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Abstract: Although numerous studies have considered the topological characteristics and the impact
of disruptions in subway systems, their results have not been verified by empirical data. To address
this limitation, we used a data set containing 392 detailed records of disruptions to subway services
in Beijing from 2011 to 2017. The Spearman rank correlation coefficient analysis results indicate that
the delay duration exhibits no significant relationship with the topological characteristics, whereas
the reverse is true for the relationship between the number of affected trains and the topological
characteristics. The results also demonstrate that subway network expansion will not result in a
paradox between convenience and vulnerability from an actual data perspective. Moreover, contrary
to previous research results, no significant relationship was found to exist between service interruption
impact and the transit and key bridge stations. However, a high degree of clustering, characterized
by redundant tracks between neighbours, tends to provide protection against service disruption
for stations. In terms of the spatial variation, the influence of the disruption is greater when the
station is further from the centre of the line. These results can support sustainable design in subway
network planning.

Keywords: topological characteristics; subway network; service disruption; system vulnerability;
sustainability design

1. Introduction

As a safer, greener, faster, and more punctual tool, subways have become a widely accepted means
of public travel [1]. In this paper, a “subway” refers to urban rail transit that has exclusive right of
way—whether on the ground, underground, or elevated—as defined in [2]. In the urban and suburban
areas of Beijing, tens of millions passengers were transported by subway every day in 2018 [3].
The Beijing subway has been continually expanding its network by investing in new stations and lines.
During the study period, there were a total of 14 operation lines, 174 stations, and 370 sections in 2011.
At the end of 2017, there were 20 operation lines, 291 stations, and 658 sections in total. Moreover,
the passenger traffic increased from 2.193 billion in 2011 to 3.778 billion in 2017 [3].

The rapid expansion of the network scale and rapid increase in passenger flow have brought
a series of challenges to efficient subway operation. To minimize costs, subway systems are often
designed to operate at short intervals and to carry passengers close to maximum capacity of trains [4]
with little redundancy. This renders them sensitive to various disruptions [1]. Owing to the typical
complexity of a subway network, when a disruption occurs at one station, it can easily cause knock-on
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delays [4,5] at other related stations. Knock-on delay here refers to that if a train breaks down, this will
cause late on subsequent trains as defined in reference [4]. The dependent subway system will fail or
function at a low-level service [4]. In the first half of 2019, a total of 709 disturbance cases occurred.
There were 1622 trains that were at least 2 min late, as reported by the Beijing Metro network control
centre, Beijing Municipal Commission of Transport, in 2019. The same problems have been reported
in other international cities; for example, in Japan, where the number of subway accidents in Tokyo,
along with the impact of these disruptions on society, has been increasing [6].

It is questionable whether passengers should suffer from the negative impacts of disruptions
while enjoying the high-level commuter services provided by subways. System theory asserts that
the function of a networked system is determined by the system structure [7]. It is challenging to
determine an appropriate optimization strategy which reduces the negative impacts of disruption in a
subway network. This is partly owing to the lack of an effective understanding of the influence of
the network topological attributes on the performance of networked transport systems. Although
numerous studies have suggested that the topological characteristics, such as the degree, betweenness,
and clustering, of stations play an important role in serviceability under disruptions [8,9], their results
have not been verified by empirical data. To fill this research gap, this study aims to explore the
associations between the topological characteristics and disruption impact in a subway network using
service disruption data.

It is often perceived that the topological characteristics of a subway system significantly affect its
resilience under service disruptions [8]. However, perception may not always be the reality. Clarifying
these issues is crucial for at least two reasons: Firstly, it is helpful to improve the serviceability
management level of transportation agencies, in order to improve understanding of the impact of
the network structure on system performance. Secondly, the research results may enable traffic
planners to gain an improved understanding of the different topological structures characteristics of
service reliability. These will subsequently facilitate the development of network strategies to improve
transport services and further enhance system resilience. To the best of our knowledge, this study is the
first of its kind to provide an analysis, using empirical evidence, in order to demonstrate the correlation
between the topological characteristics and extent of damage in a subway network. The remainder
of this paper is organized as follows: In Section 2, a literature review of the impact of topological
characteristics on disruption in general is presented and the drawbacks of the current research are
discussed. The methods employed in the analysis are presented in Section 3. In Section 4, the Beijing
subway is taken as a case study. A complete description of the data, including the service disruption
data set (recorded from 2011 to 2017) and the network structure, which represents the underlying
space in which these disruptions occurred, is presented. In Section 5, the results of the correlation
and regression analyses between the topological characteristics and service disruption impacts are
presented and discussed. The conclusions, along with the implications of our findings and directions
for further research, are outlined in Section 6.

2. Literature Review

In recent years, an increasing number of researchers have used scientific network indicators to
test the serviceability of subway networks [7,10,11]. The impacts of disruption on the serviceability of
subway networks are often quantified by graph theory and complex network indicators, such as a
decrease in the operational efficiency of the subway network following failure of a station or section [7].
In studies relating to transport and territory, the impact is generally measured in terms of accessibility
or serviceability indicators, such as the proportion of delayed passengers [12], the proportion of cut-off

passengers [12,13], or the time loss when passengers select alternative routes that are not optimal [13].
Disruption has been simulated by complete closure of a station or track section [13] which is

passed by several lines with a high degree (an indicator used to measure the number of times a
station is passed by subway lines) [14], high betweenness (an indicator used to measure the role
that a station or section plays as a key bridge in all shortest paths in a network) [12], high closeness
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(an indicator used to measure how easily a station is reached from other stations) [15], and high
clustering (characterized by redundant tracks between neighbours) [9]. Stations passing by more than
three lines have been proven to be not as vulnerable to targeted attacks [14]. This finding contradicted
the results of [9], who demonstrated that stations with high degree and high closeness tend to exhibit
increased vulnerability. Moreover, stations with high betweenness were found to tend to reduce the
impact of service disruption [9]. However, it has been proven that stations with higher betweenness
and degree are more vulnerable to disruptions [14]. Stations with high clustering tend to provide
higher levels of protection against disruptions [9]. Furthermore, the addition of edges to a network can
improve network resilience [2]. Links on the branch, which exhibit limited redundancy, have been
proved to be particularly vulnerable to disruptions [16]. In contrast, stations in the central parts of the
network exhibit lower vulnerability to disruptions.

According to the overall characteristics of network structure, the mass rapid transport (MRT)
network has been proven to be a highly efficient transportation system on a global scale; however,
it is not fault-tolerant [17]. Moreover, it has been found that subway networks provide robustness
against random attacks and are more vulnerable to targeted attacks [18]. When a subway network
is more heterogeneous, it is more vulnerable to targeted attacks [7]. With increasing network size,
a subway network tends to become more clustered while the scaling factor settles at a relatively high
value [10]. A high cluster coefficient and low scale factor are preferable for subway network robustness.
The robustness in the case of disturbance becomes stronger with the network complexity [12,14].
Likewise, the resilience quantified by the connectivity decreases with an increase in the network span,
but increases with the degree of stations [8].

Based on the above literature review, it can be concluded that the existing findings are inconsistent.
These studies were conducted using failure scenarios and numerical simulations, and the multi-platform
characteristics of the transfer stations were always overlooked. Furthermore, these findings have not
been verified using empirical data. The majority of empirical investigations into the impact analysis
under service disruptions within a transportation context has paid little attention to subways [19]. From
an empirical perspective, only the relationship between the transfer station and delay duration has been
analysed [19]. These authors found, by utilizing accelerated failure time hazard models, that the delay
duration was shorter at transfer stations than at non-transfer stations. Although several researchers
have focused on service disruption from an empirical analysis perspective [20–23], they have not paid
attention to the influence of the topological characteristics and the impact of transit service disruptions.
Moreover, the delay duration has been widely used as a quantification tool for the resilience of subway
systems under disruption. However, certain disruptions, such as train malfunctions, have resulted in
the complete closure of stations, although the duration is short. Moreover, in some cases (e.g., track
failure), although the duration is long, the result is lower train speeds in the segment. The results of
a train cancellation are generally larger than that when there is no train cancellation [22]. Therefore,
the delay duration is not an effective indicator to reflect the impact of disruption on transport services.

It can be observed, from the literature review, that the existing studies on public transport
disruption are far from sufficient, in terms of considering topological factors from an empirical
perspective. Therefore, the aim of this study is to verify the relationship between the topological factors
and the impacts of transit service disruption in subway systems on the empirical level.

3. Methods

In order to verify the relationship between topological characteristics and disturbance effects from
an empirical perspective, we selected station and network topological characteristics, which have been
discussed and analysed in most previous studies. Station topological characteristics are the station
degree, clustering, betweenness, and distance from the centre of the line. From the perspective of
the whole network, relevant indices to measure the scale-free and small-world [24] characteristics of
the subway network are scaling factor, clustering of the network, and average minimum path length.
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In this section, the concepts and the measures that can be used to describe these station and subway
network topologies are reviewed. Thereafter, the algorithm is formalized based on these definitions.

3.1. The Degree of a Station

The degree of a station is an indicator which describes the connectivity of a station within a
subway network in L-space. The node degree is defined according to Formula (1), which represents the
number of neighbours that a node has; that is, the higher the degree of the node, the more connected it
is and the more importance it has in the network [7]. The same applies to a subway network:

ki =
∑
j∈N

ai j (1)

where ki is the degree of station i and ai j corresponds to the tracks connected to the station. These tracks
take a value of one if station i has a track leading in or out. If the degree of a station is greater than
four, two or more subway lines pass through the station and it is considered a transfer station. Most
stations with a degree of four or less pass only one line, and are referred to as non-transfer stations;
in rare cases, if a station is the original and destination stop of two non-circular lines, it is also a transfer
station, even though the degree of the station is equal to four.

3.2. The Scaling Factor of a Subway Network

The scaling factor of a subway network is an important indicator for scale-free networks. It is
used to describe the heterogeneity of the station degree distribution in the subway network [18,25].
The degree distribution of a subway network following the drift power law distribution [26] is given by:

p(k) = akb (2)

where p(k) is the proportion of stations with degree k in the network and b is the scaling factor of
the network, which has a negative value; the smaller its absolute value is, the lower the degree of
heterogeneity of the network and more transfer stations exist in the network.

3.3. The Clustering of a Station and Subway Network

Clustering of stations is an indicator which measures the degree of stations clustered together in a
network. In the other words, the station which has higher clustering means that its neighbour stations
can be easily arrived each other because of redundant tracks among neighbourhoods. The clustering
degree is based on triples of stations [27]. Therefore, a triangle graph includes three closed triplets, with
one centred on each node [24]. In an L-space subway network, if there are no direct tracks between any
two stations on the same line, but these can be reached without transfer, this type of station has been
defined as an indirect neighbour in [28]. Therefore, the calculation of the clustering of a station needs
to reflect the variance between the direct and indirect neighbours between two stations in the network:

ci =
2
3

∑
k> j,k∈li, j<li

( 1
ci j

+ 1
cik

+ 1
c jk
) +
∑
li
((Vli − 3)

∑
j∈Vneighbour(i)

1
ci j

+ 1
2
∑

i, j∈li

1
ai j
)

Vneighbour(i)(Vneighbour(i) − 1)
(3)

where li describes the path that station i passes through, the number of track segments connecting any
two stations is denoted by ci j, c jk, Vneighbour(i) is the number of all neighbouring stations of station ii
and the number of stations on line li corresponds to V(li). For detailed explanations and physical
meanings of the transformed clustering, please refer to [28].
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The clustering of a subway network is a common property describing the small-world characteristics
of the network [24]. It is the average of all individual ci. It has been proven that, in a subway network,
the clustering is typically much larger than in a comparable random network:

C =
1
N

∑
ci (4)

where C is the clustering of the whole network (the value of C is between zero to one, the higher the
tighter) and N is the total number of stations in the subway network.

3.4. The Betweenness of a Station

The betweenness of a station is considered as a means of detecting the amount of influence that
the station has in a subway network. It is often used to determine nodes or edges that serve as a bridge
from one part of a graph to another [28]. The betweenness of a station is calculated by the proportion
of the number of shortest paths passing through that station of all of the shortest paths between all
origin–destination pairs in the network [12,29]:

B(i) =
∑
j.k,i

p jk(i)

p jk
(5)

where B(i) is the betweenness of station i, p jk is the total number of shortest paths between stations j
and k in the network, and p jk(i) is used to describe the number of shortest paths between station j and
k that pass through station i. The shortest path in this study is considered with respect to the number of
edges passengers have to traverse to get from one station to another [7]. The distance between stations
j and k is the number of track segments c jk in any route.

3.5. The Distance from the Centre of the Line

The distance from the centre of the line is defined as the number of track segments between a
given station and the line central station, as proposed in [29]. For example, a distance of zero means
that the line central station corresponds to the station under consideration, while a distance of 12 means
that there are 12 track segments from the considered station to the line central station.

4. Case Study

Two types of data were used in the study: data of the transit service disruptions occurring in
the Beijing subway from 2011 to 2017, and data of the evolution of the Beijing subway network from
2011 to 2017.

4.1. Beijing MRT Service Disruption Data

A total of 392 subway transit service disruptions, recorded by the Department of Safety Supervision
of Beijing Subway Limited during the years 2011 to 2017, were used. The delay durations, which are
also referred to as the disruption duration, of all the incidents were more than 5 min from occurrence to
the resumption of normal operation. Subway service disruptions, such as lower speed of trains in the
track segment or longer dwelling times at stations during peak hours, and large disruptions, such as
incomplete or complete closure of a track segment, were all considered as disruptions in this research.
Each disruption case was composed of an incident date and location, as well as a description of the
incident process (from occurrence to normal service). The number of trains cancelled, the number of
trains running late, the number of trains turning back to the depot empty, cause, disruption disposal
measures, and the time at which normal operation was reinstated were described in the incident
process. Normal operation means that all disruptions were cleared up, but not all services ran according
to schedule again. Five examples of the total of 392 disruption records are listed in Table 1.
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Table 1. Five examples of 392 disruption records.

Case No. Date Line Descriptions of the Incident Process

1 18 April 2011 Line 1

At 8:06, the No. 1073 vehicle could not leave Xidan station on time
because the door light could not turn off; at 8:11, the driver asked to
return back to the depot empty; at 8:16, all passengers left the No.
1073 vehicle; at 8:17, the track was cleared up and No. 1073 vehicle
went back to the depot. This disruption caused the cancellation of
9 trains, and 47 trains were delayed more than 5 min.

2 10 August 2011 Airport Line

From 6:00 to 23:59, the upstream waveguide of the T2 station was
broken down. The upstream trains passing the T2 station were
switched to the inter-station automatic blocking mode at a lower
speed. This disruption caused cancellation of 3 trains and 6 trains
delayed more than 1 min.

3 12 July 2014 Line 1

At 7:38, the integrated monitoring system of the power centre
showed that the No. 30 switch of the Dawang road station was
jumped for tripping, causing no power of tracks; at 7:40,
the operator at Dawanglu station was asked to release the No. 30
switch; at 9:34, the No. 30 switch transmission test was successful.
As a result, 2 trains were suspended, 4 trains arrived late (all above
5 min), and 2 trains were adjusted to return to the depot empty.

4 12 September 2014 Line 2

At 7:31, the No. 2034 vehicle needed to open its door in downgrade
mode due to malfunction of train ATP at Changchun street station;
at 7:32, the No. 2034 vehicle was asked to return to the depot in
blocking mode; at 8:05, all passengers were asked to leave the train;
at 8:06, the train left the track and went back to the depot. As a
result, 3 trains were suspended, 12 trains arrived late (2 trains late
by 2 min, another 10 trains late by more than 5 min), and 2 trains
were adjusted to return to the depot empty.

5 23 October 2015 Line 10

At 7:35, because the outbound signal of Caoqiao station was not
open, the trains were asked to operate in telephone blocking instead
of by automatic signals; at 15:42, the signal was recovered. This
incident caused the cancellation of 101 trains, 107 trains delayed
more than 5 min, and 41 trains to return to the depot empty.

Disruption disposal measures vary, according to the cause [19]. For example, for train malfunctions,
such as a stuck door, malfunctioning brakes, or traction faults, the driver is first asked to perform
a recovery operation. If the function cannot be restored, the train is requested to be removed from
service and to return to the depot empty. In this case, the following trains may be able to arrive on time
or slightly late. If the train cannot move by itself, another train nearby will be requested to perform
the rescue operation. When the rescue train arrives at the disruption location, it pulls the faulty train
to the nearest station to clear the passengers, and then returns to the depot. In this case, prior to the
arrival of the rescue train, the following trains must stop to wait for the front tracks to be cleared and
service on the line is temporarily suspended. When the faulty train returns to the depot, the line service
returns to normal, which means that several trains may be late; the accumulation of delays may result
in the cancellation of numerous trains. For signal failure, such as shaft-counting faults in the station
and turnout malfunctions, the train’s movement is requested to follow telephone blocking instead of
automatic signals, at a lower speed. Certain disruptions may last for a long time, such as the power
failure in 2014 that lasted for 116 min, although only eight trains were affected (Case No. 3). However,
although the disruption duration may be very short, the consequences may have long-reaching effects,
such as the train failure in 2011 that lasted for 11 min, but which ultimately caused the cancellation of
nine trains and 47 trains delayed more than 5 min (Case No. 1).

Based on the above description of the disposal measures for disruptions, the service disruption
duration (also referred to as the delay duration) cannot reflect the actual negative effect on the transport
service. It is largely dependent on ability of operators, disposal regulations, types of disruptions,
and so on. However, delayed and cancelled trains—defined as the number of affected trains in this
study—have a serious negative impact on passenger travel. Our aim is to compare the delay duration
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and the number of affected trains, which have relationship with topological characteristic. Accordingly,
our chosen response variables are the delay duration and number of affected trains.

4.2. Beijing Subway Network Structure

The Beijing subway network structure, which is no exception to service disruptions, was expanded
with new lines and stations every year during the study period from 2011 to 2017. These changes in
the network structure affected the station network characteristics. Therefore, according to the time
when the new stations and lines of the Beijing subway were placed into operation and the time when
the disruptions occurred at the stations, a total of seven subway network structures were established
from 2011 to 2017. The suspended relationship between stations under disturbance cannot be reflected
by C-space or R-space [30]. Therefore, the subway network map was established and analysed based
on L-space, with reference to [30]. A straightforward representation of a subway network in the form
of a graph indicates every station as a node, while each edge corresponds to a track between two
stations [2].

In 2011, the network was composed of 14 lines, 174 stations, and 370 tracks (two shared tracks);
in 2017, the network consisted of 20 lines, 291 stations, and 658 tracks. The expansion of the Beijing
subway network structure is illustrated in Figure 1.
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Figure 1. Expansion of the Beijing subway network from 2011 to 2017. Source: The maps were drawn
according to the subway maps from 2011 to 2017 provided by Beijing subway. (a) The Beijing subway
network in 2011. (b) The Beijing subway network in 2012. (c) The Beijing subway network in 2013.
(d) The Beijing subway network in 2014. (e) The Beijing subway network in 2015. (f) The Beijing
subway network in 2016. (g) The Beijing subway network in 2017.

Although the network expansion significantly improved the accessibility of subway stations to
passengers, owing to the increasingly accessible routes (all connected station pairs within the network
were increased from 24,644 in 2011 to 84,390 in 2017), the length of the shortest path also increased,
regardless of whether this calculation was based on the number of transfers or number of stations
passed. The overall evolution characteristics of the Beijing subway network structure from 2011 to
2017 are summarized in Table 2.

Table 3 summarizes four independent variables regarding the complexity characteristics of the
subway stations and two dependent variables regarding the impacts of service disruption based on the
above definitions. As the calculations of the station degree, betweenness, and clustering differ from the
calculation of nodes in social networks, popular complex network analysis software (e.g., Pajeck or
Ucinet) could not be used in this study. Therefore, calculation of the four topological characteristics
of stations was conducted using the subway simulation analysis system known as Urban-metro-cas
(Patent no. CN108897920-A), which was developed in [31].
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Table 2. Evolution of Beijing subway network structure from 2011 to 2017.

2011 2012 2013 2014 2015 2016 2017

Line 14 15 16 17 19 19 20
Station 174 191 224 235 270 281 291
Track 370 406 498 528 606 638 658
All connected pairs 24,644 27,774 50,850 55,460 72,630 78,680 84,390
Max. connected pairs 30,450 36,672 50,850 55,460 72,630 78,680 84,390
Max. transfers 4 4 4 4 4 4 4
Mean min. transfers 1.2201 1.1789 1.4280 1.5618 1.6430 1.5838 1.6216
Mean min. distance 11.3074 10.8013 13.6117 15.2952 15.7431 15.9077 16.3829

Source: Subway line, station, and track data are from the Beijing Municipal Bureau of Statistics, 2019. Public
transport from 1978 to 2018 in Beijing Statistical Yearbook 2019. Other indicators in this table are calculated by the
Urban-metro-cas (Patent no. CN108897920-A) software [31], according to subway maps from 2011 to 2017 provided
by Beijing subway.

Table 3. Variable definitions and descriptions.

Variable Definitions and Descriptions

DependentVariables

Number of affected trains An integer continuous variable equaling the total number of delayed and cancelled trains.

Delay duration An integer continuous variable equaling the duration from the occurrence of disruption to
normal operations resuming (disruption clearing).

Independent Variables
Regarding Station

Degree of station An ordered categorical variable equaling the number of tracks into and out of a station.
Transfer station A dummy variable equaling one if the station is passed by more than one line.

Clustering of stations An integer continuous variable reflecting the tightness of a station, calculated using
Equation (3)

Betweenness of station An integer continuous variable reflecting the criticality of a station as a bridge, calculated
using Equation (5)

Distance to centre of line

An ordered categorical variable reflecting the distance of the station to the centre of the line,
which is categorised into six groups. When the distance is within zero to one track, it is
group 1; two to three tracks is group 2; four to five tracks is group 3; six to seven tracks is
group 4; eight to nine tracks is group 5; and 10 to 13 tracks is group 6.

Independent Variables
Regarding the Whole Network

Scaling factor A negative value. The smaller its absolute value, the lower the degree of heterogeneity of
the network and the more transfer stations in the network.

Clustering of network An integer continuous variable between zero and one, calculated using Equation (4).

Average minimum distance An integer continuous variable, calculated as the average of the number of track segments
between all pairs.

Average minimum transfer An integer continuous variable, calculated as the average of the number of transfers
between all pairs.

4.3. Descriptive Statistics of Data

In this study, there were only seven subway networks. Consequently, the scaling factor, clustering,
average minimum path length, and average minimum transfer describing the characteristics of the
whole network had only seven values, which are listed in Table 4. Their descriptive statistics, with the
exception of four indicators which describe the overall subway network, are also presented.

This analysis is of interest for verifying the hypothesis that the complexity characteristics of the
subway network and the topological characteristics of the subway stations interact to affect number
of affected trains and delay duration. The Pearson correlation coefficient is used to quantify the
relationship level between linearly related variables [32]. Therefore, the variables should be normally
distributed for the Pearson correlation coefficient analysis. The results of the normality test for our data
are presented in Table 5. It can be observed that neither the four independent variables nor the two
dependent variables were normally distributed. The data required for the Spearman rank correlation
coefficient analysis is not as strict as that of the Pearson correlation coefficient [33]. The Spearman
rank correlation coefficient can be used for correlation analysis, regardless of the shape, sample size,
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or overall distribution of the two variables, provided that the observed values of the two variables are
paired rank data or continuous variable observation data for the level of information [34]. Therefore,
the Spearman rank correlation coefficient was used for the correlation analysis in this study. Variable
rank was used, instead of the value itself, which is its position in ascending or descending order of
the value.

Table 4. Descriptive statistics of four independent variables and two dependent variables.

N Minimum Maximum Mean Std. Deviation

Number of affected trains 392 0 223 33.1800 35.4280
Delay duration 392 1 624 53.8300 74.3270

Degree of station 392 2 10 5.0900 2.1100
Transfer station 392 0 1 0.3700 0.4830

Clustering of station 392 0.0017 0.7593 0.2196 0.1124
Betweenness of station 392 0.0000 1.0000 0.3519 0.2765

Distance to centre of line 392 0 13 5.0300 3.0820

Table 5. Normality tests of four independent variables and two dependent variables.

Variable
Kolmogorov–Smirnov a Shapiro–Wilk

Statistic df Sig. Statistic df Sig.

Number of affected trains 0.175 392 0.000 0.713 392 0.000
Delay duration 0.240 392 0.000 0.583 392 0.000

Degree of station 0.340 392 0.000 0.810 392 0.000
Transfer station 0.409 392 0.000 0.610 392 0.000

Clustering of station 0.141 392 0.000 0.891 392 0.000
Betweenness of station 0.102 392 0.000 0.930 392 0.000

Distance to centre of line 0.121 392 0.000 0.962 392 0.000
a Lilliefors significance correction.

5. Results

5.1. Subsection Effects of Complexity of Beijing Subway Network on Disruption Impact

The complex characteristics changed with the evolution of the Beijing subway network from
2011 to 2017. According to Table 6, with increasing network size, the scaling factor of the Beijing
subway network tended to settle to a relatively high value. However, it became less clustered as
the clustering decreased, and both the average minimum distance and average minimum transfer
increased. According to the observation, the average disruption impact, in terms of both the number
of affected trains and delay duration, exhibited no obvious patterns.

Table 6. Changes in scale-free characteristic, small-world characteristic, and disruption impact with
increase in Beijing subway network from 2011 to 2017.

Year

Scale-Free Characteristic
(p(k) = ak b) Small-World Characteristic Average

Disruption Impact

Scaling
Factor SSE R-Square Clustering Average Min.

Transfer
Average Min.

Distance
Number of

Affected Trains
Delay

Duration

2011 −3.077 0.0001881 0.9996 0.3068 1.2119 11.3812 45 45.3333
2012 −3.078 0.0002374 0.9995 0.3114 1.1742 10.8781 54 38.6154
2013 −2.656 0.0009636 0.9975 0.2795 1.4387 13.8952 95 60.7727
2014 −2.53 0.001532 0.9958 0.2757 1.5614 15.4913 70 70.3385
2015 −2.576 0.001203 0.9968 0.2710 1.6430 15.7431 58 49.2222
2016 −2.478 0.001717 0.9952 0.2627 1.5838 15.9077 37 42.7838
2017 −2.501 0.001658 0.9954 0.2671 1.6216 16.3829 33 51.3226
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A bivariate correlation analysis was conducted using the Spearman correlation coefficients to
explore the depth of relationships between the holistic topological characteristics of subway network
and the impact. As the intervals of trains during rush and non-rush hours are different, bivariate
correlation analyses were conducted respectively for rush and non-rush hours. The correlation
relationship results are presented in Table 7. Although the independent variables had high correlation
with each other, the Spearman correlation coefficient test was carried out between any pair of variables.
Therefore, the test results were not affected by multicollinearity. In addition, the purpose of this table is
to understand whether there was any correlation between the topological characteristics of the holistic
network and the average disruption impact on the network. From Table 7, we can see which variable
was related with the disruption impact from a holistic perspective.

Table 7. Correlation relationships between scale-free and small-world characteristics (Spearman
correlation coefficient test).

Holistic Topological
Character

Scaling
Factor

Clustering
Average

Min.
Transfer

Average
Min.

Distance

Rush Hour Non−Rush Hour

Average
Number of

Affected Trains

Average
Delay

Duration

Number of
Affected

Trains

Delay
Duration

Scaling Factor 1 −0.964 ** 0.750 0.929 ** 0.357 0.500 0.857 * −0.393
Clustering 1 −0.857 * −0.964 ** −0.286 −0.286 −0.893 ** 0.321

Average min. transfer 1 0.893 ** 0.429 0.071 0.821 * 0.107
Average min. distance 1 0.464 0.357 0.786 * −0.286

Number of affected trains 1 0.643 1 −0.036
Delay duration 1 1

** Correlation is significant at the 0.01 level (two-tailed); * Correlation is significant at the 0.05 level (two-tailed).

On one hand, the scale-free characteristic (scaling factor) of the network exhibited a strong
correlation with the small-world characteristic (clustering of the network, average minimum transfer,
and average minimum distance). The curves of the related variables are illustrated in Figure 2.
The scaling factor was negatively correlated with the network clustering, but positively correlated
with the shortest path length, in terms of both the average minimum transfer and average minimum
distance. The network clustering was negatively correlated with the shortest path length, in terms of
both the average minimum transfer and average minimum distance. The average minimum transfer
was positively correlated with the average minimum distance.
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On the other hand, there was no significant correlation between average delay duration and the
holistic topological characteristics of both the rush group and the non-rush hour group. However,
the average number of affected trains was correlated both with the scale-free and small-world
holistic topological characteristics of the subway network in the non-rush hour group. Therefore,
the average number of affected trains was positively correlated with scaling factor, average min.
transfer, and average min. distance, but negatively correlated with clustering.

5.2. Correlation of Disruption Impact with Topological Characteristics of Stations

In general, the degree and betweenness of a station tends to increase the service disruption
impacts, while clustering has an opposite effect. However, the distance from the centre of the line is
rarely discussed. To test the hypothesis that a more important station exhibits a higher number of
affected trains or longer delay duration, we further analysed the correlation between the topological
characteristic variables and number of affected trains and delay duration by means of the Spearman
correlation test, as indicated in Table 8. The test was carried out in both the rush hour and non-rush
hour groups. Clustering and distance rejected the null hypothesis when the response variable was
the number of affected trains in both groups. Surprisingly, when the response variable was the delay
duration, none of the four variables exhibited a significant correlation in both groups.

Table 8. Correlation between topological characteristic variables and service disruption impact.

Response
Variables

Non-Rush Hour

Number of Affected Trains Delay Duration

Coefficient Sig. (Two-Tailed) Coefficient Sig. (Two-Tailed)

Degree 0.032 0.675 0.012 0.875
Transfer 0.041 0.585 0.084 0.268

Clustering −0.171 * 0.024 0.013 0.864
Betweenness 0.101 0.183 0.025 0.740

Distance 0.224 ** 0.003 −0.015 0.838

Response
Variables

Rush Hour

Number of Affected Trains Delay Duration

Coefficient Sig. (Two−Tailed) Coefficient Sig. (Two−Tailed)

Degree 0.007 0.916 −0.119 0.075
Transfer −0.095 0.156 −0.069 0.306

Clustering −0.152 * 0.023 0.038 0.570
Betweenness 0.051 0.448 −0.097 0.149

Distance 0.157 * 0.019 0.061 0.367

** Correlation is significant at the 0.01 level (two-tailed); * Correlation is significant at the 0.05 level (two-tailed).

Higher clustering tends to provide protection against service disruption in stations for which the
coefficient is significant at conventional significance levels. By plotting the clustering of stations versus
the number of affected trains (as illustrated in Figure 3), it is easy to observe that the disruptions with
the largest number of affected trains always occurred at stations with a clustering value of less than 0.2.
As the station clustering increased, the number of affected trains became more concentrated around 50,
as indicated in Figure 3. The distribution of the number of affected trains with clustering of less than
0.5 was very discrete; that is, even if a disruption occurred, stations with higher clustering did not
affect the service operations of its neighbouring stations.



Sustainability 2020, 12, 3960 13 of 18

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 18 

concentrated around 50, as indicated in Figure 3. The distribution of the number of affected trains 
with clustering of less than 0.5 was very discrete; that is, even if a disruption occurred, stations with 
higher clustering did not affect the service operations of its neighbouring stations. 

  
(a) (b) 

Figure 3. Scatter plot and linear fit curve of station clustering and number of affected trains. (a) 
Relationship between station clustering and number of affected trains on non-rush hour. (b) 
Relationship between station clustering and number of affected trains on non-rush hour. 

Furthermore, station lines within 16 stations or more than 20 stations can be planned to improve 
the resilience of the subway service under disruptions. This finding is consistent with [8], where it 
was found that networks with a higher diameter are often sparser and contain less redundant 
connections. However, when the diameter is sufficiently large, service disruptions occurring at the 
edge of the network have a limited radiation capacity, which reduces the impact (as illustrated in 
Figure 4). Networks with a larger diameter are often sparser and contain less redundant connections. 
Therefore, the positive relationship between the distance of the station from the centre of the line and 
the number of affected trains under service disruption is demonstrated. However, as transfer stations 
are less likely to appear at the edge of the network, when the network diameter continues to increase, 
the service disruptions occurring at the edge of the network will have a limited radiation capacity, 
thereby reducing the impact. 

 
Figure 4. Violin distribution of number of affected trains ordered by station distance from the centre 
of the line. 

0.0 0.2 0.4 0.6 0.8
-50

0

50

100

150

200

250

N
um

be
r o

f a
ffe

ct
ed

 tr
ai

ns
 (N

on
-ru

sh
 h

ou
r)

Clustering
0.0 0.2 0.4 0.6 0.8

-50

0

50

100

150

200

250

N
um

be
r o

f a
ffe

ct
ed

 tr
ai

ns
 (R

us
h 

ho
ur

)

Clustering

6 
29

14

58

0
10 
36 
20 

68 

1 12

35
24

64

0 
13 
42 
25 

81 

2 
16

45

28

86 

0 
16

46

24

56

3

0-1 2-3 4-5 6-7 8-9 10-13 
-50

0

50

100

150

200

Distance from the center of the line

N
um

be
r o

f a
ffe

ct
ed

 tr
ai

ns
 

 
25%–75%

 

Range within 1.5 IQR

 
Median 

Figure 3. Scatter plot and linear fit curve of station clustering and number of affected trains. (a) Relationship
between station clustering and number of affected trains on non-rush hour. (b) Relationship between
station clustering and number of affected trains on non-rush hour.

Furthermore, station lines within 16 stations or more than 20 stations can be planned to improve
the resilience of the subway service under disruptions. This finding is consistent with [8], where
it was found that networks with a higher diameter are often sparser and contain less redundant
connections. However, when the diameter is sufficiently large, service disruptions occurring at the
edge of the network have a limited radiation capacity, which reduces the impact (as illustrated in
Figure 4). Networks with a larger diameter are often sparser and contain less redundant connections.
Therefore, the positive relationship between the distance of the station from the centre of the line and
the number of affected trains under service disruption is demonstrated. However, as transfer stations
are less likely to appear at the edge of the network, when the network diameter continues to increase,
the service disruptions occurring at the edge of the network will have a limited radiation capacity,
thereby reducing the impact.
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Figure 4. Violin distribution of number of affected trains ordered by station distance from the centre of
the line.
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5.3. Regression Model of Disruption Impact with Topologcial Characteristic of the Station

Accordingly, the response variables—clustering and distance—which were identified as correlated
variables, were considered in the regression model. The dependent variable was the number of
affected trains. Firstly, multicollinearity of two correlated variables was diagnosed, as shown in Table 9.
Variable proportion shows that distance can explain more than 70% of clustering. Additionally, in two
groups, the eigenvalue of the distance variable was close to 0 and the condition index of distance was
bigger than clustering. Therefore, distance was excluded in the following regression analysis.

Table 9. Collinearity Diagnostics.

Group Dimension Eigenvalue Condition Index
Variance Proportions

Constant Clustering Distance

Non-rush
hour group

Constant 20.576 10.000 0.02 0.03 0.03
Clustering 0.350 20.713 0.00 0.28 0.44
Distance 0.074 50.889 0.98 0.70 0.52

Rush hour
group

Constant 20.669 10.000 0.01 0.02 0.03
Clustering 0.277 30.105 0.00 0.27 0.43
Distance 0.054 70.046 0.99 0.71 0.54

Dependent Variable: Number of affected trains.

Logarithmic regression and inverse regression were used for comparison with linear regression.
The results of the three regression models are shown in Table 9. In non-rush hour, clustering and
number of affected trains maintained a linear relation. However, in rush hour, they maintained linear
and logarithmic relations. The R-Square value in the linear model was larger than in the logarithmic
model in the rush hour group. In both groups, the R-Square value was far from 1. The reason for this
is that we only had one variable in the model. The parameter estimate is shown in Table 10 and the
linear fit curve is shown in Figure 3.

Table 10. Regression Model Summary and Parameter Estimates.

Group Equation
Model Summary Parameter Estimates

R-Square F df1 df2 Sig. Constant b1

Non-rush
hour group

Linear 0.045 80.209 1 166 0.005 280.996 −380.390
Logarithmic 0.020 30.502 1 166 0.063 120.128 −50.083

Inverse 0.002 0.315 1 166 0.575 200.819 −0.021

Rush hour
group

Linear 0.049 110.383 1 222 0.001 610.190 −850.967
Logarithmic 0.035 70.933 1 222 0.005 200.373 −130.426

Inverse 0.004 0.998 1 222 0.319 410.834 0.067

Dependent Variable: Number of affected trains. The independent variable is Clustering.

6. Conclusions

In this paper, we presented a correlation analysis of the topological characteristics of a subway
network with number of affected trains and delay duration. In contrast to studies based on simulation
and graph theoretic methods, we used the data of 392 actual service disruptions that occurred in the
Beijing subway network from 2011 to 2017. The Spearman rank correlation coefficient was used to
analyse the correlations among the complex attributes of the holistic network, the complex attributes of
local stations, and the service disruption. This enabled not only clarification of the relationships, but also
an assessment of the possible means of optimizing the planning of subway networks. The information
provided by the research results may aid scholars in identifying the shortcomings of several hypotheses
in theoretical research. Moreover, this information can be provided to aid the preparation of planners
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and managers, in order to mitigate the impact of accidents on the network by planning new routes or
expanding existing routes to reduce vulnerability and critical factors.

From a complex network theory perspective, the evolution of a subway network does not
definitely increase the network complexity while improving its convenience to passengers. Up to 2017,
the main objective of the Beijing subway extension was to expand its coverage areas. At this stage,
the Beijing subway is expanding its network mainly by constructing new stations to the edges along
radial lines, rather than by adding tracks between existing stations to increase the network density.
Nonetheless, the expansion of new stations will generate substantially more non-transfer stations
than transfer stations. An increase in transfer stations may decrease the heterogeneity of the network.
From a mathematical perspective, an increasing scaling factor is demonstrated. The rapid increase
in the number of stations leads to a lack of connectivity between existing stations, which eventually
results in an increasing length of the shortest path of the network and a decrease in the clustering.
This is the reason that the scale-free feature of the network grows, but the small-world feature of the
network does not improve significantly. Only at a later stage, in which the evolution of the network is
based on the construction of tracks to connect old stations, will both the scale-free and small-world
complexity attributes increase simultaneously.

Additionally, although the number of affected trains increases with an increase of the scaling
factor, the negative impact is absorbed by the high clustering characteristic of the subway network.
At a developed stage, in which the network evolves by constructing tracks among old stations, both
the scale-free and small-world complexity attributes increase simultaneously. This means that, if the
subway network is extended by adding tracks between existing stations, the vulnerability caused by
an increase of the scale-free features can be absorbed by improving the small-world features of the
network. These results demonstrate subway network expansion will not result in a paradox between
convenience and vulnerability from an actual data perspective.

Meanwhile, the number of affected trains is a valuable indicator to quantify the relationship with
service delivery level under disruption and topological characterise of MRT network structure than
delay duration, according to our empirical result. This is because of the two dependent variables under
service disruption: only the number of affected trains exhibited correlation with the independent
variables, while the delay duration exhibited no correlation. The service disruption duration cannot
reflect the actual negative effect on the transport service. That is because certain disruptions that last
for a long time may only affect a few trains. However, certain disruptions with very short durations
ultimately cause the delay of more trains. In most transportation-related studies, the delay duration or
delay time-superimposed passenger flow is generally used to quantify the impact of disruptions.

The conclusion of most studies—that subway networks are more vulnerable to targeted attacks
than to random attacks—was not supported by our empirical data from service delivery perspective.
In such studies, targeted attacks were simulated in numerous manners, such as deleting stations
with higher degree, betweenness, or clustering. The results of our empirical analysis demonstrated
no significant relationship between transfer and non-transfer stations. The station betweenness also
showed no significant difference in the number of affected trains. In theoretical studies, the platforms
and tracks of transfer stations were assumed to be unique. This assumption induces the conclusion
that, once an incident occurs at the transfer station, the platform and tracks will be occupied; which
means that all trains planning to pass this station will be affected by travelling at a lower speed or
being cancelled. However, in actual operations, the platforms and tracks are not unique: different lines
occupy different platforms and tracks. An incident on one platform does not necessarily affect the
normal operation of trains on other platforms. Therefore, there was no significant difference in the
number of affected trains at different station degrees. Furthermore, the irrelevancy of transfer stations
serves as a reminder to establish the problem of multi-platform transfer in metro transfer stations
correctly when conducting research based on simulation methods, rather than all lines of a transfer
station sharing the same platform.
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Moreover, the negative correlation between the clustering and number of affected trains indicates
that the impact on the subway service disruption occurring at stations with high clustering was
smaller than that at stations with low clustering. In practice, increasing the construction of tracks
between existing stations can improve the clustering coefficient of the stations. Higher clustering
tends to provide protection against service disruption for stations by means of alternative tracks.
For example, in the Beijing subway network, the airport line has four stations in total: Dongzhimen
station, Sanyuanqiao station, T2 station, and T3 station. Sanyuanqiao station, T2 station, and T3 station
are all connected by tracks, forming a triple. Therefore, the clustering values of T2 and T3 are greater
than 0.6. If a disruption occurs at the T3 station, T2 can be reached directly from Sanyuanqiao station,
thereby providing a highly significant protective effect. Additionally, station lines within 16 stations or
more than 20 stations can be planned to improve the resilience of the subway service under disruptions.
This finding is consistent with [8], that networks with a higher diameter are often sparser and contain
less redundant connections. However, when the diameter is sufficiently large, service disruptions
occurring at the edge of the network have a limited radiation capacity, which will reduce the impact.

Last of all, we want to note several drawbacks of the study. Firstly, using of ‘number of affected
trains’ as indicator for disruption impacts is from transport service delivery perspective. When a
disruption happened, providers of the transport service or manager of transport service can know
how the planned service delivery level is affected by ‘number of affected trains’. The actual passenger
capacity or density of trains is not considered in this indicator. Although we have separated the
analysis into rush hour and non-rush hour group, actual passenger capacity or density of trains may
be different in city centre line and suburban line. How many passengers affected due to disruptions
cannot be known by ‘number of affected trains’. Researchers had used AFC data to evaluate disruption
impact on passengers. On one hand, affected passenger has delay effect and escape effect. The delayed
effect refers to that affected passengers will be reflected on the AFC data after the disruption is over.
The escape effect means that some of affected passengers will leave MRT system and cannot be reflected
by the AFC data. Therefore, if AFC data are to be used as a tool for disruption impact assessment,
the time duration selected for AFC data is very critical, which will directly change results. On the other
hand, even if the appropriate time duration is selected to extract the AFC data, only the number of
passengers actually served can be known. If we want to know how many passengers are affected by
the disruption, simulation method is needed to support the calculation of the number of passengers
that should be provided transport service. Therefore, the results also depend on the accuracy of the
simulation data of passenger flow.

Secondly, the length of shortest path was calculated by the number of transfers and number of
stations passed in this study. This makes the shortest path length between stations will only increase if
adding a new station between existing stations when extend subway network. The Beijing subway
network was not a whole connected in 2011 and 2012. It became a whole connected network till to
2013. Since 2013, there were 30,450 connected pairs existing in those 174 stations. The average shortest
path length of the 30,450 OD pairs was increased from 15.9713 in 2013 to 16.6098 in 2014. That was
because new stations had been added between existing stations. Whereas the reverse is true if the
length of shortest path would calculate the geodesic link length; whilst using link travel times might
increase the shortest path length somewhat if the dwell times result in longer journey times for through
passengers. In the future study, the appropriate way to calculated the shortest path should be used
according to the purpose of the research.

Thirdly, some of disruptions was the result of domino effect of another disruption, while the
domino effect was not considered here. Such a disposition, may let space correlation information be
missed. Therefore, in the future study, the disruptions should be considered as chains or even formulate
into networks. The factors related with spatial, such as geographical, economic, and demographic
attributes and so on should be taken into account when carrying out spatial autocorrelation analysis.
It is really an interesting question whether there are spatial autocorrelation characteristics of subway
disruption incidents.
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From the perspective of prediction analysis, the regression analysis results showed that using only
topological features cannot demonstrate a good interpretation of the disruption impact. Therefore,
in the future, we need to consider not only the topological characteristics, but also the factors from GIS
information, operations, passenger flow, and the cause of disruptions in the regression analysis.
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