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Abstract

Accurate wake model in wind farm layout optimization can help extracting maximum power

generation, minimizing cost of energy and prolonging wind turbines’ lifetime as well. With the

development of different wake models, the wind farm layout optimization results based on the

models should be updated. This paper investigates the performances of four wake models in wind

farm layout optimization using multi-population genetic algorithm (MPGA) with the wind farm

power generation, COST/AEP and wind farm efficiency been reported. Comparison of results

between typical wake models’ performance shows that Jensen’s wake model reported a higher

wind farm power generation and efficiency because it underestimates the velocity deficit in the

wake, and to the contrary, in the Frandsen wake model, the velocity in the wake is underesti-

mated, resulting in a deceased power generation. The expression of 2D_k model shall be out of

work in complicated wind condition. The 2D Jensen–Gaussian wake model performed better in

the wind farm layout optimization using the MPGA program which can be promoted in real-world

wind farm micrositing.
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Introduction

Wind power is already the most competitive renewable technology as well as the most

significant to utilities and independent power producers (IPPs): efficient, reliable, sustain-

able, predictable and cost competitive energy which can meet the current and future elec-

tricity demand (REN21, 2019; Sahu, 2018; Sun et al., 2012). Increased installed capacity in

2017 was 52,573 MW, bringing the global cumulative capacity to 539,581 MW (Dupont

et al., 2018).
However, most operating wind farms cannot produce adequate energy as it was predicted

because the energy harvested will be definitely reduced due to the loss of available kinetic

energy in the wake flow. The discrepancy ranges from 10% in Middelgrunden wind farm to

23% in the Lillgrund wind farm (loss in annual energy production) (Barthelmie et al., 2009;

Wu and Porte-Agel, 2012), which can be attributed to the loss in the availability of energy

due to wake effects – the shading effect of a wind turbine on other wind turbines down-

stream from it (Christiansen and Hasager, 2005). The significance of wind farm layout

optimization which can extract maximum power generation, minimizing cost of energy

(COE) and prolonging wind turbines’ lifetime as well has been widely accepted.
The problem of optimal micrositing of wind turbines in onshore/offshore wind farms has

been widely studied in the existing literature (Sun et al., 2019a, 2019b). It is a highly complex

optimization problem that was first presented by Mosetti et al. (1994), whose research

revealed the evolutionary computational techniques and introduced the earliest method

named Genetic Algorithm (GA). In their study, a 2 km�2 km wind farm is divided into a

square grid with three typical wind cases considered and numerically tested. These typical

cases are used to assess the optimization algorithms in many subsequent papers. Grady et al.

(2005) improved the results by using larger population and more generation of evolution in

GA and also included some improvements in the economic model regarding the work of

Mosetti et al. Kusiak and Song (2010) and Kusiak and Zheng (2010) introduced the Weibull

distribution to describe the incoming wind characteristics instead of individual separated

wind cases, based on which GA with special mutation and selection operators is applied to

optimize the turbine layout within a circular wind farm area. Emami and Noghreh (2010)

introduced a novel coding method that maps the locations within a square wind farm to a

matrix of zeros and ones. Lee and Lam (2008) proposed a Hybrid Distributed Genetic

Algorithm, which is a Distributed Genetic Algorithm (DGA) followed by a heuristic Hill-

Climbing (HC) approach. The DGA divides the population into small demes, which

improves the performance of GA by preserving diversity, and the HC approach is used

to improve the solution of DGA even further. Gao et al. (2016) used a similar variation of

GA, the multi-population GA, to optimize the layout under typical cases. The method was

also applied to a real offshore wind farm in Hong Kong, demonstrating its effectiveness in

handling realistic conditions. Dupont et al. (2018)’s work was devoted to search for the

optimum wind farm layout using binary real-coded genetic algorithm based local search,

gathering robust single wake model with suitable wake interaction modeling. The binary

part of GA was used to represent the location of turbines. Results were compared with

earlier studies using GA and also random search algorithm, and it was shown that the

proposed approach was found to be superior in finding the optimal solution, in which

better configurations with higher power productivity are attained. The attempt for changing

a different wake model in wind farm layout optimization program was conducted by Gao
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et al. in 2016, in which Jensen wake model is replaced by 2D Jensen–Gaussian wake model.
Results in the study are more practical than those in previous studies.

By careful observation, we can find that most of the mentioned researches concentrated
on the algorithm promotion and neglected the accurate wake model selection, and in which
the most widely used wake model is Jensen wake model. However, detailed knowledge of the
flows and turbulence structures within wakes is crucial for the wind farm layout optimum,
and wake model is the theoretical basis in wake numbering checking and wind velocity
calculation for individual wind turbine in wind farm. In recent years, numbers of wake
model were proposed to describe the velocity deficits and turbulence intensity in the turbines
wake with the objective to describe the wake characteristics accurately.

The wake model proposed by Jensen (Bekele and Palm, 2009), also known as the Park
wake model, has been used in the vast majority of studies addressing the wind farm layout
optimal (WFLO) problem and proved to predict the energy loss acceptable within wind
farm. However, this model assumes a linearly expanding wake with a velocity deficit that is
only dependent on the distance behind the rotor and keeps constant in the cross-wind
direction. As mentioned by Katic and Jensen (1986), the purpose of the Jensen model
was not to accurately describe the wind speed in wake area, but to predict the energy content
of the wind farm so as to better estimate the wind farm power generation. However, the
relevant wind tunnel experimental data and the measured data of the wind farm indicate
that the Jensen wake model underestimates the velocity deficit in the far wake region. The
other major limitation of Jensen wake model is an improper constant wake decay parameter
expressed by k through the entire wake flow field. In Jensen’s wake model, the value of k is
0.1; nevertheless, the suggested values of k in the literature are 0.075 for onshore turbines
and 0.05 for the offshore ones (Sanderse, 2009). In fact, the growth of the wake is governed
by many more factors such as shear-generated turbulence and the turbulence created by the
turbine other than the ambient turbulence, which leads to the conclusion that the wake
decay rate should not be a constant but a variable parameter taking the effective wake
turbulence (Politis et al., 2012; Sorensen, 2011; Sumner et al., 2010; Troldborg et al., 2011).

Later, based on the law of earth’s rotation and drag, the Frandsen model was proposed
which adopted the momentum conservation to derive an additional turbulence formula for
the center of wind turbine’s hub height (Frandsen et al., 2006). In this model, the wake
expansion was assumed to be nonlinear, and the velocity distribution was uniform in radial
direction. Frandsen claimed that the model was not for a single wake, but focused on the
wake of the entire wind farm. However, the wind speed in the wake region predicted by this
model is also higher than the measured value. Bastankhah and Porte-Agel (2014) pointed
out that the main reason for this model to underestimate the velocity deficit in the wake
region was that the assumption of nonlinear expansion for the wake region was inconsistent
with the wake expansion curve obtained by large eddy simulation (LES), and the assump-
tion of the “top-hat” shape for the velocity distribution in the wake region was
unreasonable.

Ainslie (1988) firstly announced a two-dimensional (2D) field model which analyzed the
effect of wake meandering on wake deficits by relating wake meandering to the variability in
wind direction, when 2D field models assume axial symmetry in the wakes. Inspired by
Ainslie and the Jensen’s wake model, our team used the Gaussian function to describe the
velocity distribution curve of the wake region, and the wake model was proposed based on
the conservation of mass and the linear expansion of wake (Gao et al., 2016, 2019, 2020).
Compared with the one-dimensional wake model, the newly proposed 2D Jensen–Gaussian
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wake model greatly improves the accuracy of the velocity deficit prediction in the wake
region, and the predicted value is in good agreement with the measured value. However, the
wake expansion coefficient in this model is still determined by the empirical formula pro-
posed by Katic and Jensen (1986). As mentioned above, Jensen assumed that the wake
region was in the turbulent flow zone, at the same time, the local atmospheric turbulence
intensity was not considered and the blade tip vortex generated by the wind turbine was
neglected. The result of the above simplification is to underestimate the influence of turbu-
lence intensity on the wake recovery rate, so the wake model would overestimate the velocity
deficit to some extent. In addition to the 2D Jensen–Gaussian wake model, Tian et al. (2015)
brought out the 2D Jensen wake model with the assumption that the velocity distribution in
the wake region exhibited a cosine function shape. There is no essential difference between
the cosine function and the Gaussian distribution in describing the velocity distribution
curve of the wake region. The most direct difference between the 2D_k Jensen–Gaussian
model and the 2D Jensen–Gaussian model is reflected in the correction of the wake expan-
sion coefficient, which can better predict the turbulence intensity in the wake. Based on the
work of Crespo and Hernández (1996) and Frandsen et al. (2006), a simple empirical engi-
neering model of turbulence intensity in wake area was proposed by Gao et al. (2016), which
made the value of wake expansion coefficient take into account not only the influence of
turbulence intensity of incoming flow, but also the influence of the additional mechanical
turbulence intensity in the wake area. It means that the corrected wake expansion coefficient
K is larger than the value in the 2D wake model. It is well known that strong turbulence
intensity can accelerate the convective diffusion of the wake and the surrounding free flow
and accelerate the recovery of the wake. Therefore, compared with the 2D wake model, the
velocity recovery rate predicted by the 2D_k wake model is faster in the wake region,
especially in the far-wake region.

To validate the performance of different wake models in wind farm layout optimization
program, in this paper, four typical wake models, i.e. the Jensen wake model, the Frandsen
wake model, the 2D_k Jensen wake model, and the 2D Jensen–Gaussian wake model, are
used for the wind turbine layout optimization combined with the multi-population genetic
algorithm (MPGA) optimization method, respectively. The performance of different wake
models are studied and compared. The wake model by which the wind farm layout optimi-
zation program can harvest more power with less COE will be chosen and recommended.
Thus, the second part emphasized on introducing the abovementioned for wake models and
the methodologies, followed by the results and discussion in the third part. Conclusion and
recommendations are given in the last section of this paper.

Materials and methods

Wake model

The mentioned four typical wake models used in the wind farm layout optimization pro-
gram are shown in Table 1. The Jensen and Frandsen wake models are both regarded as
linear models in the description of the velocity deficits in the downwind region of turbines ,
while the Jensen-k and Jensen-Gaussian wake models are two-dimensional models. As it was
reported that the Jensen and Frandsen wake models underestimate the velocity deficits in
the wake, which causes the wind velocity downwind a turbine to be overestimate. The 2D
Jensen-k and Jensen–Gaussian wake models considered the turbulence intensity both inside
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and outside the wake which perform better in the wake characteristics prediction. However,

their performance on wind farm layout optimization should be further discussed.

Models of a wind farm

Wind turbine characteristics and power generation. The same wind turbine with the same prop-

erties parameters will be used in this paper which is exactly the same as those used in the

previous studies (Emami and Noghreh, 2010; Gao et al., 2016; Gonzalez et al., 2010; Grady

et al., 2005; Marmidis et al., 2008; Mosetti et al., 1994; Pookpunt and Ongsakul, 2013;

Table 1. Wake models used in the wind farm layout optimization program.

Wake model Wake radius and velocity distribution in the wake

Jensen (1983)a
rx ¼ kwakex þ ra; ra ¼ rd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2að Þ 1� a

r
; a ¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CT

p� �
u ¼ u0 1� 2a= 1þ kwakex=rað Þ2

h i
Frandsen et al. (2006)b b ¼ 1

2

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CT

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CT

p ; rx ¼ rd bk=2 þ a � s
� �1=k

; s ¼ x

2rd

a ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CT

p
; CT < 1; a ¼ bK=2 1þ 2aðnojÞs

� �k � 1
h i

s�1; aðnojÞ�0:05

u ¼ u0

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

A0

A
CT

r !
a � 0:5

u ¼ u0

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

A0

A
CT

r !
a > 0:5

8>>>>><
>>>>>:
A0 ¼ prd2; A ¼ prx2

2D Jensen-k (Tian

et al., 2015)c
u� ¼ u0 1� 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� CT
p

1þ kwakex=rdð Þ2
" #

; rx ¼ kwakex þ rd

u ¼ u0 � u�ð Þcos p
rx
� r þ p

� �
þ u�

2D Jensen–Gaussian

(Gao et al., 2016)c
rx ¼ kwakex þ ra; ra ¼ rd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� að Þ= 1� 2að Þp

; a ¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CT

p� �
u� ¼ u0 1� 2a= 1þkwakex=rað Þ2

h i
u ¼ u0 � u0 � u�ð Þ 5:16ffiffiffiffiffiffi

2p
p � e�r2=2� rx=2:58ð Þ2

8>><
>>:

ara is the immediately downstream rotor radius of the turbine, a is the axial induction factor and CT is the thrust

coefficient.
bFor Frandsen model, assuming monotonic expansion of the wake for increasing x, the equation has solutions only for

a� 0.5. And k¼ 2 is chosen.
cThe 2D Jensen and 2D Jensen–Gaussian models assume that the wake center is at the location r¼ 0.

Table 2. Wind turbine properties.

Parameters Values

Hub height (Z) 60 m

Rotor radius (rd) 40 m

Thrust coefficient (CT) 0.88
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Tenguria et al., 2010), and are shown in Table 2. The power generation of the turbine can be

calculated using the following equation

P ¼ Cpðk; bÞqAu3=2 (1)

The power coefficient Cpðk; bÞ of WTs is defined as 40% (Christiansen and Hasager,

2005; Grady et al., 2005; Tenguria et al., 2010; Zhang et al., 2011), and the above equation

will be converted to the following equation

P ¼ 1

2
Cpðk; bÞqpR2u3 ¼ 40%� 1:2� p� 202 � u3=2 ¼ 0:3u3 (2)

Cost model. Taking COE into consideration is essential for the purpose of maximizing the

wind energy capture and minimizing the investment. Mosetti et al. (1994) assumed that the

non-dimensionalized cost/year of a single turbine is assumed as “1” and a maximum cost

reduction of 1/3 for each additional turbine. In order to make a comparison of the results

between present and previous researches, the cost model for the entire wind park is selected

the same as previous studies, which can be expressed as the following equation

COST ¼ N� 2

3
þ 1

2
e�0:00174N2

	 

(3)

Meanwhile, a non-dimensional value which represents the COE is introduced in this

paper, which is expressed by the following division formula

f ¼ COST=AEP (4)

AEP represents annual power generation. A minimum of f is one of the objectives of the
optimization program.

Wind farm efficiency. To analyze the fluctuation of power generation caused by wake effect

quantitatively, wind farm efficiency is introduced in this study, which is a percentage of the

total power generation for the entire wind farm taking the wake effect into account and the

total power generation of all the wind turbines at free stream without wake effect between

wind turbines. The efficiency can be given by the equation

gWF ¼
XN
1

0:3� ui
3=N� ð0:3� u0

3Þ (5)

Wind scenarios. The wind scenarios are also the same as those in the past studies, i.e. (a):

uniform wind direction with a wind speed of 12m/s; (b): uniform wind speed of 12m/s and

variable wind directions from 0� to 360�. The wind direction is divided into 36 angles with

equal fraction of occurrence and (c): variable wind speed of 8, 12 and 17m/s and variable

wind directions. The fraction of occurrence for each angle at each wind speed is shown in

Figure 1.
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Optimization methodology

The multi-population genetic algorithm. GA is one of the artificial intelligence algorithms that

are performed to optimize wind farm layout problems inspired from the nature genetic

and evolution mechanisms. Details can be checked in Larsen et al. (1997) and Gao et al.

(2014).

Program design. The initial wind farm condition and wind turbine characters are the same as

those in previous studies. The 2 km� 2 km wind farm is subdivided into a 10� 10 grid, with

a cell size of 100m� 100 m (Grady et al., 2005; MirHassani and Yarahmadi, 2017;

Pookpunt and Ongsakul, 2013; Turner et al., 2014). The turbine can only be installed in

the center of the cell due to the binary coding method of the GAs. However, in Wan et al.

(2010) and Gao et al. (2014), the positions of turbines in a wind farm can be adjusted freely

to reduce wake effects and capture more wind energy. To ensure the operation safety dis-

tance between each turbine, a minimum of 5D distance is required.
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Figure 1. Variable wind direction, variable wind speed of case (c).

Table 3. Initial parameters setting for MPGA.

Parameters Value

Population number 10

Probability of crossover 0.7–0.9

Probability of mutation 0.001–0.05

Number of individual Set by cases

The least keeping generations 500

Binary digits of variable 20
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MATLAB is used for the MPGA program writing. The number of optimization variable

is 2N(X,Y) (Ilinca et al., 2002). Some important parameters for the MPGA program are

shown in Table 3.

Results and discussions

The optimization results of the three cases based on the four referred wake models (Jensen’s,

Frandsen’s, 2D Jensen-k wake model and 2D Jensen–Gaussian wake model) using the

MPGA program are presented and compared to the results of previous studies

(MirHassani and Yarahmadi, 2017; Turner et al., 2014). The performance of these wake

models on wind farm layout optimization can be observed.

Case (a): Constant wind speed of 12m/s with fixed wind direction

For comparison, the micrositing of same numbers of turbine (N¼ 30) using different wake

models is optimized in this study, and the results are compared with those of previous

studies.
Table 4 presents the optimization results of total power generation, wind farm efficiency

as well as the fitness value of turbines’ micrositing in different studies. It can be checked that

Jensen’s wake model is widely used in previous studies. In this study, four wake models are

used in the MPGA optimization process which can provide comprehensive results for the

analysis of the models’ performance. The micrositing of the same numbers of wind turbine

using the same Jensen’s wake model is more effective in our previous studies, which indicates

the superiority of the proposed MPGA program. The wind farm efficiency can reach to

98.67% for 30 turbines’ location been optimized which is higher than those in previous

studies. This has been proved and analyzed in our previous studies (Gao et al., 2014). This

paper is with emphasis on the performance of different wake models in wind farm

optimization.

Table 4. Comparison of results of case (a).

Studies Wake models

Turbine

numbers

Total

power (kW)

f(COST/AEP)
(�10–3) Efficiency (%)

Turner et al.’s (2014) Jensen’s model 30 14,800 – 95.24

Grady et al.’s (2005) 14,310 1.544 92.09

Gonzalez et al.’s (2010) 14,310 1.544 92.09

Tenguria et al.’s (2010) 14,336 1.541 92.18

Pookpunt and

Ongsakul’s (2013)

14,310 1.544 92.02

Wan’s (2010) 15,220 – 97.87

Zhang et al.’s (2011) 14,310 1.544 92.02

Gao et al.’s (2014)

previous study

15,346 1.440 98.67

Present study Frandsen’s model 13,475 1.639 86.65

2D_k model 15,542 1.421 99.94

2D Jensen–Gaussian

model

15,325 1.442 98.55
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After the superiority of the proposed MPGA is validated, the performance comparisons
are conducted. It can be checked from Table 4 that the performances of the referred four
wake models are almost the same. With 30 turbines been optimized, the wind farm efficien-
cies are 98.67%, 86.65%, 99.94% and 98.55%, respectively. The optimized wind farm effi-
ciency based on Frandsen’s wake model is a litter lower than the other three, which is caused
by differences of the velocity calculation method of this model. In general, the power curve
of specific turbine is calculated using the velocity at the turbine’s hub height without con-
sideration of the rotor’s swept area. However, in Frandsen’s model, the velocity in the wake
is calculated using the proportion of the downwind turbine’s rotor area in the wake caused
by the upstream turbines which underestimate the velocity at the hub height and thus, result
in a deceased power generation. On the whole, for the simple wind condition in case (a), with
a constant wind direction and incoming wind speed, the optimization results are excellent
using those wake models, and no great differences are observed between the 1D and 2D
models.

The optimization results of wind turbines’ layout for case (a) of previous and the present
study are shown in Figure 2. In the optimization process, the turbine’s downstream distance
should be large enough to avoid the wake effect between each other when the wind blows at
a fixed direction. As shown in Figure 2, the optimized turbines are installed with more
freedom in the present study using MPGA compared to the layout of the previous studies.
More free distribution means better performance of the wind farm.

Case (b): Constant wind speed of 12m/s with variable wind directions

For the more complicated case (b) with multi-directional wind, different scenarios with
different numbers of wind turbines (N¼ 19, N¼ 30 and N¼ 40) are attempted in the present
study to compare the wake models’ performance as well as with the results of previous
studies. Figure 3 shows some typical optimized configuration results compared with previ-
ous studies. In this case, there is no prevailing wind direction where each angle has an equal
probability of wind fraction of occurrence. It is obvious to observe that the wind turbines
under this specific wind condition prefer to be installed around the outer perimeter of the
wind farm, while few in the center both in previous and present studies. What is more, wind
turbines can be installed anywhere within the wind farm using more dense grids only in the
present study, which can provide more flexibility for the wind turbine installation. More
flexibility means more wind energy capture.

Table 5 shows a comparison of total power generation and wind farm efficiency for each
configuration in different studies. Irrespective of the wake model, in general, the more wind
turbines been installed and optimized within the wind farm, the more power can be
generated.

The optimization results using the 2D_k and 2D Jensen–Gaussian wake model have
lower wind farm power generations and wind farm efficiency compared with that using
Jensen wake model. The reason is that Jensen’s wake model underestimates velocity deficits
in the wake.

Comparing the results of these two 2D wake models, i.e. the 2D_k and 2D Jensen–
Gaussian models, the wind farm efficiencies for N¼ 19, 38, 39 and 40 are 96.14%,
93.78%, 91.94%, 89.20% and 97.42%, 77.83%, 78.47%, 81.88%, respectively.
Superficially, the performance of 2D_k wake model is better than that of 2D Jensen–
Gaussian wake model because more power with higher wind farm efficiency can be
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generated after the layout been optimized using 2D_k wake model. However, by extending

the formulas of the two models shown in Table 1, it is not difficult to find that in the 2D_k

model, the speed of the coda wave is described by a cosine function, which is periodic. It

means that, if the wake expansion in the radial direction is less than the half cycle of the

function, the velocity deficit can be described. Once the wake expansion exceeds the half

cycle along with the downwind distance, the expression shall be out of work. On the con-

trary, no such problem exists in the 2D Jensen–Gaussian wake model. And the optimized

power generation and wind farm efficiency are in accordance with the report that the power

losses caused by wind turbine wakes are of the order of 10%–20% of the total power output

of large wind farms (Barthelmie et al., 2009; Sanderse, 2009).

Case (c): Variable wind speed of 8, 12, 17m/s respectively, with variable wind directions

Case (c) is the most sophisticated wind regime with three different wind speeds and multi-

directional wind which is close to the real situation. To further examine the performance of

the referred four models, different numbers of turbine’s layout optimization are attempted.
As shown in Figure 1, the prevailing wind direction is between the angles of 270� and

360�, from north to south. In order to harvest as much electricity as possible, it is better to

Table 5. Comparison of results of case (b).

Studies

Turbine

numbers

Total

power (kW)

f(COST/AEP)
(�10–3)

Efficiency

(%)

Mosetti et al.’s (1994) Jensen’s model 19 8,711 – 88.44

Turner et al.’s (2014) 19 9,549 – 96.94

39 18,336 – 90.69

Grady et al.’s (2005) 39 17,220 1.567 85.17

Gonzalez et al.’s (2010) 39 18,065 1.490 89.35

Tenguria et al.’s (2010) 38 17,259 1.527 87.61

Pookpunt and Ongsakul’s (2013) 40 18,632 1.476 89.81

Wan’s (2010) 39 17,953 – 88.80

Zhang et al.’s (2011) 39 17,611 1.532 87.11

40 17,991 1.528 86.76

Gao et al.’s (2014) previous study 38 19,075 1.382 96.83

39 19,478 1.382 96.34

40 19,964 1.377 96.23

Present study Frandsen’s model 19 8,953 1.701 90.89

38 16,466 1.601 83.58

39 16,866 1.596 83.42

40 17,382 1.579 83.82

2D_k model 19 9,470 1.683 96.14

38 18,475 1.427 93.78

39 18,588 1.448 91.94

40 18,497 1.486 89.20

2D Jensen–Gaussian

wake model

19 9,596 1.672 97.42

38 15,333 1.756 77.83

39 15,866 1.661 78.47

40 16,979 1.619 81.88

Gao et al. 11
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install the wind turbines along the prevailing wind direction and minimize the wind deficit of
each turbine from upstream turbines. Figure 4 shows some typical optimized layout con-
figurations using different models. Also, small cell size provides more freedom for the wind
turbine installation and improves the performance of the wind farm.

Table 6 shows a comparison of the optimization results in different studies. It can be
observed that more power is captured in the present study using 2D Jensen–Gaussian wake
model by optimizing fewer number of wind turbines (N¼ 15) in which the wake effect can be
avoided by the optimal layout configuration. For example, the total energy harvested is
13,641 kW with 15 WTs in the present study while the value of that is 13,343 kW in Mosetti’s
study and is 13,641 kW in our previous study. It can be concluded that if there are fewer
turbine positions to be optimized, the more accurate the model, the better the optimization
results.

However, when the turbines’ number increases, situation changes. The wake effect is
inevitable, however, an accurate wake model can well predict the lack of wake velocity.
Thus, especially for complex wind condition, optimization based on accurate wake model is
of great significance. With N¼ 39 and 41, the optimized wind farm efficiencies are 70.11%
and 77.27% using 2D Jensen–Gaussian wake model. The 2D_k model which should con-
sider the wake expansion to accommodate with its initial functions’ periodicity is out of
one’s element. No optimal layout configuration has been generated no matter how many
times the program runs.

Compared with case (a) and case (b), the performance of Frandsen’s wake model in this
complicated wind condition is not so bad. The underestimation of the power generation still

Table 6. Comparison of results of case (c).

Studies

Turbine

numbers

Total

power (kW)

f(COST/AEP)
(�10–4)

Efficiency

(%)

Mosetti et al.’s (1994) Jensen’s model 15 13,343 – 93.65

Turner et al.’s (2014) 15 13,494 – 94.71

39 32,453 – 87.61

Grady et al.’s (2005) 39 32,086 8.031 86.62

Gonzalez et al.’s (2010) 39 32,793 8.210 89.38

Tenguria et al.’s (2010) 41 33,262 8.438 86.73

Pookpunt and Ongsakul’s (2013) 46 39,359 7.894 83.83

Wan’s (2010) 39 32,921 – 88.98

Zhang et al.’s (2011) 39 33,553 – 91.45

Gao et al.’s (2014)

previous study

Jensen’s model 39 34,210 7.959 93.24

41 36,281 7.736 94.60

46 39,838 7.795 84.85

Present study Frandsen’s model 15 12,459 10.738 87.45

39 27,635 9.699 74.60

40 28,343 9.700 77.25

2D_k model 39 – – –

41 – – –

46 – – –

2D Jensen–Gaussian

model

15 13,641 9.809 95.74

39 25,970 10.365 70.11

41 30,092 9.327 77.27

Gao et al. 13



persists. The optimal wind farm efficiencies are 87.45%, 74.60% and 77.25% for N¼ 15, 39
and 40, respectively. In conclusion, with complicated and changeable wind condition, the
2D Jensen–Gaussian wake model is recommended.

Conclusions

With the development of different wake models, the wind farm layout optimization results
based on the models should be updated. In this paper, four wake models including Jensen
wake model, Frandsen wake model, 2D_k Jensen wake model and 2D Jensen–Gaussian
wake model are applied in the MPGA program to examine their performance in the WFLO
problem by extracting the maximum total power with a minimum COE. The performance of
different wake in wind farm layout optimization in this paper in three different wind con-
ditions are reported and compared with the previous research results.

• In the simple wind condition in case (a), with a constant wind direction and incoming
wind speed, the optimization results are excellent using those wake models, and no great
differences were observed between the 1D and 2D models.

• In general, for the three cases, Jensen’s wake model reported a higher wind farm power
generation and efficiency because it underestimates the velocity deficit in the wake as it
assumed a linearly expanding wake with a velocity deficit that is only dependent on the
distance behind the rotor and keeps constant in the cross-wind direction.

• Instead, the performances of Frandsen wake models in the three cases are opposite to
that of Jensen’s wake model—lower wind farm power generations and wind farm effi-
ciencies are reported. It is caused by differences of the velocity calculation method of this
model. In general, the power curve of specific turbine is calculated using the velocity at
the turbine’s hub height without consideration of the rotor’s swept area. However, in
Frandsen’s model, the velocity in the wake is calculated using the proportion of the
downwind turbine’s rotor area in the wake caused by the upstream turbines which under-
estimate the velocity at the hub height and thus result in a deceased power generation.

• The two 2D wake models (2D_k Jensen and 2D Jensen–Gaussian wake model) can
predict the velocity profile in the wake more accurately than Jensen’s and Frandsen
wake model. Therefore, the wind turbine layout optimization based on these two
models can report more realistic power generation and wind farm efficiencies with opti-
mal layout configuration. For example, in case (b), the wind farm efficiencies for N¼ 19,
38, 39 and 40 under 2D_k and 2D Jensen–Gaussian models, are 96.14%, 93.78%,
91.94%, 89.20% and 97.42%, 77.83%, 78.47%, 81.88%, respectively, which is in accor-
dance with the report that the power losses caused by wind turbine wakes are of the order
of 10%–20% of the total power output of large wind farms (Barthelmie et al., 2009;
Sanderse, 2009). However, in a more complicated wind condition in case (c), the 2D_k
model results in chaos and the reason is the velocity in the wake is described by the cosine
function, which is a cyclical one. It means that, if the wake expansion in the radial
direction is less than the half cycle of the function, the velocity deficit can be described.
Once the wake expansion exceeds the half cycle along with the downwind distance, the
expression shall be out of work.

According to the comparisons in this paper, the 2D Jensen–Gaussian wake model per-
formed better in the wind farm layout optimization using the MPGA program. The

14 Energy Exploration & Exploitation 0(0)



accuracy of the 2D Jensen–Gaussian wake model in the real-world wind farm should be
demonstrated.
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