have been found to attract γδ T cells but exhaust CD8+ T cells, eventually prompting breast cancer
metastasis [113]. Therefore, the accumulation of cholesterol can facilitate nanoclustering in T cells,
ultimately promoting the antigen-presenting capacity and upregulation of cholesterol synthesis and
influx [114]. Akin to the controversial effects of cholesterol in cancer, cholesterol has been shown
to negatively regulate T cell activities. In the tumor microenvironment, high cholesterol levels can
lead to CD8+ T cell exhaustion while inducing immune checkpoints, such as programmed cell death
protein 1 (PD-1), natural killer cell receptor 2B4 (CD244), T-cell immunoglobulin and mucin-domain
containing-3 (TIM-3), and lymphocyte-activation gene 3 (LAG-3), via the ER stress sensor XBP1
signaling cascade [115]. By suppressing the XBP1 transcriptional capacity or reducing cholesterol
content in the microenvironment, the anti-tumor activity of CD8+ T cells can be restored [115]. In
addition, CD8+ T cells are capable of differentiating into different subsets with various cytokine
expression profiles. Among those subsets, interleukin-9-secreting T (Tc9) cells are reported to exert
stronger antitumor effects when compared to Tc1 cells [116]. However, cholesterol has been shown to
attenuate IL-9 expression via activating the LXR signaling cascade and inhibiting Tc9 cell activity in
antitumor responses [116].

Apart from T cells, other tumor-infiltrating cells have also been shown to be regulated by cholesterol
or its oxidative derivatives. Neutrophils are attracted by hypoxia-inducible factor-1α (HIF1α) under
the elevation of 24-hydroxycholesterol, ultimately inducing angiogenesis [117]. 25-hydroxcholesterol
has been shown to advance gastric cancer metastasis in vitro by enhancing matrix metallopeptidase
expression while interacting with GPCRs to trigger macrophages [118]. Cholesterol is also found to
accumulate in natural killer cells and to aid in lipid raft formation and immune signaling activation [119].
The overall maturation of natural killer cells will eventually retard mouse hepatoma cell development,
thus demonstrating a strategy in combating hepatocellular carcinoma [119]. The effect of oxysterol in
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an immunosuppressive role can be restored in dendritic cells by expression of sulfotransferase 2B1b
(SULT2B1b), which converts oxysterols into impotent sulfated oxysterol [120]. Moreover, the antigen
presentation efficiency of dendritic cells can be enhanced by utilizing the natural influx of cholesterol into
the cells [120]. Cholesterol-modified antimicrobial peptide (AMP) DP7 (DP7-C) can efficiently deliver
various antigen peptides into dendritic cells via clathrin- and caveolin-dependent pathways, thus inducing
dendritic cell maturation [121]. This novel antigen-presenting technique can be utilized as a personalized
cancer immunotherapy that has demonstrated excellent antitumor effects in mouse tumor models.

7. Effect of Anti-Cancer Drugs and Natural Compounds on Cholesterol Homeostasis Pathway in
Cancer Cells

Accumulating evidence suggests that anticancer drugs may exert their anti-proliferative activities
at least in part by reducing cholesterol content/biosynthesis. For instance, it has been demonstrated
that doxorubicin induced cancer cell death by decreasing HMGCR expression and reducing cholesterol
levels, which was mediated by downregulation of HMGCR via inhibition of EGFR/Src pathway [122].
Other studies indicated that tamoxifen modulates cholesterol metabolism in breast cancer cells [123].
In addition, a recent article highlighted that BRD4 inhibitor JQ1 severely impacts the expression of
proteins involved in cholesterol metabolism, thus leading to a strong decrease of cholesterol content in
the human liver cancer cell line HepG2 [124]. Interestingly, the same report showed that administration
of cholesterol counteracts the anti-proliferative effect induced by JQ1 in hepatocellular carcinoma cells,
and the acquisition of JQ1-resistance is accompanied by a compensatory upregulation of proteins
belonging to cholesterol homeostasis [124]. All these solid data showed the critical role of cholesterol
homeostasis in tumor cell survival in response to various anti-cancer drug treatments.

Apart from anti-cancer drugs, many natural compounds also exhibit a therapeutic role in cancer
prevention and therapy. Many of them, including terpenoids, green tea, garlic extract, and curcumin,
were found to target cholesterol homeostasis in cancer cells. Isoprenoids, also known as terpenoids, are
a class of naturally occurring phytochemicals found in fruits, vegetables, and unrefined cereal grains.
Several isoprenoids such as δ-, γ-, and α-tocotrienol [125], β-ionone [126], geranylgeraniol [127], and
geraniol [128], were shown to suppress the growth of tumor cells by inhibiting the transcription and
activity of HMGCR in various cancer types. In a large-scale compound screening, ursolic acid, a
pentacyclic terpenoid, was also found to exert anti-cancer effects in hepatocellular carcinoma cells
via suppression of cholesterol biosynthesis [129]. Green tea polyphenol (EGCG) was also widely
reported to exert anti-cancer role in various cancers. EGCG modulates cholesterol metabolism by
increasing the efflux of cholesterol and directly inhibiting HMGCR [130,131]. The cholesterol-lowering
effect of EGCG was further confirmed in human clinical studies [132]. Garlic extract was reported to
decrease cholesterol biosynthesis by inhibiting sterol 4alpha-methyl oxidase [133]. In addition, several
garlic-derived organosulfur compounds, including S-allylcysteine and ajoene, have been found to
inhibit HMGCR activity [134]. Curcumin has a long history of use as an anti-inflammatory agent.
The active component of curcumin was found to induce cell death of tumor cells. Recently, curcumin
was found to suppress cholesterol biosynthesis superpathway via targeting squalene monooxygenase,
which was found to complement the effect of statin in cancer therapy [135]. In addition, curcumin was
able to suppress cholesterol uptake in colon cancer cells by downregulation of NPC1L1 expression [136].
Collectively, natural compounds can be used to regulate cholesterol homeostasis not as a primary
cancer therapy but also as an adjuvant to complement current molecular therapies.

8. Molecular Targeted Drugs Targeting Cholesterol Homeostasis Pathway for Cancer Prevention
and Treatment

Considering the elevated cholesterol levels in different types of cancer, as discussed in previous
chapters, no matter if they are the result of the overexpression of cholesterol biosynthetic genes,
enhancement of the cholesterol import mechanism or suppression of cholesterol export activity,
abnormal cholesterol content can eventually activate oncogenic pathways, or their derivatives can exert
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immunosuppressive roles. Therefore, it is practical to apply cholesterol-lowering drugs to prevent
cancer incidence and to treat cancer.

Regarding the de novo biosynthesis of cholesterol, the process involves more than 20 enzymes
that are potential candidates of drug intervention to regulate the overall cholesterol biosynthesis.
Among those proteins, HMGCR has been well established as a rate-limiting catalytic enzyme in the
mevalonate pathway, converting HMG-CoA to mevalonic acid. Given its important characteristics,
statins, first marketed in 1987, have been used to inhibit HMGCR by functioning as a HMG-CoA
analogue, eventually decreasing the cholesterol content [137]. Different subclasses of statins have been
synthesized, arising from distinctive lipophilicity and the capacity to cross the blood–brain barrier. Since
it is beyond the scope of this review, the differential properties can be read in other papers [138–140].
Statins were first used for treating atherosclerosis, cardiovascular diseases, and liver diseases, which arise
from the excess deposition of cholesterol [141,142]. However, with accumulating clinical evidence, statins
have been considered as an anti-cancer drug in recent decades [143]. In prostate cancer, statin use could
effectively reduce the mortality and reduce the risk of prostate-specific antigen (PSA) recurrence in a
dosage-dependent manner after radical prostatectomy [144]. Patients with metastatic renal cell carcinoma
benefited from statin use in terms of improved overall survival (25.6 versus 18.9 months) [145]. The
clinical data are further supported by several epidemiologic studies. The incidence rates of cancers, for
example, liver, gastric, colorectal, pancreatic, and prostate cancers, are reduced under the administration
of statins (Table 1). Meanwhile, laboratory experiments are also able to show that the use of statins could
decrease proliferation and viability of human cancer cell lines [146–148].

Other enzymes involved in the mevalonate pathway can also be targeted (Table 2).
Bisphosphonates have been used to inhibit FPP synthase in converting mevalonate into farnesyl
diphosphate [149]. Lapaquistat is used to inhibit squalene synthase [150], while Lamisil is used to
attenuate SQLE, which is considered to be an oncogene [151]. Zaragozic acids, which also inhibit the
production of squalene, show inhibitory effects in both lung carcinoma and lymphoma growth [152].
Another potential inhibitor to the oxidosqualene cyclase (OSC), Ro 48-8071, effectively reduces the
progression and metastasis of pancreatic and colorectal cancers via prohibiting the production of
lanosterol, thus limiting cell proliferation and migration [153].

Table 2. Therapeutic targets of cholesterol homeostasis.

Chemical Inhibitory Target Effects Reference

Cholesterol biosynthesis

Statins

HMGCR Block the formation of
mevalonate from HMG-CoA

[137,154]

δ-, γ-, and α-tocotrienol [125]

β-ionone [126]

geranylgeraniol [127]

geraniol [128]

S-allylcysteine [134]

Bisphosphonate FPP synthase Prevent the prenylation of small
GTPases [155]

Lapaquistat
Squalene synthase Block the conversion from FPP to

squalene
[156]

Zaragozic acid [157]

RO 48-8071 OSC Block the synthesis of lanosterol
from 2,3-monoepoxysqualene [158,159]

Curcumin SQLE Block the synthesis of squalene
epoxide [135]

Garlic extract Sterol 4α-methyl
oxidase

Prevent the formation of
zymosterol [133]
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Table 2. Cont.

Chemical Inhibitory Target Effects Reference

Cholesterol intake
Ezetimibe

NPC1L1
Reduce LDL-C levels

[160]

Curcumin [136]

EGCG LDLR [130–132]

Cholesterol esterification Avasimibe ACAT1 Reduce the formation of
cholesteryl esters [161]

Cholesterol depletion
agent Methyl-β-cyclodextrin Lipid rafts Facilitate the depletion of

cholesterol from membranes [162]

Immunotherapy Dendritic cell vaccine Increase antigen presentation
efficiency [121]

Apart from inhibiting the cholesterol synthesis inside the body, the intake from dietary cholesterol
can be intervened by taking Ezetimibe, which disrupts the NPC1L1 protein on enterocytes and lowers
LDL-C [163,164]. This has been shown to inhibit the tumor angiogenesis in prostate tumors and,
hence, progression [163]. Previously, we have shown that CEs assume a pro-tumor position. Therefore,
inhibition of the production of CEs shows promising anti-tumor effect. For example, the administration
of the ACAT1 inhibitor avasimibe suppresses CE production and even restores the imatinib sensitivity
in a myelogenous leukemia cell line and, hence, retards the growth [165]. A similar effect of ACAT1
inhibition in tumor suppression has also been demonstrated in prostate and triple-negative breast
cancer cells [166,167]. Methyl-β-cyclodextrin [MβCD], a cholesterol depletion chemical, is used to
disrupt the lipid rafts, which are important segments in the cell membrane for proper signaling
transduction and oncoprotein embedment [162]. MβCD has been shown to induce apoptosis in breast
cancer cells via activating the pro-apoptotic caspase-3 signaling cascade [168]. Given that MβCD
disrupts the membrane integrity, it can synergize the efficiency of tamoxifen, as the drug can easily
pass through the membrane [169–171].

Finally, a combination treatment using conventional anti-cancer drugs and drugs targeting
cholesterol metabolism proposes a promising result in treating cancers. For example, in sterol
hormone-related cancers, the administration of statins sensitizes anti-hormonal drugs in breast and
prostate cancers [22,172,173]. Ro 48-8071, an inhibitor of OSC, has improved tissue perfusion and
thus synergizes the 5-fluoroouracil anti-tumoral effect in human colon carcinoma [153]. Avasimibe,
the inhibitor of cholesterol esterification, has been well documented with chemotherapeutic drugs
such as doxorubicin in inducing apoptosis in a tumor model [174]. Avasimibe is also considered an
immunotherapeutic, as it can boost adaptive anti-tumor immunity in head-and-neck cancer cells when
combined with a dendritic cell vaccine, or it controls melanoma progression when combined with
anti-PD-1 immunotherapy [175].

9. Conclusions

This review has discussed the important role of cholesterol metabolism in cancer development.
Elevated cholesterol contents are observed in different cancers and in the reprogramming of cholesterol
biosynthesis. In addition, cholesterol and its metabolites have been involved in several oncogenic
pathways, which echo uncontrolled cholesterol metabolism. The capacity of cholesterol for modulating
cancer stem cells has stoked the discussion of cancer recurrence and drug resistance, while the
immunomodulatory effect can contribute to promising immunotherapy.

Though insightful advancements have been made in cancer research, there are still questions to be
answered. Are there any other hidden factors that, left unknown, contribute to the inconsistent results
in epidemiological and clinical studies of cholesterol in cancer, despite the promising anti-tumor effects
in laboratory data? What are the factors determining the preferential utilization of cholesterol between
cancer cells and immune cells? How do they complete with each other in harvesting cholesterol as
their utmost nutrient? Can any other cholesterol derivatives contribute to cancer development or
perform immunosuppressive roles? Moreover, if cholesterol is understood as an essential compartment
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in cellular integrity, any artificial alterations in cholesterol metabolism could be compensated by the
cell itself. Such alterations, similar to every medication, take statins as an example, could result in
tremendous side effects, such as aching muscles and disruptions in liver and stomach functions. Could
cholesterol homeostasis or other metabolisms be restored naturally without any drug interventions? By
answering these questions, we shall gain more knowledge of the molecular mechanisms of cholesterol
homeostasis and cancer development, which may potentially shine more light on cancer eradication.
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