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           Abstract  

The process of construction for industrial projects often relies on large mobile cranes to lift heavy 

modules. It is a process involving in-depth engineering analysis in which lift engineers devote 

considerable effort to ensuring the safety and ease of the lifting process by generating lift studies. Due 

to the complexity of the site conditions, the lifting process has inherent uncertainties, and judgments 

are often made intuitively. Over the past decade, visualization has been used to simulate crane lifts in 

order to add certainty and confidence to the engineering plan and to assist in training crews. This paper 

introduces a newly developed heavy lift simulator using game engine which allows the user to 

interactively analyze the lifting process. Compared with 4D visualization, this development adds the 

dimension of real-time interactive simulation, which can be further extended to virtual reality (VR) 

applications in future research. The developed prototype is tested and validated using the case study of 

a heavy industrial project with single-player mode.  
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1. Introduction and Literature Review 

In Alberta, Canada, heavy industrial developments are an important factor in driving the local economy 

due to the rich oil sands reserves. However, the construction process has been challenged low 

productivity due to the harsh climate in Alberta, among other factors. These mega projects are often 

located in remote areas where labour is not readily available. To improve the efficiency of construction, 

the modular construction method has been adopted and has proven to be suitable for fast-paced heavy 

industrial projects. In this paradigm, the entire project is broken down into modules that are 

prefabricated off site and shipped to the site directly for installation, a process which minimizes the 

need for labour and heavy equipment utilization. Construction companies in heavy industrial sector 

have strived to develop day-to-day innovative engineering tools to achieve highly efficient planning 

and logistics for heavy lifting (Hermann et al., 2010a; Lei et al., 2013; Lei et al., 2013; Taghaddos et 

al., 2014). Part of this development has focused on how to make heavy lift planning more efficient, 

given the challenge of lengthy turnaround time for engineering design cycles. Automation has been 

achieved for drafting, engineering planning, and lift visualization (Lei et al., 2016). This paper will 

introduce a recently developed simulator for heavy lifts using a Unity game engine system, which has 

been used for lift validation and safety training purposes. The benefits of this simulation are that it 

allows the users to: (i) interact with the 3D environment; (ii) identify potential lifting hazards and 

perform collision detection; and (iii) simulate the lifting process and find the “ideal” lifting solution; 

and (iv) provide trainings for rigging crews and crane operators. 

 

Crane-related analysis/research is not novel in the construction engineering research field. Efforts have 

been made in recent decades in academia and industry to develop algorithms to improve crane lift design. 

Due to the development of computer technology, these algorithms are programmed into applications to 

achieve automation. In general, crane-related research can be categorized into the following categories: 

(i) crane type and location selection (Hermann et al., 2010a; Huang, Wong and Tam, 2011; Safouhi et 

al., 2011; Lien and Cheng, 2014); (ii) crane path planning and simulation (Reddy and Varghese, 2002; 

Ali, Babu and Varghese, 2005; Chang, Hung and Kang, 2012; Lin et al., 2014); (iii) crane lift 

visualization (Hornaday et al., 1993; Lin et al., 2012; Zhang and Hammad, 2012; Juang, Hung and 

Kang, 2013); and (iv) crane lift engineering design and analysis (Wu et al., 2011; Lin et al., 2012; Hasan 

et al., 2013). From the past research, a trend can be seen that crane lifts increasingly rely on computer-

aided technology for planning and design: from its original 2D plan to 3D lift planning and 4D 

visualization. It is more common in practice that engineering algorithms are embedded into the 

computer system to achieve automated analysis. Engineers prefer a more direct representation rather 

than the static designs of the past. Lift planning is also further assisted with technologies such as lasers 

(Lee et al., 2009; Hwang, 2012). However, in previous work, crane simulations have been pre-

planned/programmed such that the users are not able to interact in real-time with visualizations. This 

limits the users from exploring the potential lifting solutions and understanding the challenges of the 

lifting process. The game engine provides a dynamic environment for crane simulation, meaning that 

the users can control the movement of the crane and walk through the lifting process. This not only 

provides the benefits of validating the engineering planning, but also enhances the user’s understanding 

of the lift. Fig. 1 shows the transition from 2D lift study to real-time crane simulation over time, along 

with computer technology updates. The real-time simulation can be used as a training tool for the crane 

operator, rigging crews and site staff, while examples of such training in construction can be seen for 

both education and crane operator versions: improving safety and avoiding unnecessary jobsite hazards 

(Smith and Trenholme, 2009; Rezazadeh et al., 2011; Goulding et al., 2012; Guo et al., 2012). The 

applications of game technology, Virtual Reality (VR), and Augmented Reality (AR) in construction 

are popular as they provide a direct representation of the project and add value to project coordination 

and planning. The basis for these applications is often CAD models or Building Information Modelling 

(BIM) (Wang et al., 2013). An example of the use of CAD models to achieve VR is given by (Whyte 

et al., 2000). Preconstruction planning can also benefit from VR technology (Waly and Thabet, 2003). 

In industry, there are simulation systems that use 3D visualization. Liebherr, for instance, has 

implemented a crane training system, called LiSIM, for the LB 28 rotary drilling rig and LR1300 

crawler crane (www.lisim.liebherr.com). Another recent work done in this field is called the ITI VR 
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mobile crane simulator, a tool which integrates game engine, VR technology, and controlling hardware 

(https://www.iti.com/vr). Simulation using visualization is increasingly prevalent in construction 

management in general for the purpose of trainings on high-risk construction activities. CM Labs has 

developed a Vortex Studio Platform that can be used for building various simulators. The Vortex Studio 

Platform allows the users to model the component from scratch in order to fully create a construction 

scene (https://www.cm-labs.com/). However, this paper proposes a system that allows multi-player 

interactions during the simulation process, thereby enhancing the simulation process and achieving a 

greater degree of realism. 

 

Figure 1: Progression of crane lift planning system development 

 

As the base for game engine development, BIM has been widely used in construction, from planning 

and design to onsite construction management. Autodesk® tools (e.g., AutoCAD®, Revit®, 3ds Max®) 

have been adopted by builders and designers in industry. Efforts have been made to implement BIM in 

both onsite and offsite construction (e.g., workplace safety analysis, 4D visualization, etc.) (Akinci, 

Fischer and Kunz, 2002; Hu and Zhang, 2011; Nawari, 2012; Zhang et al., 2013). The data-driven 

nature of BIM lays a foundation for game and simulation development, as can be observed in this 

research. We begin with AutoCAD static models from crane lift studies and export them as .fbx files, a 

file format compatible with Unity. These exported files serve as object components in Unity. C# scripts 

are then created to link the model to its physical movements. We also integrated crane lifting capacity 

charts given by the crane manufacturer with the dynamic game system; this allows the users to check 

the lifting capacity during the simulation. Ultimately, clash detection is used to ensure that the users 

understand the potential hazards during the crane lifting process. This research thus explores the 

opportunity to integrate BIM with game engine to achieve dynamic simulation of the lifting process. It 

is believed that a fine data model is necessary in this development, and in the future, we intend to 

explore the potential for VR application in the developed game environment. The ultimate goal of this 

research is to extend existing BIM technology to a more direct and interactive approach to project 

coordination and management. A real case study is provided to demonstrate how the proposed system 

is developed and implemented. 

 

2. System Development 

The development originates from a central SQL database where all the project and engineering data is 

stored. The idea is to provide a central data source for all the engineering planning to facilitate easy 

communication among various parties in the project. From there, applications have been developed 

specifically for onsite crane management: crane location selection and optimization (Hermann et al., 

2010b), lifting sequencing (Taghaddos et al., 2014), 4D animations from macro and micro perspectives 

(Lei et al., 2016), and automated client-oriented lift study CAD system. In the central database, three 

main types of data are stored: (i) the project data: lifting object specifications (e.g., dimensions, weight, 

etc.); (ii) crane data (e.g., crane dimensions, lifting capacity chart, etc.); and (iii) rigging data (e.g., 
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rigging components such as shackles, slings, etc.). The pre-step before this study is the static lift study 

and 3D crane simulation, which create the crane/module/environment models. However, these models 

are not capable of linking to one another to function in a 3D space, which is achieved in the Unity 

environment. 

2.1 Game Engine Development 

The game engine used in this study is Unity®. Unity is a software primarily used in the video game 

industry to develop computer games. Other applications of Unity include mobile apps and website and 

console games. The software has a built-in 3D Physics engine that can help simulate the way objects 

would interact in the real world. With the use of scripting, customizable behaviour, and object control 

can be achieved to suit the need of the application. There are other platforms available for game 

development, (e.g., Unreal®), most of which provide scripts or application program interface (API). 

We select Unity® as the development tool due to its ease to use and large supporting community. As 

shown in Fig. 2, in Unity, the foundation for any development is the scene, which contains other game 

objects. Inside a scene, the environments, obstacles, and objects can be placed by the users. The scene 

serves as a “global environment” that holds all game items inside. The game objects are literally the 

objects in the game environment, and can be 3D/2D physical objects or dummy objects. In this research, 

3D game objects are used in the development. However, these game objects cannot function if 

properties are not assigned to them; once assigned, they become characters in the game environment 

(e.g., tree, light, crane boom). The game objects can interact with one another, or they can themselves 

contain multiple game objects to make themselves nested objects (as described by the 1:N relationship). 

The “properties” that help the game objects function in 3D space are called components. For example, 

the transform component defines the position, rotation, and scale of a game object in the 3D scene. 

Typical components used in our study include: translation, rigid body, script, collider, and joint, as will 

be further elaborated on later in this paper. 

 

 

Figure 2: Unity game engine development structure 

 

In Unity, game objects are the base class for all objects in the scene. A game object can represent any 

real-life 3D entity (e.g., box, tube). In this research, a crane boom, mast, and crawler are each separate 

game objects. They can be grouped together into one parent game object. However, the crane objects 

are not able to move, collide, or interact in any way without containing any components. For a typical 
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crawler crane, the game objects can be defined based on its degrees-of-freedom (DOFs), namely, the 

number of independent parameters to define its configuration in a 3D environment. Fig. 3 shows a 

typical crawler crane’s DOFs and corresponding game objects used in game development. The defined 

DOFs also set the movement types of the crane in the game environment. For other crane types, DOFs 

can be defined differently in implementation. 

 zxDOFs ,,,,   (1) 

where   = rotation of the rigging and lifting module; z = booming up and down;    = rotation of the 

crane superstructure; x = crawler walking forward and backward; and  = hoisting up and down. 

 

 

Figure 3: Degrees-of-Freedom (DOFs) of a typical mobile crane 

 

Components are the defining attributes of each game object that determine the role of the game object 

in the scene. All game objects inherit from a standard object class that contains only the transform 

component: the object’s location, rotation, and scale in a scene. Also, in Unity, any game object can be 

nested within a parent object, and by doing so, its transform components become relative to its 

immediate parent game object. Therefore, the global location of an individual game object would be 

the local position of the object multiplied by the translation matrix of the parent game object. To give a 

generic example, if an object is the child of an object whose location is rotated about the y-axis by 

and translated by a vector of  ],,[ zyx ttt , then the location of the child object globally can be calculated 

using the following homogeneous transform: 
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In the Unity system, the local and global locations of the object can be found using the 

Transform.localPosition and Transform.position properties of the game object class, respectively. Many 

different types of components can be added to a single game object to give different functionalities 

within the scene. For the crane simulation development, some of the key components required are 

outlined as follows: (i) The mesh component is the “skin” of the object and gives the object its form, 



 

 

 

 

CIB World Building Congress 2019 

Hong Kong SAR, China 
17 – 21 June 2019 

(although without a collider component other objects would simply pass through the object). (ii) The 

collider component is used to detect collisions between objects in 3D space. Collider components can 

take on primitive shapes (such as capsule, sphere, or box colliders) or can use the mesh of an object to 

take the exact shape of the object (mesh collider). Unity has a built-in Ray Casting mechanism to check 

collisions, such that reducing the face count of the objects will result in a faster processing time. (iii) 

The rigidbody component makes use of physics simulations such as gravity. This also facilitates the 

functioning of the collider. In order for an entire object to react to forces in the scene, each child game 

object is given a rigidbody component which takes in the mass and other kinematic properties of the 

object. (iv) A joint component is a direct connection between two game objects, specifically the two 

rigidbodies of each game object. These are added to an object to adjust it so that the combined objects’ 

DOFs accurately match those of the desired structure. By modifying the orientation of the pivot of a 

joint component, the axis around which the two objects can rotate with respect to each other can be 

altered.  

 

In addition to the above-mentioned components, scripts components serve as means of controlling game 

objects over short iterations in a way that cannot be achieved using the other components alone (e.g., 

movement, rotation). All scripts inherit from a base class MonoBehaviour. MonoBehaviour contains 

predefined methods that are executed automatically depending on the function of the method. There are 

four main methods of MonoBehaviour as listed in Table 1. When certain events are triggered, an 

object’s behaviour and properties can be programmatically altered as needed in the scene. For example, 

when two objects’ colliders come into contact, an event would be triggered; forces or components can 

be applied to the objects in order to mimic any type of effect, such as an explosion or a fusion of the 

objects, using joints. Using events that can be set to trigger over certain time intervals allows for the 

addition of controls to the game object by checking keys that are pressed. For example, when a keyboard 

key is pressed, the object will respond to the corresponding action such as by booming up or down. 

Scripting is also essential for network management and for controlling the network flow and 

synchronization in the scene. 

Table 1. Sub-classes of Unity Script 

Method Name Function 

Start() Called once at the start of the scene to 

initialize the game environment 

FixedUpdate()/Update() Called over a fixed time interval or over each 

frame to update the configurations of the game 

objects in the game environment 

OnCollisionEnter()/OnCollisionStay()/ 

OnCollisionExit() 

Called when two colliders come into contact, 

are currently in contact, or have separated 

from each other 

OnDestroy() Called once when the scene is terminated 

 

3. Implementation and Case Studies 

The crane lift study is broken down into separate objects that can be imported into Unity as .fbx files. 

The objects include: crane mats, crane boom, hoist cable linking rigging to boom, crane superlift 

attachment, crane crawler, mast and derrick, surrounding environment and obstacles, lifting module, 

and delivery truck. After importing, components are added and the game objects are arranged and 

aligned as needed (a hierarchy is created to link the game objects together). Fig. 4 shows the Unity 

interface with the imported model. The interface contains the edited window and the game play testing 

window (i.e., the field of vision of the camera). The hierarchy defines the game object structure, and, in 

this study, a main game object “crane” is created to include all crane objects: crane crawler track, derrick 

mast, superlift counterweight, rigging, and cables. The rationale here is that, rather than using separate 

scripts to control individual crane objects, a master script can be used to control all sub-objects through 
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the main “crane” object. The hierarchy also defines the DOFs of the crawler crane: the crawler crane 

track is at a higher hierarchical level, as the movement of the crawler track dictates the other crane 

superstructures (e.g., boom, mast) versus the movement of any superstructures, for example boom-up, 

does not trigger the movement of the crawler track. Moreover, all crane objects interact with one another 

through the Unity component Joint. 

 

Figure 4: Unity Interface with Imported 3D Model 

 

The Scripts are used to control crane components through the Joints. In this research, Scripts can be 

categorized as follows: (i) crane movement script, which controls the crane movements; (ii) camera 

control script, which allows the user to move the camera and view the project from difference 

perspectives; and (iii) collision/complete event trigger script, which detects any collisions in the lifting 

process and completes the lifting once the object reaches its set location. Meanwhile, there are two types 

of crane movements—translation and rotation—each of which can be controlled by the 

GameObject.Transform function, a built-in function of Unity API. The GameObject.Transform allows 

the users to access the object’s 3D position, rotation angle, and scale. For example, for the crane crawler, 

forward movement can be controlled through the crawler’s rigidbody (private Rigidbody 
crawlerRB), and, when the KeyCode CrawlerForward is pressed, the updated crawler position can 

be redefined by a Vector3 in FixedUpdate(): 

 
crawlerRB.transform.position = new Vector3 
(crawlerRB.transform.position.x + crawlerObj.transform.forward.x, 
crawlerRB.transform.position.y + crawlerObj.transform.forward.y, 
crawlerRB.transform.position.z + crawlerObj.transform.forward.z); 
 
In addition, during the lifting process, the collision between the crane and the surrounding environment 

is continuously checked through the Collider object. Collider objects can be defined in the Unity 

environment and checked against one another using the void OnCollisionStay(Collision 
collision) function through the game objects’ nametags. 
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3.1 Crane Lifting Simulation in Unity Environment 

In the presented case, a real critical lift is used for testing the developed game engine simulation. As 

shown in Fig. 5, a LR-1600 crane with buggy superlift attachment is used to perform this lift. The total 

weight is 114,017 lb (51.7 Te) (including module load weight, load block weight, rigging weight, and 

auxiliary ball and runner). At maximum radius 115 ft (35.1 m), 88.4% crane capacity is used, given that 

the manufacturer’s chart capacity is 128,970 lb (58.5 Te). As shown in Fig. 5, the module is picked up 

from the delivery truck and swung clock-wise to the set position. The static lift study in Fig. 5 and 6 

does not give a clear understanding of potential collisions between the lifted object and existing 

structures (shaded objects in the figure) at the final set position. In such a case the crane operator and 

other onsite personnel are thus required to “imagine” the trajectory for the lifted module. An elevation 

view is provided to show the potential collision at the final position between the lifted module and the 

surround structures (Fig. 6). However, the elevation view also shows merely a static scene with the 

lifted module at its final set location for the purpose of clearance checking. In Unity, the lifting scenario 

is created as shown in Fig. 7. Through the keyboard control, the user is able to maneuver the lifted 

object to its set location, during which the lifting capacity is checked at each time frame, and collision 

detection is performed (as in Fig. 8, where the lifting radius is 130.65 ft with a lifting capacity of 

30.77%). Once the lifted object reaches its set location (Fig. 9), the Script is triggered and the user is 

signaled that the lift is “Complete”.  

 

Figure 5: Plan view of a critical heavy lift study 

 

 

Figure 6: Elevation view of a critical heavy lift study 
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Figure 7: Lifting scenario in Unity environment 

 

 

Figure 8: Crane lifting module simulation 

 

Figure 9: Crane lifting complete at the module set location 
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4. Conclusions and Future Works 

In this paper, a prototype crane simulator developed using Unity Engine was introduced. The system 

considers the DOFs of the crane and rigging and embeds the lifting capacity. Given that the simulator 

allows the user to control the crane movement, a physics mechanism was implemented to achieve the 

interaction among the rigid bodies of these crane components. Colliders are added to help detect the 

collision and determine the completion status of the lift. In the methodology and implementation, 

algorithms and related API were introduced that other researchers/practitioners can refer to in future 

work or implementation. One case study was provided to validate the proposed method and the 

efficiency of the simulation. The single-player crane operation is presented with the lifting capacity 

calculation and lifting radius during the lift. From the single-player mode, it can be observed that there 

are a few blind spots where the crane operator will have difficulty operating the lift without the 

assistance of signal persons. Although the system is limited in that each lifting scenario requires manual 

setup and adjustment of the model, this can be automated through API codes in the future to reduce the 

human effort in the process of creating the simulation. In addition, this work can be further extended to 

VR to achieve first-person simulation. Existing equipment such as Oculus and Vive can be used for this 

purpose. Also, this research can be applied as a simulation tool to assist construction practitioners in 

training and in improving their onsite safety performance, and same concept can be used in workplace 

safety training. Furthermore, existing path planning/finding algorithms for crane lifting can be easily 

validated and visualized using this research. 
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