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ABSTRACT Distracted driving causes a large number of traffic accident fatalities and is becoming an
increasingly important issue in recent research on traffic safety. Gesture patterns are less distinguishable in
vehicles due to in-vehicle physical constraints and body occlusions from the drivers. However, by capitalizing
on modern camera technology, convolutional neural network (CNN) can be used for visual analysis. In this
paper, we present a hybrid CNN framework (HCF) to detect the behaviors of distracted drivers by using deep
learning to process image features. To improve the accuracy of the driving activity detection system, we first
apply a cooperative pretrained model that combines ResNet50, Inception V3 and Xception to extract driver
behavior features based on transfer learning. Second, because the features extracted by pretrained models are
independent, we concatenate the extracted features to obtain comprehensive information. Finally, we train
the fully connected layers of the HCF to filter out anomalies and hand movements associated with non-
distracted driving. We apply an improved dropout algorithm to prevent the proposed HCF from overfitting to
the training data. During the evaluation, we apply the class activation mapping (CAM) technique to highlight
the feature area involving ten tested classes of typical distracted driving behaviors. The experimental results
show that the proposedHCF achieves the classification accuracy of 96.74%when detecting distracted driving
behaviors, demonstrating that it can potentially help drivers maintain safe driving habits.

INDEX TERMS Distracted drivers, convolutional neural network, transfer learning, fusion model.

I. INTRODUCTION
According to the report from World Health Organization
(WHO) [1] in 2020, approximately 1.35 million people
worldwide have died from traffic accidents each year. Losses
from road traffic collisions are equal to approximately 3% of
the GDP in most countries.

Complex and dynamic road traffic systems consist of four
elements: people, cars, roads, and the environment. Traf-
fic accidents result from the uncoordinated effects of these
four elements [2]. Research shows that, more than 90% of
traffic accidents are attributable to driver error [3], includ-
ing the dominating factors such as fatigue, distraction, and
drunkenness. Among these, distracted driving has become
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an increasingly important cause of traffic accidents in recent
years. For example, distracted driving can cause wrong lane
changes, which will lead to serious traffic accidents [4], [5].
According to the preliminary definition of the International
Organization for Standardization (ISO) [6], distracted driving
is ‘‘attention given to a non-driving related activity, typi-
cally to the detriment of driving performance’’ The National
Highway Traffic Safety Administration (NHTSA) defines
distracted driving as ‘‘any activity that diverts attention from
driving, including talking or texting on the phone, eating
and drinking, etc.’’ [7]. The current popularity of on-board
electronics such as navigation systems and smart phones has
introduced additional factors that induce distracted driving
behavior by drivers. Therefore, it is necessary to carry out
in-depth research on distracted driving behaviors, determine
their occurrence mechanisms, and propose corresponding
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solutions. By doing so, we can reduce the frequency of dis-
tracted driving behaviors and improve driving safety.

To detect distracted driver behaviors, several approaches
have been proposed based on physiological parameters, vehi-
cle driving state and vision [8]. There are two requirements
for a driving behavior detection system. First, regardless of
the detection approach adopted, drivers should not be affected
by the measuring instruments. Although approaches based
on physiological parameters can achieve high accuracy, such
measurements require numerous instruments that may disturb
the driver. Second, current detection methods for driving
behaviors consistently lag occurrences. We need to warn the
drivers just at the point when they start to get distracted—
not warn after their driving behavior has already become
abnormal. Computer vision approaches meet the above two
requirements. Based on the improvements in computing hard-
ware, camera technology and neural networks, features can be
fully extracted from complex images.

Convolutional neural networks (CNNs) are widely used
for complex image processing tasks. In recent years, various
methods, such as AlexNet [9], VGGNet [10], Inception [11],
ResNet [12], and DenseNet [13], have been proposed to
address problems such as image classification and recogni-
tion. These methods can extract features from images and
use them to perform classification. However, recognizing
distracted drivers’ behavior using only one pretrained model
is prone to overfitting, which causes detection failures in
practice.

In this paper, to accurately detect distracted driving
behaviors, we propose a hybrid CNN framework (HCF)
consisting of three modules: a cooperative CNN module,
a feature concatenation module, and a feature classification
module.

First, in the cooperative CNN module, three pretrained
models, ResNet50, Inception V3 and Xception, are combined
to extract multiscale behavior features in parallel.

Second, in the feature concatenation module, the deep
behavior features extracted by the cooperative CNN module
are deeply fused into a set of one-dimensional vectors. These
fused features contain high-level semantics and lay the foun-
dation for the subsequent image classification.

Third, in the feature classification module, the neurons
in the fully connected layer of the HCF capture the key
elements of the fused feature vectors and use them as basis for
classification. The fused features are classified into different
distracted driving behaviors.

Our main contributions are summarized below.
(1) We propose a hybrid CNN framework (HCF) to detect

distracted driving behavior. The HCF consists of a cooper-
ative CNN module, a feature concatenation module and a
feature classification module. To the best of our knowledge,
this work is the first one to comprehensive study the driving
behavior detection with a hybrid deep pretrained framework,
which can better adapt the confined space in the vehicle
without disturbing the drivers and make an accurate decision
in a real-time manner.

(2) We design and implement the cooperative CNN mod-
ule, which integrates three pretrained models, ResNet50,
Inception V3 and Xception, to perform cooperative transfer
learning. The novelty of cooperative transfer learning is to
exact the detailed image features in parallel, which can pre-
vent overfitting and significantly enhance the deep learning
capability.

(3)We further propose an efficient momentum-based train-
ing rate optimization (MTRO) algorithm to solve the conver-
gence problem with the weighted sum as the search direction,
which can remarkable improve the CNN training speed and
alleviate the tedious and time-consuming iteration process.

(4) The experimental results show that the proposed HCF
outperforms current driving behavior detection approaches
with regard to detection accuracy, average image processing
time and robustness for ten types of typical distracted driving
behaviors. The HCF can achieve high performance for a
classification accuracy of 96.74%.

The remainder of this paper is organized as follows.
In Section 2, we introduce prior related works. The detailed
design of the HCF for the detection of distracted drivers is
provided in Section 3. Section 4 describes the model evalua-
tion and optimization. Our experimental results and analysis
are reported in Section 5, and Section 6 presents conclusions
and the outlook for future works.

II. RELATED WORKS
This section summarizes the academic research on distracted
driving detection in recent years. Using cell phones is a main
cause of driver distraction. Beck and Park [14] compared the
impact of editing text messages on traditional mobile phones
and smartphones on road traffic safety in a simulated driving
environment. The results showed that smartphones increase
driving risks as measured by key performance parameters.
Esfahani et al. [15] used a driving simulator method to
study the impact of reading and texting on driving perfor-
mance. Studies have shown that such behaviors result in
significant reductions in driving safety and should be pro-
hibited. Hoang et al. [16] proposed an automatic system that
determined the driver’s actions through a dashboard-mounted
camera. The observed features are input into a hidden condi-
tional random field (HCRF) model. This method is able to
effectively recognize mobile phone usage by drivers.

Tran et al. [17] used pretrained models to extract distracted
drivers features and adopted a support vector machine (SVM)
as a classifier. They compared the performances of CNNs
for extracting the features input into the SVM to detect dis-
tracted driver behaviors. Chawan et al. [18] used VGG16,
VGG19 and Inception models to classify distracted drivers.
Baheti et al. [19] proposed a modified VGG model that used
regularization techniques, their approach achieved a classifi-
cation accuracy of 95.54%.

Yang et al. [20], [21] proposed a driving-related recog-
nition system based on the deep CNN model. They used
Kinect cameras to collect images of distracted drivers and the
raw images are processed with a GMM-based segmentation
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FIGURE 1. Ten common driver behaviors while driving.

algorithm. Then CNN models are used as a binary classifier
which achieves 91% accuracy.

Yan [22] proposed a CNN-based model that used unsu-
pervised learning and transfer learning to classify activi-
ties of normal driving, answering a cellphone call, eating,
and smoking. Ramzan et al. [23] proposed using a hierar-
chical classification approach and treating driving behavior
in spatio-temporal reference frame terms rather than as a
static image. The overall prediction accuracy for this method
reached 89.62%. Shahverdy et al. [24] proposed a deep
learning-based method for acquiring distracted driving data
and constructed an analysis system called DarNet, which
achieved a classification accuracy of 87.02% on their col-
lected dataset.

Kaggle organized a competition to classify driver behavior
images [25] because early distracted driving datasets included
only a few categories that covered common distracted driving
behaviors. In contrast, the Kaggle dataset contains ten dif-
ferent distracted driver behaviors while driving (see Fig. 1).
Majdi et al. [26] proposed Drive-net, a method that uses a
combination of a CNN and a random decision forest to clas-
sify driver images. Driver-net achieved a detection accuracy
of 95% on the Kaggle dataset. Ou and Karray [27] proposed
a driver distraction recognition system that used generative
adversarial networks (GANs) and demonstrated that gen-
erative models can generate images of drivers in different
driving scenarios. By using these images to augment training,
they improved the system’s image classification performance
by 11.45%.

Currently, computer vision techniques are widely used to
extract key features from images. Such classification tasks are
completed by various deep neutral network models running
on high-performance computers to achieve better recognition
accuracy.

III. RESEARCH METHODS
In this section, we introduce our proposed hybrid CNN
framework (HCF), which includes three parts: a cooperative

CNN module, a feature concatenation module and a fea-
ture classification module. Fig. 2 shows the architecture of
the HCF.

First, in the cooperative CNN module, distracted behav-
ior features are extracted in parallel, using the three inte-
grated pretrained models: ResNet50, Inception V3 and
Xception. These three models are trained on the Ima-
geNet dataset and then transfer learning is applied for fine
tuning [28].

Second, the feature concatenationmodule is used to deeply
fuse the extracted features from the cooperative CNNmodule,
generating the input for the feature classification module.

Third, the feature classification module is used to train the
weights of the feature vectors. After training, a classification
result can be obtained for each driving behavior.

A. COOPERATIVE CNN MODULE
The cooperative CNN module integrates three pretrained
models that extract features from images of distracted drivers
in parallel to enhance the deep learning capability. These
pretrained models are ResNet50, Inception V3 and Xception.

Before inputting the training image to the cooperative pre-
trained models, we need to preprocess the original images
(640×480×3) to satisfy the input requirements of ResNet50
(224×224×3), Inception V3 (299×299×3), and Xception
(299 × 299 × 3). The steps used to preprocess the original
images are as follows:

First, the original image is rescaled and flipped horizon-
tally. For ResNet50, the rescaled image size is 320 × 240.
For Inception V3 and Xception, the rescaled image size is
480× 360.
Second, the original images and flipped images are

expanded and then one expanded image is randomly cropped.
For ResNet50, the cropped size is 224 × 224. For Inception
V3 and Xception, the cropped size is 299× 299.
Third, according to the requirements of the pretrained

model, we freeze the specific layers in the CNN and start the
training procedure.
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FIGURE 2. The architecture of hybrid CNN framework.

FIGURE 3. The architecture of ResNet50.

1) ResNet50 MODEL
The ResNet50 model effectively solves the problem of the
increase in training errors caused by increasing the number
of layers in a neural network. ResNet50 includes 5 main
stages. Fig. 3 shows the architecture of the ResNet50
model.

The steps of the training procedure for ResNet50 are as
follows:

First, in stage 1, a convolutional kernel of 7× 7 is used to
extract image features. Batch normalization, activation and
max pooling are completed, and the output of stage 1 is a
55× 55× 64 feature map in the CNN.

Second, from stages 2–5, two types of residual blocks are
added to the CNN. A CONV block is a scaled residual block.
Each CONV Block includes three convolutional kernels of
1×1 or 3×3. An ID block represents a residual block that does

not change size. The sizes of the output feature maps from
stages 2–5 are 55×55×256, 28×28×512, 14×14×1024
and 7× 7× 2048, respectively.
Finally, after the five stages, a global average pooling layer

(AVGPooling) with a kernel size of 7×7 is used to convert the
output feature map into a 2,048-dimensional feature vector.
This feature vector is input into the feature concatenation
module.

2) INCEPTION V3 MODEL
Inception V3 clusters the sparse convolution kernel structure
into multiple dense sub-convolution kernel combinations.
Fig. 4 shows the architecture of Inception V3. The core units
(the pink blocks in Fig. 4) of InceptionV3 are shown in Fig. 5.
Convolutional kernels of different sizes, (e.g., 1×1, 3×3 and
5× 5) are used to obtain different receptive fields.
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FIGURE 4. The architecture of Inception V3.

The training procedure steps for Inception V3 are as fol-
lows:

First, for the input image, 3 convolution layers with kernels
of 3 × 3 and one max pooling layer are used to extract low
latitude features of the image. Then two convolution layers
with kernels of 1×1 and 3×3 and one max pooling layer are
used to further extract features. A featuremap of 35×35×192
can be obtained.

Second, the 11 core units of Inception V3 and 3 pooling
layers are used to extract high-dimensional features. A feature
map of 8× 8× 2048 can be obtained.

Finally, we obtain a 2,048-dimensional feature vector from
the feature map. This feature vector will be input into the
feature concatenation module.

3) XCEPTION MODEL
The Xception architecture includes 36 convolutional lay-
ers that form the feature extraction basis of the CNN.
These 36 convolutional layers are arranged into 14 modules,
all of which (except for the first and last modules) are sur-
rounded by linear residual connections.

The training procedure steps for Xception are as follows:
First, the original images are input into the convolutional

kernels of (3, 3, 64) and (3, 3, 128) to extract features. The
calculation performed in the convolution layers is:

AL = f (WL
∗AL−1 + bL) (1)

where f (·) is the activation function of the convolution layer,
AL represents the output of the L-th convolution layerWL rep-
resents the convolutional kernel, the asterisk ‘‘∗’’ denotes the
convolution operation, and bL represents the offset parameter.

Second, the feature maps are input into the depthwise
separable convolution for further feature extraction. Depth-
wise separable convolution is used to reduce the number of
parameters and reduce the calculation complexity [29].

Finally, a 2048-dimensional feature vector is obtained
from the feature map. The feature vector will be input into
the feature concatenation module.

B. FEATURE CONCATENATION MODULE
The feature concatenation module is used to deeply fuse the
feature vectors output by the cooperative CNN module.

The features extracted by the three cooperative pre-
trained models include different semantics. The three feature

FIGURE 5. Core unit of Inception V3.

FIGURE 6. Feature classification module.

1× 1× 2048 vectors are merged to generate a vector of
3× 1× 2048. Then, this multidimensional vector is flattened
into a 1× 6144 vector, which satisfies the input requirement
for the feature classification module.

C. FEATURE CLASSIFICATION MODULE
The feature classification module is used to train the weights
of the feature vectors. The feature classification module
includes two fully connected layers, as shown in Fig. 6.

To reduce interdependent learning among the CNN neu-
rons, we introduce dropout technology [30] to temporarily
ignore some neurons according to a certain probability during
the training procedure. We set the dropout rate to 0.5.

The feature classification steps are as follows:
First, each neuron at the first fully connected layer con-

nects to the 6,144 nodes of the feature vector, and local infor-
mation is integrated with the classification characteristics.
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Second, dropout technology is adopted to reduce overfit-
ting on the training data.

Third, in machine learning, the softmax classifier [31] is
used to produce a one-hot vector consistent with the proba-
bilities of the ten types of districted driving behaviors in the
Kaggle dataset.

Finally, the classification results of the ten types of dis-
tracted driving behaviors are obtained.

IV. MODEL EVALUATION AND OPTIMIZATION
We use the loss function to evaluate the performance of the
HCF during training. The loss function evaluates the error
between the output of the HCF and the given target value.
Meanwhile, to speed up HCF training, we propose a new
momentum-based training rate optimization (MTRO) algo-
rithm based on the Adam algorithm [11].

A. LOSS FUNCTION FOR PERFORMANCE EVALUATION
We generally evaluate the performance of deep learning CNN
models by the numerical magnitude of the loss function.

To improve model generalizability, regularization terms
are added to the loss function J̃ (θ ) as follows:

J̃ (θ ) = J (θ )+ aφ(θ ) (2)

where θ is the measurable state. The difference between the
real value and the output value is represented as J (θ ), which
is the standard loss function. φ(θ ) is the regularization term,
a ∈ [0,∞] is the regularization term coefficient, and a is
used to measure the weight of the regularization term in the
loss function J̃ (θ ). The larger a is, the greater the weight of
the regularization term is.

The commonly used loss functions are listed below:

1) THE MEAN SQUARED LOSS FUNCTION

J =
1
2

∥∥y− ŷ∥∥22 (3)

where y is the real value, ŷ is the actual output value of the
model and J is the mean squared loss function.

2) CROSS-ENTROPY LOSS FUNCTION
In binary classification, the number of classesM equals 2, and
the cross-entropy loss function can be described as follows:

J =
1
N

∑
i

−[yi · log(pi)+ (1− yi) · log(1− pi)] (4)

where N is the number of samples, yi is the real value of
sample i, ŷi is the output value of sample i, and pi is the
probability that sample i is positive.
When M > 2 (i.e. multiclass classification), we calculate

a separate loss for each class label and sum the result:

J =
1
N

∑
i

−

M∑
c=1

yic log(pic) (5)

where M is the number of classes, and yic is the binary
indicator (0 or 1). If class c is the correct classification for

observation i, pic refers to the predicted probability observa-
tion i of class c.

3) EXPONENTIAL LOSS FUNCTION
The exponential loss function is

J =
1
N

∑n

i=1
exp[−yiŷi] (6)

where exp is the exponential function.

4) ABSOLUTE LOSS FUNCTION

J =
∣∣y− ŷ∣∣ (7)

These functions have different metrics for the target deep
learning method. When the partial derivative is small, the
parameter updating rate of the mean squared loss function
becomes slow. Then, we can choose the cross-entropy loss
function to evaluate the performance of the proposed HCF.

B. OPTIMIZATION TO IMPROVE THE TRAINING SPEED
The objective function of a deep neural network is a com-
plex, high-dimensional, nonconvex random function, and the
corresponding optimal solution can be only continuously
approximated through iterations. Hence, we use the opti-
mizer to speed up the convergence of the deep neural net-
work.We introduce momentum into the Adam algorithm [30]
and propose a momentum-based training rate optimization
(MTRO) algorithm.

In the MERO algorithm, we weight the sum of the search
direction of the historical iteration point and that of the cur-
rent iteration point and use the weighted sum as the search
direction for the next iteration point.

The MTRO algorithm is a norm-based algorithm. Com-
paredwith theAdam algorithm,MTRO ismore stable and has
a faster convergence speed. The detailed process of MTRO is
shown in Algorithm 1.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. THE EXPERIMENTAL ENVIRONMENT
1) DATASET DESCRIPTION
The dataset of distracted driving behaviors comes from
the State Farm insurance company for a Kaggle challenge,
which includes 22,424 images for training and 79,726 images
for testing. Because the testing set images are unlabeled,
we perform our experiments on the training set. The size of
each image is 640 × 480. The dataset includes the images
of 26 drivers, and the distracted driving behaviors in the
dataset are divided into ten classes.

The ten classes of distracted driving behaviors include: safe
driving, right-handed texting, right-handed phone use, left-
handed texting, left-handed phone use, operating the radio,
drinking, glancing behind, hair and makeup, and talking to
passengers. We label these ten classes of distracted driving
behaviors as c0–c9, the number of samples for each driver,
and the number of distracted driving behavior samples in each
class are shown in Figs. 7 and 8, respectively.
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Algorithm 1 Momentum Based Training Rate Optimization
(MTRO)

Input: initial learning rate
Input: exponential decay rate for moment estimation
(ρ1, ρ2 ∈ [0, 1])
Input: small constant for numerical stability (δ)
Input: initial parameter (θ)
Input: initial MTRO algorithm’s change value (PMTRO0 )
Input: initial Adam algorithm’s iterative direction (PAdam0 )
Output: parameters that can minimize the

objective function
1: Initialize 1st and 2nd moment variables s = 0, r = 0
2: Initialize time step Initialize time step t = 0
3: while (stop criterion not reached) do
4: Sample a minibatch of m examples from the

training set
{
x(1), . . . , x(m)

}
with

corresponding targets y(i);
5: Calculate the gradient;
6: t ← t + 1;
7: Update biased first moment estimate;
8: Update biased second moment estimate;
9: Correct bias in first moment;
10: Correct bias in second moment;
11: Compute update;
12: Apply update;
13: end while

FIGURE 7. Number of samples associated with each driver in the dataset.

In the adopted dataset, the number of distracted driving
behaviors samples for each class and the number of samples
for each driver are roughly even, which is beneficial for our

FIGURE 8. Number of samples of distracted driving behavior for each
class in the dataset.

research. We can train the models with this dataset to achieve
more accurate detection of distracted driving behaviors.

We selected images of some of the drivers (P014, P021,
P026, and P049) as a verification set (total: 4,320 samples),
and the other images are included in the training set (total:
18,104 samples). The ratio of images in the training set and
the validation set was kept at approximately 8:2.

2) EXPERIMENTAL SETUP
The proposed HCF was tested on a workstation with a
3.2 GHz CPU, 32 GB of RAM, and a Tesla K80 GPU running
the Ubuntu 18.04 operating system. The Linux kernel version
was 5.1. The code was mainly implemented in the Python
language, and we adopted the deep learning TensorFlow
framework [32].

B. TRAINING STRATEGY
The parameters of the ResNet50, Inception V3 and Xception
models were pretrained on ImageNet, and we transferred the
parameters directly to our distracted behavior detection task.
However, the features of the State Farm dataset are different
from those of the ImageNet dataset. Thus, these pretrained
models must be fine-tuned to adapt them to the State Farm
dataset.

The strategy for training the proposed HCF is as follows:
(1) ResNet50: For the pretrained ResNet50, we froze the

weights from layers 0 to 151 and trained only the weights
from layer 152 to the top layer.

(2) Inception V3: We froze the weights of the pretrained
Inception V3 layers 0 to 171 and trained only the weights
from layer 172 to the top layer.

(3) Xception: We froze the weights of the pretrained Xcep-
tion from layers 0 to 116 and trained the weights from
layer 117 to the top layer.

During training, we used the MTRO algorithm and set the
initial learning rate to 0.001. The image batch size was set
to 64, and each model was trained for 60 epochs on the GPU.
We applied dropout to reduce overfitting. A softmax classifier
is used to complete the feature classification, and the final

VOLUME 8, 2020 109341



C. Huang et al.: HCF: A HCF for Behavior Detection of Distracted Drivers

FIGURE 9. The classification results using ResNet50.

FIGURE 10. The classification results using Inception V3.

output is the probability corresponding to the ten classes of
distracted driving behaviors in the State Farm dataset.

C. COMPARISON WITH SINGLE PRE-TRAINED MODELS
In the proposed HCF, we fine-tuned the three pretrained
models to extract the distracted drivers’ behavior features
cooperatively. To demonstrate the improvement exhibited by
the HCF, we compared the performance of a single pretrained
model separately with that of the HCF.

1) THE LOSS AND ACCURACY
The experimental results of the single pretrained models are
as follows. Under varying epochs, the training and validation
set losses and accuracies of ResNet50, Inception V3 and
Xception are presented in Figs. 9, 10, and 11, respectively.

Among the three pretrained models, ResNet50 achieves
the highest accuracy but also the largest loss. Inception V3
has the lowest accuracy and the second largest loss. Xcep-
tion achieves the best loss, but its accuracy is lower than
ResNet50.

For the task of distracted behavior detection, ResNet50
achieves an accuracy of 99.29% on the training set and
93.72% on the validation set. For Inception V3, these two

accuracy rates are 95.31% and 90.13%, respectively, and for
Xception, they are 99.53% and 91.08%, respectively.

Thus, the above three pretrained models are able to recog-
nize distracted driving behaviors in the State Farm dataset.
However, these pretrained models also all have large losses;
consequently, they are incapable of identifying images of
distracted drivers without this specific dataset.

The performance of the HCF is shown in Fig. 12. It can
be observed that the HCF not only improves the recognition
accuracy for distracted driver behaviors (99.95% on the train-
ing set and 96.74% on the validation set) but also reduces the
loss.

Table 1 lists the detection results for the ten classes of dis-
tracted driving behaviors separately predicted by ResNet50,
Inception V3, Xception and the proposed HCF. As shown
in Table 1, the overall behavior recognition accuracy of
ResNet50 achieves an average accuracy of 93.72%. The
Inception V3model achieves an average accuracy of 90.13%,
and the Xception model achieves an average accuracy of
91.08%. the HCF outperforms these three models with regard
to detection accuracy. Among the various classes of distracted
driving behavior, all the models achieved the most accurate
detection results on the ‘‘Texting Right’’.

109342 VOLUME 8, 2020



C. Huang et al.: HCF: A HCF for Behavior Detection of Distracted Drivers

FIGURE 11. The classification results using Xception.

FIGURE 12. Distracted driver classification results using HCF.

Interestingly, the detection accuracy for ‘‘Talking Right’’ is
obviously higher than that for ‘‘Talking Left’’ and is almost
equal to the classification accuracies for ‘‘Texting Right’’
and ‘‘Texting Left’’. The worst result occurs for safe driving
behavior.

2) THE CONFUSION MATRIX
Fig. 13 illustrates the confusion matrixes for ten classes of
distracted driving behaviors using ResNet50, Inception V3,
Xception and the proposed HCF. The yellow diagonal shows
the percentage of correctly detected cases for each class. The
leftmost column shows the actual label of each class, and the
top row shows the output label. From the confusion matrixes
in Fig. 13(a), Fig. 13(b) and Fig. 13(c), it can be observed
that the model confuses the ‘‘Reaching Behind’’ (C7) and
‘‘Talking to Passengers’’ (C9) classes. Additionally, it shows
that the three single pretrainedmodels may classify distracted
behaviors as safe driving, which is dangerous for practical
use. The proposed HCF never mistook a distracted behavior
as ‘‘Safe Driving’’; thus, it is more reliable in practice.

3) CLASS ACTIVATION MAPPING
We use the class activation mapping (CAM) [33] technique
to highlight the detection area on which each pretrained

model focuses. Fig. 14 shows the heatmap created by
CAM for ResNet50, Inception V3, and Xception, and Fig.
15 shows the heatmap created by CAM for the HCF.
According to the highlighted area, we can determine the
detection results for the extracted features; then, the clas-
sification decision can be made for the distracted driving
behaviors.

As shown in Figs. 14 and 15, the single pretrained models
extract fewer features, and they always focus only on whether
the hands are on the steering wheel. The HCF extracts
more features than the three pretrained models. Additionally,
the detection results by the HCF are closer to the features
observed by humans.

When the misclassifications in the confusion matrixes
(shown in Fig. 13) are combined with the heatmap, we can
explain the results. For example, ‘‘Reaching Behind’’ and
‘‘Talking to Passengers’’ are confused because the drivers
are sitting sideways in both situations. From the detec-
tion results shown in Table 1, we can find that the fea-
tures of ‘‘Talking Right’’, ‘‘Texting Right’’ and ‘‘Texting
Left’’ all focus on the hand and mobile phone. How-
ever, the features of ‘‘Talking Left’’ focus on whether the
left hand is on the wheel, which brings a lower accu-
racy than does ‘‘Talking Right’’. As the CAM results
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TABLE 1. Classification accuracy of using different models.

FIGURE 13. Confusion matrixes using different approaches.

show, by using multiple pretrained models cooperatively,
the HCF learns more representative features and achieves

higher detection accuracy for the tested distracted driving
behaviors.
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FIGURE 14. Highlights of the feature area of distracted drivers, C0-C2 are using ResNet50, C3-C5 are using Inception V3, C6-C9 are using Xception.

FIGURE 15. Highlights of the feature area of distracted drivers extracted by the hybrid CNN framework.

D. COMPARISON WITH OTHER APPROACHES
We selected several approaches for detecting distracted
driving behaviors for comparison with the proposed HCF.
Tran et al. [17] used pretrained models to extract dis-
tracted driver features and used an SVM as a classifier.
Chawan et al. [18] used VGG16, VGG19 and Inception to
classify distracted driver behaviors. Baheti et al. [19] pro-
posed a modified VGG model that used regularization tech-
niques. Moslemi et al. [34] proposed a 3D CNN and used
optical flow to improve the detection accuracy for distracted
driving behaviors.

1) ACCURACY
To compare with the proposed HCF with other approaches,
we chose 80% of the images from the dataset for use as a
training set and used the remaining 20% as the validation set.
The results are listed in Table 2.

The results reveal that the CNN-based approaches perform
much better than other approaches, which occurs because the
CNN-based approaches learn more features. The approaches
proposed in [17]–[19] are similar to the HCF; however.
because we fine-tune specific layers of the cooperative pre-
trainedmodels, theHCF extractsmore features. The approach
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TABLE 2. Comparison of the detection accuracy.

proposed in [34] uses a 3D-CNN and optical flow to improve
the distracted driver monitoring performance. However, this
model was not trained sufficiently.

2) AVERAGE PROCESSING TIME
The execution efficiency of the deep learning algorithm is
affected by the running state of the computer. The heat dissi-
pation status and the number of parallel tasks both affect the
real-time running speed of the computer, which results in the
difference in the image processing time even under the same
experimental conditions.

To alleviate the impact of the experimental conditions and
accurately measure the average processing time, we have
conducted 10 groups of experiments for each algorithm.
We randomly selected 100 images from the dataset in each
experiment group. The comparison results are listed in
Table 3. The time refers to the average runtime required to
process one image from the selected 100 images. The average
value of each 10 groups of experiments is taken as the final
average processing time.

We introduce momentum into the Adam strategy
and designed a momentum-based training rate optimiza-
tion (MTRO) algorithm as show in Algorithm 1. As an
improved Adam strategy, MTRO is more stable and has a
faster convergence speed, which can speed up the conver-
gence of the proposed HCF.

As shown in Table 3, in all 10 groups of experiments, the
proposed HCF achieves the best performance in 9 groups of
experiments compared with other approaches. The proposed
HCF requires approximately 41 ms to process one image,
which obtains the optimal value of the average processing
time. Among these approaches, the performance of the pro-
posed HCF is much more stable in all 10 groups of exper-
iments, which can satisfy the practical requirements better
for the unpredictable distracted driving behaviors without
considering the class label.

FIGURE 16. Different images of one driver in the dataset.

FIGURE 17. Training strategy of ResNet50.

E. DISCUSSION
1) IMPACT OF DATASET DIVISION
First, we randomly selected 80% of the dataset as the train-
ing set and used the remaining 20% as the validation set.
This approach can introduce overfitting on the validation set
because the dataset consists of a sequence of frames drawn
from the video, and randomly dividing the dataset into an 8:2
ratio causes the driver images in the validation set and the
training set to be highly similar. Fig. 16 shows two different
images of one driver in the State Farm dataset. Clearly, these
images could easily be confused with each other.

Hence, we adopted the images numbered P014, P021,
P026, and P049 as the verification set (total: 4,320) and
included the other images in the training set (total: 18,104).
In this way, the images in the training set and validation set
are not as apt to be confused with each other.

2) IMPACT OF TRAINING STRATEGY
We used transfer learning to fine-tune the three pretrained
deep CNN models in the HCF. In transfer learning, the fine-
tuning mainly focuses on tuning only a few layers while
preserving the main characteristics of the pretrained convo-
lutional layers. In the HCF, the parameters of the pretrained
models are not directly transferred to our behavior detec-
tion task; instead, we fine-tune the three pretrained models
to extract suitable features. In these experiments, we tested
different numbers of frozen layers to find the best training
strategy.
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TABLE 3. Comparison of the average processing time.

FIGURE 18. Training strategy of Inception V3.

FIGURE 19. Training strategy of Xception.

The experimental results are shown in Figs. 17–19. When
the number of frozen layers is small, training requires more
time. However, the performance of the single pretrainedmod-
els do not improve as the training time increases. Conversely,
when the number of frozen layers is large, the accuracy
decreases.

To consider the balance between the training time and the
accuracy, for the HCF, we chose 151, 171 and 115 as the
number of frozen layers for ResNet50, Inception V3 and
Xception, respectively.

VI. CONCLUSION AND FUTURE WORK
Distracted driving behaviors are a primary cause of traffic
accidents. Hence, it is necessary to find methods to effec-
tively identify distracted driving behaviors. In this paper,
we propose a hybrid CNN framework (HCF) to recognize
distracted driver behaviors. Features are extracted at different
scales by three cooperative pretrained CNN models; then,
the features are concatenated to obtain the feature maps.
Subsequently, we train the fully connected layer to classify
each distracted driving behavior. During the training proce-
dure, we apply dropout technology to prevent the training
model from overfitting to the training data. We apply CAM to
highlight the detection area results. The results show that the
proposed HCF achieves good performance for recognizing
distracted driver behaviors, reaching a classification accuracy
of 96.74%.

The dataset in this paper only provides the images from the
right-hand side. However, the performance of the proposed
HCF may degrade when the camera is set in different places
in the vehicle. In addition, the HCF is greatly influenced
by the light, which indicates that the HCF cannot detect the
distracted driving behavior accurately at night.

Considering the above limitations, in the future, we will
analyze the driving behavior from different camera angles
and work towards reducing the computation time and the
number of parameters. Additionally, the goal is to not only
to recognize distracted driving behaviors but also to prevent
them.
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