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ABSTRACT For Internet of Vehicles (IoV) systems with multiple users, network coding can be introduced
to provide efficient error control and throughput improvement services. However, if the heterogeneity
characteristics and requirements of the end users (vehicles) are neglected, it will be difficult for an IoV
system to provide each end user with fair system services, without which the advantages of network
coding cannot be fully achieved and the performance of the multi-user diversity system will be degraded.
In this paper, we propose a Dynamic Resource Scheduling Optimization (DRSO) algorithm, a dynamic fair
scheduling algorithm combined with network coding for system resource allocation in a multi-user IoV
system. We construct a general solution framework for service scheduling: first, we estimate the fairness
index for each end user (vehicle) with the key information on Quality of Service (QoS). Second, we construct
a service scheduling control model based on the service capability of control entities (multi-access edge
computing servers), and propose a new utility evaluation function. Third, based on the fairness index,
we select end users into multiple network coding sets. Network coding sets are the basic units of service
scheduling. The optimization objective of the scheduling service is to maximize the total utility of all the
network coding sets (the utility of the control entity). Finally, we establish a coding cache queue in the
control entity based on the scheduling decision. To obtain the global optimal solution for active queue control,
we combine a Quantum Particle Swarm Optimization (QPSO) algorithm with a Proportional Integral (PI)
model. Then, the optimal scheduling decision can be made. Extensive simulation results show that DRSO
outperforms related scheduling algorithms in varying traffic loads, demonstrating that DRSO can effectively
guide service resource allocation.

INDEX TERMS Multi-user, fairness control, network coding set, cache queue, internet of vehicles.

I. INTRODUCTION
As the infrastructure of mobile vehicle networks, the Internet
of Vehicles (IoV) combines the advantages of the Internet of
Things (IoT) and an Intelligent Transportation System (ITS).
The IoV is a multi-source, multi-destination, and multi-user
wireless network system with the characteristics of unsta-
ble network topology, fast node mobility, and frequent data
exchange. End users (vehicles) share the wireless channel
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resource (accessing service time) allocated by the control
entity (multi-access edge computing server) to obtain more
transmission opportunities.

Due to the instability of the wireless channels, the IoVmay
encounter channel error during transmission, and the network
throughput is constrained. For error control and throughput
improvement, network coding can be introduced due to its
advantage in data fusion [1]. Intermediate nodes conduct
linear network coding on multiple original data packets to
generate the coded data packets. The destination recovers
the original data packets according to the coding matrix.
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Network coding can effectively reduce retransmission, and
the theoretical limit of network throughput in multicast can
be achieved [2].

However, traditional random linear network coding does
not consider the diversity of end users in the IoV. On the
one hand, vehicles vary in link reliability and service require-
ments in a complicated traffic environment. Without being
allocated accessing service time, some end users may never
be able to take part in network coding. On the other hand,
if the service requirements from an end user are satisfied
without the consideration of its channel quality, the per-
formance of other end users may be degraded, this is the
well-known ‘‘crying baby’’ problem in a multi-user network
system [3]. Literature [4] has also pointed out that, the advan-
tage of network coding in throughput improvement can only
be fully achieved by proper scheduling. A fair accessing
service time, network throughput and cache cost should be
considered together to make an optimal scheduling decision
in a multi-user IoV system [5]. Otherwise, the IoV system
may suffer from decreased throughput and increased trans-
mission delay when the channel quality is poor [6].

Network coding focuses on improving the overall network
throughput without considering fair service resource alloca-
tion. Multi-user scheduling emphasizes providing fair service
to each end user. Therefore, the combination of multi-user
scheduling technology and network coding can be of great
help to improve the channel gain and achieve higher network
throughput for the IoV system.

To address the shortcomings of prior efforts, we propose a
dynamic resource scheduling optimization algorithm referred
to as DRSO, which provides fair network access and error
control services in a multi-user IoV system. This algorithm
gives comprehensive consideration to the various factors
affecting service scheduling and quantifies these influencing
factors. We construct a general solution framework according
to DRSO. First, the control entity perceives the channel
and service state of the IoV system in a real-time manner
according to the feedback messages from end users. Given
the key attribute information on quality of service (QoS)
requirements, we make the initial measurement of the fair-
ness index of an end user’s service requirement. Second,
utilizing the characteristics of multi-user diversity, a new
service scheduling control function for utility estimation is
constructed based on the service capability of the control
entity. We calculate the service utility for the end user by
considering more complicated factors influencing the service
scheduling decision. Third, based on the fairness index, end
users are selected into network coding sets. The network
coding sets are the basic unit of service scheduling and are
managed by the control entity. The total utility of network
coding sets (the utility of the control entity)is maximized as
the optimization objective of service scheduling. Then the
weights of the service’s key attributes can be determined.
Finally, we make the scheduling decision and establish a
coding cache queue in the control entity. A Quantum Particle
Swarm Optimization (QPSO) algorithm is combined with a

Proportional Integral (PI) model to solve the global optimal
solution of active queue control. The accessing service time
is fairly allocated to each end user.

This paper makes the following contributions:

1) We formally formulate the multi-user accessing service
problem and devise a multi-layer solution framework
for service scheduling between end users and control
entity in the IoV system. (Section III)

2) We construct a statistical fairness measurement model
with the concept of the fairness index, which can ensure
the independence of end users. In addition, we propose
a new credit-based service scheduling control model to
evaluate the service utility of end users. (Section IV)

3) We design an improved network coding method for
constructing a network coding set as the basic unit
of service scheduling. An optimization algorithm for
maximizing the total utility of network coding sets is
proposed for determining the weights of the service’s
key attributes. (Section V)

4) We propose a coding cache queue control algorithm.
This algorithm solves the global optimal solution of
active queue control, and the caching overhead of net-
work coding can be constrained. (Section V)

The remainder of this paper is organized as follows: we
review related work in Section II. Section VI demonstrates
simulation results, and Section VII presents the conclusions
and future work of this paper.

II. RELATED WORKS
The multi-user diversity technique based on a scheduling
strategy has been broadly used for the high-speed transmis-
sion of data packets in wireless cellular systems [7]. Temporal
fairness scheduling is themain focus in recent studies. Classic
multi-user systems such as the High Data Rate (HDR) system
and High-Speed Data Packet Access (HSDPA) system, can
obtain the multi-user diversity gain through Time-Division
Multiple Access (TDMA) [8]. Shahsavari et al. [9] propose
activating specific users to determine the set of feasible tem-
poral shares in nonorthogonal multiple access system. In this
paper, we also discussmulti-user diversity in the time domain.

There are two scheduling directions in a wireless network:
uplink and downlink. For uplink scheduling, to alleviate
packet loss and improve resource allocation, Ferng et al. [10]
propose allowing the user equipment with the least left
delay budget to be scheduled first. For downlink scheduling,
Liu et al. [11] propose a channel-aware scheduling scheme to
exploit both spatial and multi-hop diversity. The scheduling
decisions are made at every time slot based on the designed
priority indexes.

To approximate the optimal scheduling solution, a heuristic
algorithm with polynomial time is investigated. In a cen-
tralized time-slotted channel hopping network, a scheduling
algorithm for maximizing the network throughput is pro-
posed [12]. Li et al. [13] also propose a heuristic algorithm
for an energy harvesting mobile sensor network under the
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constraints of radio link quality while ensuring fair data
reception. To maximize the aggregate throughput subject to
a fairness constraint, Ge et al. [14] optimize the selection of
user sets to approximate a nonconvex optimization problem.
Proportional fair scheduling is a newly proposed method for
energy efficiency. Liu et al. [15] present an analytical model
for the performance analysis of dynamic proportional fair
scheduling, and design a low-complexity algorithm for joint
power allocation and user set selection. Li et al. [16] also
propose normalized Signal-to-Noise Ratio (SNR) based fair
scheduling for a multicast system.

To achieve throughput optimality with flow-level schedul-
ing, Chen et al. [17] propose a scheduling algorithm for fairly
scheduling TCP flows in wireless networks with time varying
channel conditions.Velkov et al. [18] realize optimal propor-
tional fair scheduling when each frame consists of either a
downlink energy harvesting phase or an uplink information
transmission phase. In a cellular system, Parruca et al. [19]
present a closed-form analytical model for the throughput
expectation of proportional fair scheduling, and the model
takes into account a precise Signal-to-Interference-and-Noise
Ratio (SINR) distribution. Furthermore, for the effective
reuse of radio resources in a device-to-device communication
system, Gu et al. [20] propose an optimal fair scheduling
scheme that maximizes the logarithmic sum of the user data
rates.

To improve the quality of services and enhance the
resource allocation management in the IoV, Chen et al. [21]
propose a virtual framework using a learning-based
resource allocation scheme for mobile vehicle service.
Huang et al. [22] also propose a service-oriented network
architecture to reduce the traffic load and simplify network
management with a service aggregation and caching (SAaC)
scheme. Li et al. [23] propose a machine learning based code
dissemination scheme to choose vehicles with higher reliable
degree and coverage ratio to deliver code with lower costs.

III. DRSO DESCRIPTION AND PROBLEM DEFINITION
A. MULTI-ACCESS EDGE COMPUTING ARCHITECTURE
The DRSO algorithm proposed in this paper is used in a
typical IoV system with multi-user access. The IoV sys-
tem integrates various traffic information for frequent packet
exchange among vehicle users. As shown in Fig. 1, we con-
sider a Multi-access Edge Computing (MEC) architecture
for various Vehicle to X (V2X) information services. MEC
servers (control entities) are deployed on Road Side Units
(RSUs), and provide system service resources for vehicles
(end users). The control entities are connected with each
other in an edge cloud, and the end users access the con-
trol entities through the wireless channels of the RSUs to
obtain computational resources. Each control entity man-
ages multiple end users within its transmission range. The
control entities have moderate computing and cache capa-
bilities, and can only serve one computational task at a
time.

FIGURE 1. The architecture of IoV communication system.

B. WIRELESS CHANNEL MODEL AND MULTI-LAYER
SOLUTION FRAMEWORK
In this paper, we adopt an explicit channel notification mech-
anism on the physical layer for querying Channel State Infor-
mation (CSI) [24]. The uplink and downlink of the wireless
channel are independent, and do not interfere with each other.
In the interaction between the end users and a control entity,
first, end users report CSI to the control entity dynamically
through the uplink channel. Therefore, the detailed CSI of the
physical layer can be used for the calculation of the trans-
mission cost. Second, the IoV system estimates the chan-
nel state and evaluates the service capability of the control
entities. Third, the service scheduling decision is made and
distributed through the downlink channel to all the end users.

Table. 1 summarizes the frequently used notations and their
meanings in this work.

Based on the above explicit channel notification mecha-
nism, we obtain feedback data from end users to cover as
many factors that affect the different kinds of IoV services
as possible. Specifically, streaming media service is mainly
affected by bandwidth and throughput; interactive service
is mainly affected by the delay and packet loss rate; VoIP
session service is mainly affected by the delay jitter and bit
error rate; and non real-time best-effort service is mainly
affected by the bandwidth and packet loss rate. The related
factors for each service are detailed in Table. 2.

Fig.2 presents the multi-layer solution framework for sys-
tem resource scheduling proposed in this paper. There are
four layers in the framework. At the bottom Layer for the
Service (LS), we receive all the feedback information from
end users, and extract the key attributes of service requests;
at the second Layer for the End User (LEU), we evaluate the
fairness index in multiple forms according to the attributes of
service requests; at the third Layer for the Network Coding
Set (LNCS), we calculate the utility of a network coding set
based on the utility of member end users; and at the top Layer
for the Control Entity (LCE), we maximize the utility of the
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TABLE 1. Definitions of relative parameters and acronyms.

TABLE 2. Related factors of multiple services.

FIGURE 2. Solution framework for fair scheduling.

control entity, and optimize the coding cache queue to make
the optimal scheduling decision.

IV. FAIRNESS MEASUREMENT AND SERVICE
SCHEDULING CONTROL
In designing the solution framework for providing fair system
service in an IoV system, it is important to measure the
fairness for specific end user k with service i first. Generally,
an accurate fairness measurement is an essential reference
for estimating a single end user’s service utility in service
scheduling control. Therefore, in this section, first, in the
layer for the service, we estimate the fairness index for an end

user k requesting service i based on QoS related information.
Second, in the layer for the end user, by utilizing the char-
acteristics of multi-user diversity, we construct the service
scheduling control model and calculate a single end user’s
service utility.

A. MEASUREMENT OF THE FAIRNESS INDEX
(LAYER FOR THE SERVICE)
1) CALCULATION OF THE FAIRNESS INDEX
Once an end user makes a request for accessing service
time, we initialize the procedure for fairness measure-
ment. We introduce the concept of the fairness index from
a Multi-User Multiple-Input-Multiple-Output (MU-MIMO)
system [25]. The basic idea of the fairness index is bal-
ancing between fairness and throughput. In an IoV system,
the fairness index is related to the multiple key attributes of
QoS requirements from CSI, including the packet loss rate,
average transmission rate, instantaneous transmission rate,
instant service delay, and maximum service delay [26].

According to the feedback from the end users, the control
entity can calculate the fairness index for each end user. If we
do not consider the difference between real-time service and
non-real-time service, at time slice t , the fairness index for
end user k requesting service i can be defined as [26]:

FI (k,i)(t) = − lg(δi) ·
RI (k)(t)

R̄(i)(t − 1)
·

[
DI (k,i)(t)
DM (k,i)

]
(1)

where, lg(δi) represents the packet lose rate of service i.
RI (k)(t) represents the instantaneous transmission rate of end
user k . R̄(i)(t − 1) represents the average transmission rate of
service i, and DI (k,i)(t) represents the instant service delay.
DM (k,i) represents the maximum service delay.
However, in an IoV system, there are never surplus

resources for non-real-time service because of the nonstop
packet transmission. If the increased degree of non-real-time
service is higher than that of real-time service, the fairness of
real-time service will be compromised. Therefore, we intro-
duce a compensation factor including theGuaranteedBit Rate
(GBR) [27] to the fairness index CF to ensure the fairness of
real-time service as follows:

CF = max
(
1,

GBR(i)
R̄(i)(t − 1)

)
(2)

where GBR(i) represents the value of the GBR for real-time
service i. Based on Eq(1) and CF , we construct the fairness
index FNI (k,i)(t) considering compensation factor as follows:

FNI (k,i)(t) = FI (k,i)(t) · CF (3)

If the average rate does not reach GBR(i), the value of the
compensation factor CF is greater than 1. The priority of the
real-time service rises, and more system resources can be
obtained in the following time slice.

2) STATISTICAL FAIRNESS INDEX
In a wired network, the Proportional Fairness Index (PFI)
is used to describe the difference in throughput among the
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links [28]. However, the fairness of throughput cannot ensure
the independence of end users. If a normalized throughput is
adopted, an end user with poor channel quality may obtain an
unfair channel accessing time, which will cause throughput
decline in the whole system.

To adapt to the complicated environment of the IoV sys-
tem, wemake twomodifications to the PFI: First, a statistical
fairness index that can reflect the short-term fluctuation of
wireless communication in the IoV is needed. End users with
stable channel conditions can receive better system service.
Second, we focus on the fairness of accessing service time,
instead of the fairness of network throughput. The fairness
of network access time can ensure the independence of end
users, and the influence of end users with poor channel quality
is controllable and predicable.

To distinguish the fairness of network access time from
the fairness of network throughput, a Statistical Fairness
Index (SFI) for accessing service time can be calculated based
on Eq(3), and is defined as:

FSI (k,i)(t) = Pr
(∣∣∣∣FNI (k,i)(t +1t)− FNI (k,i)(t)1t

∣∣∣∣ ≥ FX)
(4)

where FX represents the threshold of the SFI, and 1t repre-
sents the time interval.

B. SERVICE SCHEDULING CONTROL
(LAYER FOR THE END USER)
In the layer for the end user, we construct a service scheduling
control model for the allocation of accessing service time,
as shown in Fig.3. Each end user has multiple types of service
requests, such as streamingmedia service, interactive service,
session service. The control entity manages the radio bearer
resource for allocating time slices to the end users and caches
the original data packets for the service requests.

FIGURE 3. Service Scheduling Control Model.

First, we estimate the control entity’s service capability
based on a credit calculation method [29]. Second, we con-
struct a service scheduling control model based on the control

entity’s service capability and the end user’s fairness index,
and propose a new utility estimation function.

1) EVALUATION OF SERVICE CAPABILITY
The system resources are limited, and the total accessing
service time is constrained. Therefore, it is necessary to have
a clear evaluation of the control entity’s service capability.
We introduce a credit calculation method used in bank trans-
actions to describe the service capability [29]. A credit is a
monetary unit deposited in a bank (control entity), the end
user can obtain credit from the control entity according to the
fairness index in Eq(4). The control entity’s initial credits are
equal to the total accessing service time that can be provided.
For the control entity, more credits indicate a higher service
capability; for the end user, more credits indicate that the end
user should obtain more service resource. Therefore, credits
can be used to balance service resources among the end users.
The design of the credit updating algorithm is as follows:
Step 1: All the end users’ credits are initialized to 0. The

control entity has the same amount of initial credits as the
total accessing service time that it can provide.
Step 2: The control entity allocates the credits among the

end users based on each end user’s fairness index. Then each
end user updates its credits.
Step 3: The control entity allocates accessing service time

to the end users according to each end user’s credits.
Step 4:When the accessing service time for an end user is

ended, the control entity restores and accumulates the access-
ing service time to provide further services. Go to Step 2.

At time slice t , we define TR(k)(t) as the accessing service
time that end user k requests. TA(k)(t) represents the accessing
service time allocated to end user k . TC (t) represents the total
accessing service time that the control entity can provide.
CE(k)(t) represents end user k’s credits. CC (t) represents the
control entity’s credits. CA(k)(t) represents the credits that the
control entity allocates to end user k .
To reveal the service capability of the control entity,

we update the statistical fairness index in Eq(4), and pro-
pose a new form of fairness index FCI (k,i)(t) for end user k
requesting service i considering the allocation of accessing
time service, and FCI (k,i)(t) is shown as follows:

FCI (k,i)(t) = FSI (k,i)(t) ·
(
TA(k)(t − 1)
TR(k)(t − 1)

)
(5)

2) END USER’S SERVICE UTILITY
In a traditional wireless network, to evaluate the service utility
for different service requests, a Sigmoid function [30] based
on the average transmission rate of service i. is represented
as:

U
[
R̄(i)(t)

]
=

1

1+ e−a
[
R̄(i)(t)−b

] (6)

where, a represents the slope of the Sigmoid utility function.
b represents the gradient midpoint of the Sigmoid utility
function, and R̄(i)(t) represents the average transmission rate
of service i at time slice t . The curves of the Sigmoid utility
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Algorithm 1 Credit Updating Algorithm

1 Initialize the end user’s credits CE(k)(t)=0;
2 Initialize the control entity’s credits CC (t)=TC (t);
3 The control entity has sufficient accessing service
time;

4 if TC (t) ≥
K∑
k=1

TR(k)(t) then

5 for k = 1; k ≤ K ; k ++ do
6 The control entity allocates credits to end

user k:
7 CA(k)(t) = TR(k)(t);
8 End user k obtains the accessing service

time:;
9 TA(k)(t) = TR(k)(t);
10 End user k accumulates credits:
11 CE(k)(t) = CE(k)(t − 1)+ CA(k)(t);
12 The control entity updates its the accessing

service time:

13 TC (t) = TC (t)−
K∑
k=1

TR(k)(t);

14 The control entity does not have sufficient accessing
service time;

15 if TC (t) <
K∑
k=1

TR(k)(t) then

16 for k = 1; k ≤ K ; k ++ do
17 The control entity allocates credits to end

user k: CA(k)(t) = CC (t) ·
FSI (k,i)(t)
K∑
k=1

FSI (k,i)(t)
;

18 End user k accumulates credits:
CE(k)(t) = CE(k)(t − 1)+ CA(k)(t);

19 End user k obtains the accessing service

time: TA(k)(t) = TC (t) ·
CE (k)(t)
K∑
k=1

CE (k)(t)
;

20 The control entity updates its accessing
service time:TC (t) = 0;

21 return The control entity updates its the accessing
service time;

function for data service, voice service, and streaming media
service are shown in Fig.4.

However, in an IoV system, there are more complicated
factors influencing the service scheduling decision, not just
R̄(i)(t). Each time an end user obtains the opportunity for
network access, its service requirements can be updated
dynamically based on its historical transmissions. Based on
the Sigmoid utility function and fairness index FCI (k,i)(t) in
Eq(5), we propose a new utility estimation functionUE(k,i)(t)
for end user k requesting service i as follows:

UE(k,i)(t) =
e−a[FCI (k,i)(t)−b]{

1+ e−a[FCI (k,i)(t)−b]
}2 (7)

FIGURE 4. The curves of the Sigmoid utility function.

where, a represents the degree of sensitivity of UE(k,i)(t) to
FCI (k,i)(t) and b represents the function inflection, which is
the maximum degree of tolerance of service i to FCI (k,i)(t).
The influence of a and b on UE(k,i)(t) is shown in Fig.5.

FIGURE 5. The curves of the utility estimation function.

V. NETWORK CODING SET AND CODING CACHE QUEUE
In this paper, we combine network coding with fair service
resource scheduling. The challenge is that the basic unit of
service scheduling is no longer a single end user, but a net-
work coding set consisting ofmultiple end users. The solution
for the above challenge can bemodeled as amember selection
method for the network coding set and corresponding opti-
mization algorithm for the coding cache queue.

First, in the layer for the network coding set, we establish
multiple network coding sets as the basic units of service
scheduling, calculate the service utility for each network
coding set, and perform network coding in each set.

Second, in the layer for the control entity, we construct a
coding cache queue in the control entity based on the coding
space information fed back by the member end users.

The following definitions are related to the network coding
method used in this paper:
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Definition 1 (Original Data Packet): And original data
packet comes from an end user that has not obtained the
opportunity to take part in the procedure of network coding.
The original data packet is used to generate a coded data
packet.
Definition 2 (Coding Space): The coding space is the vec-

tor space consisting of coding coefficient vectors in the finite
field, and represents the decoding capabilities of the end user
and control entity.
Definition 3 (Coding Cache Queue): The coding cache

queue is maintained in the control entity for caching the orig-
inal data packets during the exchange of coded data packets.
The cache cost should be constrained because the storage of
the control entity is limited.

A. MEMBER SELECTION FOR THE NETWORK CODING SET
(LAYER FOR THE NETWORK CODING SET)
The principle of the member selection method of the network
coding set is that: the member end users of a network coding
set have similar attributes for credit and fairness index. First,
all the end users are selected into multiple network coding
sets by the member selection method. Second, we calculate
the service utility for the network coding set based on the
utility of the end user and the weight of the service attribute.
Third, each network coding set generates coded data packets
and constructs a coding space.

1) MEMBER SELECTION METHOD
It is assumed that all vehicles (end users) with a high veloc-
ity can maintain the connection with MEC servers (control
entities) through the wireless channel of the RSU at all times.
The communication range of the RSUs covers thewhole road,
as shown in Fig.6. Therefore, we can ensure that each end user
belongs to a network coding set through themember selection
method. The process of the member selection method is
divided into four steps:

FIGURE 6. Network model for communication between end users and
control entities.

Step 1: Set a member threshold for the network coding set
We set a thresholdGX for the members of a network coding

set to achieve a balance between the decoding efficiency and
the space of the coding cache queue.

Step 2: Sort and select the end users
During member selection, all the end users are sorted into

two lists in descending order according to their credits and
the fairness index. For the above two lists, we set an interval
with a length of GX and search for the end users that are
simultaneously in these two lists. The common end users are
added to one network coding set until the number of common
users reaches GX .
Step 3: Construct multiple network coding sets
If the number of common users in the above two lists

exceeds GX , a new network coding set is established. Then
we perform network coding in the network coding set. Coded
data packets are generated based on the original data packets
from the member end users.
Step 4: Update the composition of the network coding set
After transmitting the coded data packets, each end user’s

credits and fairness index change accordingly. Go to Step 2,
and new network coding sets are established.

2) UTILITY OF NETWORK CODING SET
An end user may request multiple services. For each service,
we consider its multi-dimensional attributes, including trans-
mission cost, response time, throughput, availability, reliabil-
ity, etc. [31]. Each attribute has a weight ω1. At time slice t ,
U(k)(t) is the utility for end user k based on Eq(7), which is
represented as:

U(k)(t) =
I∑
i=1

ωl · UE(k,i)(t) (8)

Then, for a network coding set consisting of GX member
end users, the utility of the network coding set is defined as
US (t):

US (t) =
GX∑
k=1

{
U(k)(t)

}
(9)

3) NETWORK CODING MECHANISM
We adopt a classical inter-session wireless network coding
scheme referred as COPE [32], the classic random linear
network coding method in this paper. Assume that the IoV
system ensures that the coding space of each control entity
is large enough, and that all the original data packets can be
recovered.

The network coding mechanism is as follows: First,
the control entity calculates its current coding space accord-
ing to the feedback from the end users. Second, accord-
ing to the threshold GT , multiple network coding sets are
established by member selection, and all the end users will
be the members of different network coding sets. Third,
each network coding set generates and exchanges coded data
packets with each other, and the destination end users recover
the original data packets based on the coding space’s basis
matrix of the control entity.
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For the network coding mechanism, the transformation
process of the coding space’s basis matrix in the network
coding set is as follows:
Step 1: Initialize the original coding space.
K empty matrices MT1, . . ., MTK in the control entity

representK end users. The information of T new original data
packets is added to the matrices maintained by the control
entity. (K − T ) elements of 0 are added to each row of
matrix MTk (k = 1, . . . ,K ) accordingly to complete the
initialization of the original coding space.
Step 2: Generate coded data packet and exchange the

coding space information.
Using the heuristic network coding method COPE, a coded

data packet PS(m) is generated based on the original data
packets from the member end users, and PS(m) is exchanged
among network coding sets.
Step 3: Transmit the coding space information to control

entity.
First, if end user k (k = 1, . . . ,K ) in the coding set

correctly receives a coded data packet in Step 2), the coding
coefficient vector of the coded data packet is transferred to a
row of matrixMTk ;
Second, conduct Gaussian elimination to obtain the basis

matrix of the coding space for end user k;
Third, end user k transmits its coding space information to

the control entity. Each network coding set can only transmit
coded data packets while being allocated accessing service
time.
Step 4: Update the basis matrix of the coding space.
Once the coding space information is received from the end

users, the control entity updates the coding space MTk . The
information of the original data packets preserved by the end
users is also updated, and a new basis matrix of the coding
space is established; return to Step 2).

B. CODING CACHE QUEUE CONTROL (LAYER FOR THE
CONTROL ENTITY)
In the layer for the control entity, the coding queue should
provide cache service fairly for all the end users taking part in
network coding. However, the control entity has limited cache
space, and the cache queue of the control entity needs to pay
a higher cost for caching the original data packets without
reasonable queue control.

1) OPTIMIZATION OF THE UTILITY OF THE CONTROL ENTITY
A network coding set is the basic unit of service scheduling.
The optimization objective of the scheduling service is to
maximize the total allocation utility of all the network coding
sets (the utility of the control entity), then the control entity
can make the scheduling decision and construct the coding
cache queue accordingly. The utility of the control entity UC
based on Eq(9) is defined as:

UC =
M∑
m=1

{
US
[
S(m)

]}
(10)

where,M is the number of network coding sets in the control
entity.

First, we define a six-tuple G = {E,V ,A,X ,P,W } as the
basic model of system resource scheduling as follows:
(1) End user set E = {e(k)|e(1), e(2), . . . , e(K )} with K end

users.
(2) Service set V = {v(i)|v(1), v(2), . . . , v(I )}with I types of

services.
(3) Service request set A = {a(k,i)|a(1,1), a(1,2), . . . , a(K ,I )}

represents that end user k requests service i. a(k,i) = 0
represents that end user k does not request service i.

(4) Task time set X = {x(k,i)|x(1,1), x(1,2), . . . , x(K ,I )} rep-
resents the execution time of each service request a(k,i).

(5) Service cost set P = {p(i)|p(1), p(2), . . . , p(I )} for each
service i.

(6) Service weight setW = {ωi|ω1, ω2, . . . , ωI }.
Second, we construct a scheduling decision matrix for all

the end users. r(k,i) = a(k,i) · x(k,i) · v(i) represents the service
budget for each end user k with service i, so the scheduling
decision matrix for all the end users is:

r(1,1) r(1,2) · · · r(1,I )
r(2,1) r(2,2) · · · r(2,I )
...

... · · ·
...

r(K ,1) r(K ,2) · · · r(K ,I )

 (11)

Then we normalize the scheduling decision matrix as
follows:

rN (k,i) =
max r(k,i) − r(k,i)

max r(k,i) −min r(k,i)
(12)

where rN (k,i) is the normalized form of the service budget
r(k,i) = a(k,i) · x(k,i) · p(i).
Third, the optimization objective of the scheduling service

is to maximize the utility of the control entity with a limited
service budget and a high requirement for service execution
time from the end users, and this objective is represented as:

maxUC = max
M∑
m=1

{
U(k)

[
S(m)

]}
= max

M∑
m=1

GX∑
k=1

U(k,i)
[
S(m)

]
= max

M∑
m=1

GX∑
k=1

I∑
i=1

ωi · FI (k,i)(t)

s.t.



I∑
i=1

[a(k,i) · x(k,i) · v(i)] ≤ C(k)

I∑
i=1

[a(k,i) · x(k,i)] ≤ D(k)

0 ≤ x(k,i) ≤ 1,
I∑
i=1

x(k,i) = 1

(13)

where, C(k) represents the maximum service budget for end
user k from the system and D(k) represents the requirement
for service execution time from end user k .
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The values of the weights of the service attributes ωl are
important for maximizing the utility of the control entity and
the following coding cache queue control. Based on the above
definitions, the optimization process for the utility of the
control entity based on the Lagrange relaxation factor [33]
is divided into 5 steps as follows:
Step 1: Initialize the six-tuple G, the maximum budget

vector C = {C(1),C(2), . . . ,C(K )}, and the constrained vector
D = {D(1),D(2), . . . ,D(K )} for the service finishing time.
Step 2: The end user transmits the service requirement

information to the control entity. The control entity evaluates
the service capability and constructs the scheduling decision
matrix.
Step 3:The control entity calculates its utility function with

Eq(13), and introduces Lagrange relaxation factor λ to relax
the constraint conditions to obtain an optimization function
without constraints.
Step 4: The control entity obtains the service weight set

W = {ωi|ω1, ω2, . . . , ωI }, and makes the system resource
scheduling decision.
Step 5:Repeat Step 2 to Step 4 until all the end users obtain

system service resources from the control entity.

2) CODING CACHE QUEUE CONTROL WITH QPSO
End users with various service attributes have different
cache requirements for performing network coding. After
determining the weights of the service attributes W =

{ω1, ω2, . . . , ωI } for maximizing the utility, the control entity
constructs a coding cache queue.

The challenge of the classic Proportional Integral (PI)
model for active queue control [34] is to adaptively set two
key parameters: a proportional coefficient kP and a integral
coefficient kI . kP can change the system state quickly, and
kI can reduce the system static errors. We introduce a Quan-
tum Particle Swarm Optimization (QPSO) algorithm [35] to
obtain the global optimal solution for kP and kI , and control
the queue’s length for the control entity.

FIGURE 7. Proportional Integral (PI) model.

The PI model is shown in Fig.7. At time slice t , qE is
the queue’s expected length. qL(t) is the queue’s maximum
length. Ed (t) is the variable deviation. qD(t) is the packet
dropping rate, and 1qD(t) is the increment of the packet

dropping rate; these variables are shown as [34]:
Ed (t) = qE − qL(t)

qD(t) = kP · Ed (t)+ qL ·
t∑
j=1

Ed (j)

1qD(t) = kP ·
[(

1+ TS ·
kI
kP

)
· Ed (t)− Ed (t − 1)

]
(14)

The process of solving the optimal values for the PI model
using the QPSO algorithm is divided into 5 steps as follows:
Step 1: Initialize the parameters of QPSO, including the

number of particle swarms S, the population size of a particle
swarm H , the maximum number of iteration kmax, and the
current sampling time.
Step 2:Generate particle swarm J = {j(s)|j(1), j(2), . . . , j(S)}

consisting of SH particles, where each particle is a
two-dimensional vector j(s) = {kP(s), kI (s)}. Search for the
optimal value of j(s) based on the QPSO algorithm, and reset
the PI model.
Step 3:Calculate each particle’s fitness based on its perfor-

mance index.
Step 4: Sample the current queue’s length qL(t), and calcu-

late 1qD(t) based on Eq(14). Calculate the optimal position
for each single particle [35].
Step 5:Update the iteration number. Output kP and kI when

the iteration number reaches kmax; other wise return to Step 1.

VI. THE EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we conduct simulations to demonstrate the
performance of the proposed DRSO algorithm and the
general solution framework for fair service scheduling in
the IoV system. We compare DRSO with the following
approaches: minimum-latency aggregation scheduling algo-
rithm (MLAS) [36], balanced shortest path tree (BSPT) for
efficient scheduling [37], round robin pairing and scheduling
algorithm (RRPS) [38], distributed data aggregation schedul-
ing algorithm (DDAS) [39] and fast data aggregation pro-
tocol (FDAP) for collision-free schedule [40]. Among these
approaches, MLAS employs connected dominating sets and
maximal independent sets (DRSO selects end users into
multiple network coding sets). BSPT constructs a logical
tree allowing the generation of short schedules for the top-
k queues (DRSO establishes a coding queue based on the
scheduling decision). RRPS selects a pair of users carrying
out transmission simultaneously in uplink virtual multiple
input multiple output (DRSO selects the member end users
of a network coding set with similar attributes for credits and
fairness index). DDAS generates a collision-free schedule for
data aggregation (DRSO constructs a network coding set as
the basic unit of service scheduling). FDAP proposes criteria
for node selection among available competitors to reduce
the time latency of the aggregation schedule (DRSO sets a
threshold for the members of a network coding set to achieve
a balance between the decoding efficiency and the space of
the coding cache queue).
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We conduct tests on different benchmarks of IoV services.
The purpose of this study is to investigate the following per-
formance indexes: (1) fairness index; (2) network throughput;
(3) packet loss rate; (4) time slice allocation; (5) service
scheduling rate; (6) average system response time; (7) aver-
age end-to-end delay.

A. SIMULATION SETTINGS
Network simulator 2 (NS2) is used to conduct extensive
simulations. The simulation environment is set up based on
the system architecture described in Section III. The detailed
simulation parameters are listed in Table. 3.

TABLE 3. Simulation parameters.

To thoroughly evaluate the performance of DRSO, a pub-
lic vehicle driving dataset containing GPS trajectories from
amap.com is adopted in our experiments [41]. A movement
trace map of vehicles and a traffic heat-map from Mar. 24 to
Mar. 26, 2020 within Beijing are given in Fig.8 and Fig.9.

FIGURE 8. Visualization of traffic trajectory dataset of Beijing.

There are three requirements for the driving trajectory data
used in the experiments: First, the acceleration satisfies a
normal distribution. Second, the driving state of vehicles
is stable most of the time. Third, there are sufficient end
users (vehicles) to form network coding sets with the thresh-
old GX = 40 in a multi-user IoV system [42]. To satisfy the
above requirements, we extract the records in a period of time
according to the trajectory data of Beijing, and obtain the cor-
responding histograms of the relative probability distribution
for the acceleration and the number of end users (vehicles).

FIGURE 9. Traffic heat map of Beijing.

FIGURE 10. Relative probability distribution for acceleration and the
number of end users (vehicles).

The RSU (the control entity) is 50 m away from the center of
the nearest lane. The maximum communication range of an
RSU and an end user (vehicle) is 200 m. Fig. 10(a) shows that
the acceleration presents an approximately normal distribu-
tion, the values of the acceleration is distributed mainly in the
range between 7m

/
s2 and −7m

/
s2 and the vehicles seldom

have rapid acceleration and deceleration. Fig. 10(b) shows
that the number of end users (vehicles) is mainly distributed
between 55 to 100 on the two-way lane within the limited
communication range. Most vehicles have a stable driving
state, which can help us study driving state. In summary,
we can use the trajectory data of Beijing for the following
simulations.

It is assumed that all the end users are synchronized in
both time slices and transmission frames [43]. The IEEE
802.11p standard is employed to support the architecture of
the multi-user IoV system, with a bandwidth of 10 MHz per
channel. The vehicles send data packets at the lowest rate
of 3 Mbps, as this provides the best service reliability [44].
The large-scale path loss is characterized by a Nakagami fad-
ing factor model of the IoV channel. The main service types
used in this paper include: real-time Streaming Media Ser-
vice (SMS), VoIP Session Service (VSS) and non-real-time
Best Effort Service (BES).

B. SIMULATION RESULT ANALYSIS
1) FAIRNESS INDEX
Now we evaluate the impact of the number of end users on
the fairness index for SMS, VSS and BES in Fig. 11.
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FIGURE 11. Fairness index with different numbers of end users. (a) SMS. (b) VSS. (c) BES.

FIGURE 12. Network throughput with different numbers of end users. (a) SMS. (b) VSS. (c) BES.

For SMS, Fig. 11(a) shows that, when the number of end
users is less than 60, the fairness index of most algorithms
can be maintained at a high level. This is because all the
service requests can be satisfied when the control entity has
sufficient accessing service time. However, as the number of
end users increases, the fairness index decreases. This occurs
because as more end users compete for system resources,
the accessing service time provided by the control entity
becomes insufficient. Affected by both the number of end
users and the completion time of a service request, some
end users may lose the opportunity to access the system.
DRSO introduces a compensation factor CF in Eq(2) that
gives a high service priority to end users with strict SMS
requirements. Thus, DRSO can ensure that all the end users
requesting SMS have a high fairness index.

In terms of VSS, Fig.11(b) shows that the fairness index
of each algorithm suffers transmission fluctuations. This is
because VSS is not a persistent service. DRSO can maintain
better performance than the other algorithms because DRSO
adopts the statistical fairness index FSI (k,i)(t) in Eq(4), which
can reduce the negative impact caused by the short-term
fluctuation of wireless communication in the IoV. Since the
other algorithms do not optimize the service scheduling order,

it is hard for end users with higher delay costs to obtain the
system resources.

As shown in Fig.11(c), BES is a low-priority service, and
usually experiences congestion as the number of end users
increases. The fairness index of all algorithms decreases with
the number of vehicles. DRSO still obtains a higher fairness
index because the network coding in DRSO can reduce the
retransmission times of data packets. Thus, DRSO can help
most end users reduce their service completion time.

It is observed that in general, a user’s fairness index
decreases along with an increasing number of end users.
This reveals that scheduling-based algorithms perform better
than random access methods because the chance of obtaining
channel access is influenced by the distance between end
users in random access algorithms especially in an IoV sys-
tem. In DRSO based on fair scheduling, since the accessing
service time is ordered and scheduled regardless of the end
user’s location, good fairness performance can be obtained.

2) NETWORK THROUGHPUT
As shown in Fig.12, the network throughput is investigated
with the number of end users. It is observed that in general
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FIGURE 13. Packet loss rate with different numbers of end users. (a) SMS. (b) VSS. (c) BES.

the throughput increases along with the number of end users,
and the throughput of all the algorithms has an upper bound.

As shown in Fig.12(a), when the number of end users
reaches 85, each algorithm has nearly reached its upper
bound. The throughput of the proposed DRSO algorithm
is better than that of the other algorithms. More specif-
ically, DRSO performs better than BSPT, indicating that
fair scheduling-based transmission with network coding
outperforms random scheduling methods. Moreover, the
performance of DRSO is much better than that of the other
scheduling algorithms, suggesting that the introduction of
network coding is useful in this network model.

In terms of Fig.12(b), all the algorithms exhibit similar
throughput performance trends.More end users lead to higher
workloads in the system. The throughput of each algorithm
increases because higher workloads lead to the generation of
more data packets for VSS.

Fig.12(c) shows that, the throughput of BES with low
service priority exhibits a decline for all the algorithms
when there are not many end users, because the chances of
accessing the system are reduced. However, the throughput
of DRSO is still superior to that of the other algorithms,
especially under circumstance with heavy offered traffic
loads. The network coding occurrence of DRSO is higher
than that of the other algorithms. The coding cache queue
in DRSO processes the coded data packets more quickly,
accommodates more coded data packets for exchanging and
postpones the network congestion, and these factors lead to
the throughput advantage of DRSO compared with the other
algorithms.

3) PACKET LOSS RATE
Fig.13 shows the changes in the packet loss rates of the
algorithms with the number of end users.

As observed in Fig.13(a) for SMS, the packet loss rate
increases when the traffic workload starts to become heavier
to a certain extent. As the number of end users increases,
the collision probability among data packets rises and the

packet loss rates of all the algorithms continue to increase.
The reasons are explained as follows. At the beginning, all
algorithms can achieve a low packet loss rate due to the
small amount of data flows. When the service requests from
end users starts start to increase, the increased number of
packet collisions dominate the performance, which results in
an increase in the packet loss rate.

As shown in Fig.13(b) for VSS, the packet loss rate of
DRSO is lower than that of the other algorithms as the num-
ber of end users increases. This is because fair scheduling
gradually plays a useful role in avoiding packet collision and
network coding can efficiently reduce retransmission. This
demonstrates the advantages of network coding and the fair
scheduling strategy adopted by DRSO.

As shown in Fig.13(c) for BES, the packet loss rate of
DRSO is lower than that of the other algorithms in most of
cases, while it is higher than BSPT at the beginning. This is
because the advantages of stable scheduling are not obvious
in the case of a small amount of packet transmission. DRSO
exhibits fairness adaptive control of data packet transmission.
When the number of end users reaches 65, stable scheduling
plays an important role, and the packet loss rate of DRSO is
better than that of BSPT.

4) TIME SLICE ALLOCATION FOR ACCESSING THE SYSTEM
Fig.14 presents the time slice allocation of all the algorithms
under different channel loads. We compare the time slices of
service requests and the time slices allocated for the three
types of services (SMS, VSS and BES) for the different algo-
rithms. When the channel load is low, all the service requests
for time slices can be satisfied. However, the total accessing
service time provided by the control entity is constrained.
Therefore, the service request for time slices cannot be fully
satisfied with an increase in channel load.

Fig.14(a) shows the time slices provided by the control
entity with DRSO. SMS with its high service priority can
obtain more time slices than VSS and BES, especially in
the case of a heavy channel load. The differences in the
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FIGURE 14. Time slice allocation for accessing system for different services. (a) DRSO. (b) BSPT. (c) DDAS.

time slices allocated for the three types of services can be
controlled in DRSO, even as the channel load increases.
Fig.14(b) shows the time slices provided by the with BSPT.
The difference in the time slices allocated for the three types
of services in BSPT are more significant than those in DRSO.
BSPT does not consider fairness among end users with differ-
ent services. Fig.14(c) presents the time slices provided by the
control entity with DDAS, and there is no difference among
the time slices allocated for three types of services. Therefore,
the different service requirements cannot be fully satisfied.

It is observed that DRSO outperforms the other algorithms.
The reason behind this phenomenon is that, DRSO can detect
more coding opportunities because all the end users are
selected into network coding sets, as described in Section V,
and obtain a fair opportunity to take part in the activity
of network coding. Furthermore, DRSO introduces a credit
updating algorithm in the layer for the end user in Section IV.
Credit can be used to balance service resources among the
end users.

5) SERVICE SCHEDULING RATE FOR END USERS
The average scheduling rates for end users with different
types of services (SMS, VSS and BES) in DRSO and BSPT
are shown in Fig.15. The scheduling objects of DRSO and
BSPT both satisfy the expected scheduling rates of the end
users. End users differ in channel state and service scheduling
requirements. The IoV system is in a state of heavy channel
load when the sum of the expected service scheduling rates
of all the end users reaches 90% of the overall downlink
throughput of the IoV system. Therefore, we define the Sat-
isfaction Degree (SD), which is the ratio of the cumulative
average scheduling rate to the expected scheduling rate.

As shown in Fig.15(a), the SD of most end users
reached 98%, and most end users obtained the expected
service scheduling rate. However, as observed in Fig.15(b),
the SD of most end users only reaches 85%. Therefore,
DRSO is superior to BSPT in satisfying the expected service
scheduling rate of each end user in a heavy channel load
scenario. DRSO is more efficient in using channel resources.

FIGURE 15. Average scheduling rates for different types of services.
(a) DRSO. (b) BSPT.

The reason is as follows: as the channel load rises, more
data packets can intersect with each other to generate coded
data packets, and more coded data packets can be scheduled.
DRSO transmits the coded data packets by stable scheduling
and fair allocation of available resources for accessing service
time. BSPT ignores the problem of stable scheduling, and the
variability of service requirements from end users, so most
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service requirements cannot be fully satisfied. Unlike DRSO,
BSPT is not always able to transmit the data packets in a
uniform state, since it does not explore the fair allocation of
available accessing service time.

6) AVERAGE SYSTEM RESPONSE TIME
The Average System Response Time (ASRT) is one of the
main indicators for evaluating scheduling algorithms. In a
dynamic IoV environment, a random channel causes insta-
bility in the ASRT. We treat the ASRT as a random variable,
and we also expect the variance of the ASRT to be as small
as possible. Therefore, this variance is also an important
evaluation index in dynamic scheduling.

FIGURE 16. Average system response time with different time intervals of
service request arrivals. (a) exponential distribution. (b) random
distribution.

In Fig.16(a), it is assumed that the time interval of ser-
vice request arrivals satisfies an exponential distribution, and
the service requests have the same size. In this condition,
DRSO achieves the best performance. The ASRT of DRSO
is lower than that of the other algorithms. Since DRSO can
find more coding opportunities through network coding sets,
DRSO constructs the coding cache queue of coded data
packets more quickly by more occurrence of network coding,

which greatly reduces the number of retransmissions and the
ASRT. Therefore, DRSO can accommodate more end users
taking part in network coding, which promotes the efficiency
of service scheduling.

In Fig.16(b), it is assumed that the time interval of ser-
vice request arrivals satisfies a random distribution, and the
service requests are not the same size. The ASRT of all the
algorithms increases. DRSO can still keep its ASRT at a low
level. The Other algorithms neglect fair scheduling during
packet transmission, and end users requesting service at low
priority may never obtain the chance for network coding,
which leads to a rise in the ASRT.

FIGURE 17. Average system response time with different time interval of
service request arrivals. (a) BSPT. (b) DRSO.

7) AVERAGE END-TO-END DELAY
Fig.17 displays the average end-to-end delay of the three
types of services (BES, VSS, and SMS) separately with
DRSO and BSPT. We vary the number of end users from 50
to 100.

Fig.17(a) shows that, BSPT focuses only on the fairness
of SMS with a high service priority. Most of the time, only
end users requesting SMS can obtain a low end-to-end delay.
As shown in Fig.17(b), in general, all three services can fairly
obtain a low end-to-end delay with DRSO. DRSO performs
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better than BSPT. The reason is as follows: In DRSO, end
users do not need towait for accessing service time until being
scheduled, and each member end user in the network coding
set can fairly obtain accessing service time once the network
coding set is scheduled by the control entity.

VII. CONCLUSION AND FUTURE WORK
In this paper, to achieve an adaptive balance between fairness
and throughput in a multi-user IoV system, we have designed
DRSO, a dynamic fair scheduling algorithm combined with
network coding for system resource allocation. We construct
a general solution framework with four separate layers for
the service, end user, network coding set, and control entity,
and we define a utility model for each of them. Then we
formulate the utility maximization of the control entity (MEC
servers) as the optimization objective of service scheduling,
and make the optimal scheduling decision accordingly. Sim-
ulation results prove the good performance of DRSO. DRSO
effectively improves the fairness, network throughput, packet
loss rate, service scheduling rate, system response time, and
end-to-end delay with varying traffic loads, and these find-
ings demonstrate that DRSO can be used for guiding service
resource allocation in multi-user IoV systems.

In the future, we would implement the proposed DRSO in
a large scale with the cooperation among the end users, and
we would also study individual end user response patterns
to scheduling decisions, and analyze the correlation between
system performance and these patterns. By doing so, we wish
to obtain insights into the imbalance between service requests
and resource allocation from a new perspective.

REFERENCES
[1] A. Naeem, M. H. Rehmani, Y. Saleem, I. Rashid, and N. Crespi,

‘‘Network coding in cognitive radio networks: A comprehensive sur-
vey,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1945–1973,
Jan. 2017.

[2] A. Douik, S. Sorour, T. Y. Al-Naffouri, and M. S. Alouini, ‘‘Delay reduc-
tion for instantly decodable network coding in persistent channels with
feedback imperfections,’’ in IEEE Commun. Surveys Tutor., vol. 20, no. 2,
pp. 1014–1035, Jan. 2018.

[3] H. Holbrook, S. Singhal, and D. Cheriton, ‘‘Log-based receiver-reliable
multicast for distributed interactive simulation,’’ ACM SIGCOMM Comp.
Commun. Rev., vol. 25, no. 5, pp. 328–341, Oct. 1995.

[4] P. Chaporkar and A. Proutiere, ‘‘Adaptive network coding and scheduling
formaximizing throughput in wireless networks,’’ inProc. 13th ACMConf.
Mobile Comput. Netw., 2007, pp. 135–146.

[5] C. Zhang, X. Liang, Z. Wu, F. Wang, S. Zhang, Z. Zhang, and X. You,
‘‘On the low-complexity, hardware-friendly tridiagonal matrix inversion
for correlated massive MIMO systems,’’ IEEE Trans. Veh. Technol.,
vol. 68, no. 7, pp. 6272–6285, Jul. 2019.

[6] I. Chatzigeorgiou and A. Tassi, ‘‘Decoding delay performance of random
linear network coding for broadcast,’’ IEEE Trans. Veh. Technol., vol. 66,
no. 8, pp. 7050–7060, Aug. 2017.

[7] Q. Ding and Y. Jing, ‘‘Outage probability analysis and resolu-
tion profile design for massive MIMO uplink with mixed-ADC,’’
IEEE Trans. Wireless Commun., vol. 17, no. 9, pp. 6293–6306,
Sep. 2018.

[8] Z. Li and J. Gui, ‘‘Energy-efficient resource allocation with hybrid
TDMA–NOMA for cellular-enabled Machine-to-Machine communica-
tions,’’ IEEE Access, vol. 7, pp. 105800–105815, 2019.

[9] S. Shahsavari, F. Shirani, and E. Erkip, ‘‘A general framework for temporal
fair user scheduling in NOMA systems,’’ IEEE J. Sel. Topics Signal
Process., vol. 13, no. 3, pp. 408–422, Jun. 2019.

[10] H.-W. Ferng, C.-Y. Lee, J.-J. Huang, and Y.-J. Liang, ‘‘Urgency-based
fair scheduling for LTE to improve packet loss and fairness: Design and
evaluation,’’ IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2825–2836,
Mar. 2019.

[11] G. Liu, L. Li, L. J. Cimini, and C.-C. Shen, ‘‘Extending proportional
fair scheduling to buffer-aided relay access networks,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 1041–1044, Jan. 2019.

[12] M. O. Ojo, S. Giordano, D. Adami, and M. Pagano, ‘‘Throughput max-
imizing and fair scheduling algorithms in industrial Internet of Things
networks,’’ IEEE Trans. Ind. Informat., vol. 15, no. 6, pp. 3400–3410,
Jun. 2019.

[13] K. Li, C. Yuen, B. Kusy, R. Jurdak, A. Ignjatovic, S. S. Kanhere, and S. Jha,
‘‘Fair scheduling for data collection in mobile sensor networks with energy
harvesting,’’ IEEE Trans. Mobile Comput., vol. 18, no. 6, pp. 1274–1287,
Jun. 2019.

[14] M. Ge and D. M. Blough, ‘‘High throughput and fair scheduling for
multi-APmultiuserMIMO in densewireless networks,’’ IEEE/ACMTrans.
Netw., vol. 26, no. 5, pp. 2414–2427, Oct. 2018.

[15] F. Liu and M. Petrova, ‘‘Performance of proportional fair scheduling for
downlink PD-NOMA networks,’’ IEEE Trans. Wireless Commun., vol. 17,
no. 10, pp. 7027–7039, Oct. 2018.

[16] H. Li and X. Huang, ‘‘Multicast systems with fair scheduling in non-
identically distributed fading channels,’’ IEEE Trans. Veh. Technol.,
vol. 66, no. 10, pp. 8835–8844, Oct. 2017.

[17] Y. Chen, X. Wang, and L. Cai, ‘‘On achieving fair and throughput-optimal
scheduling for TCP flows in wireless networks,’’ IEEE Trans. Wireless
Commun., vol. 15, no. 12, pp. 7996–8008, Dec. 2016.

[18] Z. Hadzi-Velkov, I. Nikoloska, H. Chingoska, and N. Zlatanov, ‘‘Propor-
tional fair scheduling in wireless networks with RF energy harvesting and
processing cost,’’ IEEE Commun. Lett., vol. 20, no. 10, pp. 2107–2110,
Oct. 2016.

[19] D. Parruca and J. Gross, ‘‘Throughput analysis of proportional fair schedul-
ing for sparse and ultra-dense interference-limited OFDMA/LTE net-
works,’’ IEEE Trans. Wireless Commun., vol. 15, no. 10, pp. 6857–6870,
Oct. 2016.

[20] J. Gu, S. J. Bae, S. F. Hasan, and M. Y. Chung, ‘‘Heuristic algorithm
for proportional fair scheduling in D2D-cellular systems,’’ IEEE Trans.
Wireless Commun., vol. 15, no. 1, pp. 769–780, Jan. 2016.

[21] M. Chen, T. Wang, K. Ota, M. Dong, M. Zhao, and A. Liu, ‘‘Intelligent
resource allocation management for vehicles network: An A3C learning
approach,’’ Comput. Commun., vol. 151, pp. 485–494, Feb. 2020.

[22] M. Huang, A. Liu, N. N. Xiong, T. Wang, and A. V. Vasilakos, ‘‘An effec-
tive service-oriented networking management architecture for 5G-enabled
Internet of Things,’’ Comput. Netw., vol. 173, May 2020, Art. no. 107208.

[23] T. Li, M. Zhao, and K. K. L. Wong, ‘‘Machine learning based code
dissemination by selection of reliability mobile vehicles in 5G networks,’’
Comput. Commun., vol. 152, pp. 109–118, Feb. 2020.

[24] J. Li, D. Su, andY.Wang, ‘‘Energy-efficient and traffic-adaptive Z-medium
access control protocol in wireless sensor networks,’’ IET Wireless Sensor
Syst., vol. 8, no. 5, pp. 208–214, Oct. 2018.

[25] A. Salem, C. Masouros, and K.-K. Wong, ‘‘Sum rate and fairness anal-
ysis for the MU-MIMO downlink under PSK signalling: Interference
suppression vs exploitation,’’ IEEE Trans. Commun., vol. 67, no. 9,
pp. 6085–6098, Sep. 2019.

[26] M. Mohseni, S. A. Banani, A. W. Eckford, and R. S. Adve, ‘‘Scheduling
for VoLTE: Resource allocation optimization and low-complexity algo-
rithms,’’ IEEE Trans. Wireless Commun., vol. 18, no. 3, pp. 1534–1547,
Mar. 2019.

[27] M. Sefunc, A. Zappone, and E. A. Jorswieck, ‘‘Energy efficiency of
mmWave MIMO systems with spatial modulation and hybrid beamform-
ing,’’ IEEE Trans. Green Commun. Netw., vol. 4, no. 1, pp. 95–108,
Mar. 2020.

[28] J.-Y. Huang and H.-F. Lu, ‘‘Achieving large sum rate and good fairness
in MISO broadcast communication,’’ IEEE Trans. Veh. Technol., vol. 68,
no. 6, pp. 5684–5695, Jun. 2019.

[29] T. Alshammari, B. Hamdaoui, M. Guizani, and A. Rayes, ‘‘Malicious-
proof and fair credit-based resource allocation techniques for DSA sys-
tems,’’ IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 606–615,
Feb. 2015.

[30] Z. Dai, P. Wang, H. Wei, and Y. Xu, ‘‘Adaptive detection with constant
false alarm ratio in a non-Gaussian noise background,’’ IEEE Commun.
Lett., vol. 23, no. 8, pp. 1369–1372, Aug. 2019.

127002 VOLUME 8, 2020



C. Huang et al.: DRSO With Network Coding for Multi-User Services in the IoV

[31] Q. Chen, X. Li, andY.Wang, ‘‘SLA-driven cost-effectivemonitoring based
on criticality for multi-tenant service-based systems,’’ IEEE Access, vol. 6,
pp. 48765–48775, 2018.

[32] S. Sengupta, S. Rayanchu, and S. Banerjee, ‘‘Network coding-aware
routing in wireless networks,’’ IEEE-ACM Trans. Netw., vol. 18, no. 4,
pp. 1158–1170, Aug. 2010.

[33] R. Chai, Z. Ma, C. Liu, and Q. Chen, ‘‘Service characteristics-oriented
joint ACB, cell selection, and resource allocation scheme for heteroge-
neous M2M communication networks,’’ IEEE Syst. J., vol. 13, no. 3,
pp. 2641–2652, Sep. 2019.

[34] S. Manjunath and G. Raina, ‘‘Stability and performance of compound
TCP with a proportional integral queue policy,’’ IEEE Trans. Control Syst.
Technol., vol. 27, no. 5, pp. 2139–2155, Sep. 2019.

[35] Q. Luo, X. Fang, Y. Sun, J. Ai, and C. Yang, ‘‘Self-learning hot data
prediction: Where echo state network meets NAND flash memories,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 3, pp. 939–950,
Mar. 2020.

[36] L. Guo, Y. Li, and Z. Cai, ‘‘Minimum-latency aggregation scheduling in
wireless sensor network,’’ J. Combinat. Optim., vol. 31, no. 1, pp. 279–310,
Jan. 2016.

[37] B.Malhotra, I. Nikolaidis, andM. A. Nascimento, ‘‘Aggregation converge-
cast scheduling in wireless sensor networks,’’Wireless Netw., vol. 17, no. 2,
pp. 319–335, Feb. 2011.

[38] M. Khan, S. Bashir, and A. Habib, ‘‘Semi round robin pairing and schedul-
ing for uplink virtual multiple input multiple output (VMIMO) communi-
cations,’’ J. Spac. Technol., vol. 4, no. 1, pp. 61–66, Jul. 2014.

[39] D. Li, Q. Zhu, H. Du, and J. Li, ‘‘An improved distributed data aggregation
scheduling in wireless sensor networks,’’ J. Combinat. Optim., vol. 27,
no. 2, pp. 221–240, Feb. 2014.

[40] S. Boulkaboul, D. Djenouri, and N. Badache, ‘‘FDAP: Fast data aggre-
gation protocol in wireless sensor networks,’’ Lect. Notes Comput. Sci.,
vol. 7469, no. 1, pp. 413–423, Jan. 2012.

[41] J. Guo and Z. Zhang, ‘‘Research on location of chain convenience
stores based on machine learning,’’ in Proc. IHMSC, Hangzhou, China,
Aug. 2019, pp. 225–228.

[42] X. Shao, C. Wang, C. Zhao, and J. Gao, ‘‘Traffic shaped network cod-
ing aware routing for wireless sensor networks,’’ IEEE Access, vol. 6,
pp. 71767–71782, 2018.

[43] X. Kong, F. Xia, Z. Ning, A. Rahim, Y. Cai, Z. Gao, and J. Ma, ‘‘Mobility
dataset generation for vehicular social networks based on floating car
data,’’ IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 3874–3886,May 2018.

[44] F. Lyu, N. Cheng, H. Zhou, W. Xu, W. Shi, J. Chen, and M. Li, ‘‘DBCC:
Leveraging link perception for distributed beacon congestion control
in VANETs,’’ IEEE Internet Things J., vol. 5, no. 6, pp. 4237–4249,
Dec. 2018.

CHEN HUANG received the B.Eng. and Ph.D.
degrees in communication and information sys-
tem from the Huazhong University of Science and
Technology, Wuhan, China, in 2005 and 2010,
respectively. He is currently an Associate Profes-
sor with theDepartment of Computer and Informa-
tion Engineering, Hubei University, Wuhan. His
research interests include the Internet of Things,
autonomous driving, machine learning, and big
data analysis in brain–computer interface.

JIANNONG CAO (Fellow, IEEE) received the
B.Sc. degree in computer science from Nanjing
University, China, in 1982, and the M.Sc. and
Ph.D. degrees in computer science from Wash-
ington State University, USA, in 1986 and 1990,
respectively. He is currently a Chair Professor with
the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong. He is also the
Director of the Internet and Mobile Computing
Laboratory, and the University Research Facility

in Big Data Analytics. He has coauthored five books in Mobile Computing
and Wireless Sensor Networks, co-edited nine books, and published over
600 articles in major international journals and conference proceedings.
His research interests include parallel and distributed computing, wireless
networks and mobile computing, big data and cloud computing, pervasive
computing, and fault tolerant computing. He is a Distinguished Member of
ACM and a Senior Member of China Computer Federation (CCF).

SHIHUI WANG received the B.Sc. degree in
computer science fromWuhan University, Wuhan,
China, in 1986, and the M.Sc. degree in soft-
ware engineering from Zhengzhou University,
Zhengzhou, China. He is currently a Professor
with the Department of Computer and Information
Engineering, Hubei University, Wuhan. He is also
the Director of the Education Information Engi-
neering Technology Research Center of Hubei
Province. His research interests include big data

analysis, artificial intelligence, and virtual reality. He is a Senior Member of
China Computer Federation (CCF).

YAN ZHANG received the B.Sc. and M.Sc.
degrees in computer science from Hubei Uni-
versity, Wuhan, China, in 1997 and 2002,
respectively, and the Ph.D. degree in software
engineering from Beihang University, Beijing,
China. He is currently a Professor with the Depart-
ment of Computer and Information Engineering,
Hubei University. He is also the Vice Director
of the Education Information Engineering Tech-
nology Research Center of Hubei Province. His

research interests include information security, big data analysis, and soft-
ware defect detection. He is a Senior Member of China Computer Federation
(CCF).

VOLUME 8, 2020 127003


