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novel microcapsules for internal 
curing of high-performance 
cementitious system
Xiaoyu Shang1 ✉, Baojian Zhan2, Jiangshan Li3 & Rui Zhong4

conventional internal curing materials for high-performance cementitious system cannot easily have 
artificial modifications, such that the curing effect is difficult to control during the process. In this 
study, a novel microcapsule is proposed for controlled internal curing of cement-based materials. 
The microcapsules are synthesized by a double emulsion method to form a polymer shell-water core 
structure. The sensitivity of polymer shell to alkaline environments is used to trigger the release of core 
water. Thus, water release can be controlled by tailoring the shell thickness and microcapsules sizes 
by changing the polymer dosage and stirring rate during synthesis. The experimental results indicate 
that the novel microcapsules can effectively release water for internal curing of a cementitious matrix, 
which exhibits a high curing efficiency in terms of nearly autogenous shrinkage and increases the 
compressive strength. The novel microcapsules could be promising internal curing agents to enhance 
high-performance cement-based materials.

Increasingly high performances of concrete materials are needed to satisfy the ever-increasing requirements of 
infrastructure construction. Currently, the compressive, tensile and flexural strengths of high-performance con-
crete range from 200 to 800 MPa, 25 to 150 MPa and 30 to 141 MPa, respectively1. However, self-desiccation and 
high sensitivity to early-age cracking is an important phenomenon in a high-performance cementitious sys-
tem. Internal curing (IC) has been widely employed to mitigate cracking and shrinkage2–4. Although consider-
able success has been achieved using super absorbent polymers (SAPs)3,4 and pre-wetted lightweight aggregates 
(LWAs)5,6, these materials have some deficiencies that need to be addressed.

•	 Voids or deflects left IC agents, especially for SAPs, decrease the strength of concrete5.
•	 The mixture design must be precisely controlled to compensate absorption/desorption with dry SAPs5.
•	 Excessive rapid water release during initial setting significantly affects the strength and shrinkage of concrete, 

especially when LWAs are used7.
•	 morphology of LAWs and SAP create dispersion problem in cement-based materials8.

In general, it is difficult to modify conventional IC materials, such as LAWs and SAPs, in terms of their absorp-
tion/desorption ability and dispersion in concrete to control curing action7. In practical situations, internal water 
curing is facilitated by small inclusions dispersed in concrete that contain water: this water is retained during 
mixing and up to the setting time and released during cement hydration9. Thus, intelligent materials could be 
used to produce more effective internal curing condition.

Encapsulation is a significant technique in many fields of biology engineering10,11, medicine engineering12, 
cosmetics production13, food engineering14. Microcapsule synthesis has been shown to be feasible for encapsulat-
ing an aqueous phase15,16. External damage to the microcapsules releases core water into a cementitious matrix for 
internal curing. However, the release of curing water in advanced of the final setting of the cementitious matrix 
negatively affects the workability and strength of concrete. If the curing water is released too slowly, autogenous 
shrinkage results4,7. Moreover, the release of water from microcapsules leaves voids in the cement matrix that 
deteriorate its mechanical properties3. In view of this, an alkaline environment is an effective trigger for the 
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release of internal curing water. The sensitivity of synthesized microcapsules to alkaline environment can be 
exploited to spontaneously release curing water. Thus,

it is important to synthesis a kind of intelligent microcapsules that release curing water at an appropriate 
time. This procedure can overcome the drawbacks of current IC agents. Microcapsules have been reported to be 
sensitive to chemical, biological and physical triggers. However, methods for controllably release water are still in 
investigation17. Such methods have promising potential application to cementitious materials.

In this study, a novel microcapsule was synthesized to realize controlled internal curing for cement-based 
materials. A novel emulsions method was used to prepare microcapsules with a water core-polymer shell struc-
ture. The external shell was made of polymethyl methacrylate (PMMA), an alkali-sensitivity material. Swelling 
and rupturing of the shell in saline condition (cement-based materials) triggered the release of water into the 
cementitious matrix. The time of water release was artificially controlled by tailoring the shell thickness and 
dimension of the microcapsules by varying the emulsion process parameters. Figure 1 presents a schematic of 
release mechanism of the microcapsules-matrix system. The microcapsules experienced swelling, rupture, release 
water and dissolving as the cementitious matrix hardening. Controlled release of the core water to the surround-
ings occurred over 5-26 h, where more than 90% of the core water was continuously release in 12 h.

Result
Characteristics of microcapsules. Figure 2(a) shows the OM image of the microcapsules in the water, 
revealing almost spherical particles with smooth surfaces. Figure 2(b) is an image of the cross-section of micro-
capsules, where a cavity can clearly be observed in the centre of the microcapsule, confirming the core-shell 
structure. The average particle size and shell thickness are approximately 116.1 μm and 4.4 μm, respectively. The 
TGA and DTG curves (Fig. 3) were used to determine a weight loss of 55.87% at 100 °C from the evaporation of 
physically filled water inside the microcapsules, that is, the microcapsule core was 55.87% water. The weight losses 
of 41.36% from 100 °C to 400 °C was mainly due to a sudden drop in the weight from 342.62 °C to 391.17 °C form 
the thermal decomposition of the PMMA shell. The result show that the polymer shell showed is more thermo-
stable than the aqueous core. Figure 4 shows the FTIR curves for the microcapsules, the dry microcapsules and 
the PMMA powder. There is no difference between the dry microcapsules and PMMA powder, which indicates 
that the process of double emulsion made no changes to the functional group of the raw materials. The peak in 
the microcapsule spectrum in the 3000–3500 cm−1 range is associated with the OH from the water emulsified 
into microcapsules.

Water release behavior. The water release behaviour was quantitatively monitored by UV-Vis absorbance, 
as shown in Figs. 5(B) and 6(B). Around 5% of methylene-blue (which was used as an indicator for the encap-
sulated water) was quickly released after microcapsules were dispersed in sodium hydroxide solution (pH 13). 

Figure 1. Mechanism of water release from microcapsules into cementitious matrix.
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Such burst release was induced by the difference in the ionic strengths inside and outside the microcapsules18. 
The high sodium hydroxide concentration in the external solution greatly facilitated water permeation through 
the tortuous network in the shell. Once the gradient was quickly disappeared, the dye concentration in the media 
remained relatively stable for 6 hours. In fact, the swelling degree of alkaline-sensitive PMMA increase slowly 
during this period. After 6 hours, this continuous swelling resulted in tiny breaks on PMMA shell, and the grad-
ual release of the dye (with the encapsulated water) form the microcapsules was observed. dye (or encapsulated 

Figure 2. OM image of (a) microcapsules in water and (b) crushed microcapsules after nitrogen freezing. 
Capsule fabrication: polymer dose, 1%; stirring rate, 250 rpm; PVA concentration in outer water phase, 0.5%.

Figure 3. TGA and DTG curves for microcapsules.

Figure 4. FTIR curves for micocapsules.
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water) was observed to be gradually released from microcapsules. The microcapsules released over 90% of the 
core water in 24 h.

The results showed that the water release behaviour depended on the shell thickness and microcapsule size, 
which essentially means that water release behaviour can be controlled by adjusting the shell thickness and size. 
The typical fabrication parameters of the polymer dosage and the stirring rate were varied to produce microcap-
sules with different sizes and shell thicknesses. Figures 5 and 6 show microcapsules fabricated with different pol-
ymer dosage and stirring rate. The Polymer dose is a key factor influencing the shell thickness. Figure 5(A) shows 
SEM images of microcapsules fabricated using different polymer dosages. The shell thickness increases from 
2.36 µm to 14.42 µm as the polymer dosages increases from 1% to 7%. Figure 5(B) shows that the initial water 
release was clearly delayed as the shell thickness increased. Initially, 5% dye was rapidly released. The quantity of 
released dye then remained stable at 25%, where the duration of stable release depended on the shell thickness. 
The duration of the initial rapid release of dye after microcapsules reached the stable level also increased with the 
shell thickness. The stirring rate is a determining factor for the microcapsule size. Figure 6(A) shows that the aver-
age microcapsule size increased from 40.3μm to 115.8μm as the stirring rate was increased from 200 to 300 rpm. 
Figure 6(B) shows that large microcapsules released internal curing water more slowly than small microcapsules, 

Figure 5. (A) SEM images of microcapsules fabricated using different polymer doses: (a) 1%; (b) 3%; (c) 5%; 
and (d) 7%; preparation conditions: stirring rate: 200 rpm, PVA concentration in outer water phase: 0.5%. (B) 
water release time for different microcapsules shell thickness.

Figure 6. (A) OM images and particle size distribution of microcapsules fabricated under different stirring 
rate: (a,b) 200 rpm; (c,d) 300 rpm; preparation conditions: polymer dose: 5%; PVA concentration in outer water 
phase: 0.5%. (B) water release time for different microcapsules shell thickness.
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which could be attributed to the change in the specific surface areas (SSA) with the particle size. Small microcap-
sules with high SSA provide more transport pathway for the release of internal curing water. The water content 
of microcapsules was increased by accelerating stirring. The maximum water content of 74.1% was obtained at 
a 300 rpm stirring rate. More water was emulsified into microcapsules to promote internal curing. These results 
indicate that different shell thicknesses and microcapsules sizes were produced by varying the polymer dosage 
and stirring rate during emulsification. More importantly, the results indicate that water released time can be 
artificially controlled by varying the shell thickness.

Characteristics of microcapsule-mortar system. Figure 7 shows the compressive strength of mortars 
measured at the curing ages of 3, 7 and 28 days. The mortar compressive strength increased with the hydration 
age, regardless of the presence of the water released by the microcapsules. The mortar compressive strength gener-
ally decreased as the quantity of microcapsules increased at the hydration age of 3 days. This result was attributed 
to the cavity structure and low strength of microcapsules. However, after curing for 7 and 28 days, the compres-
sive strength of mortar containing microcapsules became comparable to that of the control mortar, especially 
for the one with 3% internal curing water. The compressive strength of mortar with internal curing water was 
enhanced by 10% over that of the control mortar without internal curing water because the water released by 
microcapsules promoted cement hydration.

The detrimental effect of IC materials with poor mechanical properties on the compressive strength of cement 
paste has been previously reported19. However, these results indicate that this effect could be eliminated by opti-
mizing the structure and content of internal curing agents. Jensen and Hansen reported the water entrainment 
has two opposing effects of water entrainment on strength: spherical macropores in water-entrained cement paste 
deteriorate strength, while improving curing condition20. The strength enhancement may result from more IC 
efficiency. The strength enhancement could also be attributed to the dispersion and dissolution of micropores 
filled with calcium hydroxide5.

The autogenous shrinkage curves are shown in Fig. 8. The autogenous shrinkage of the internally cured sam-
ples was significantly improved over that of the control samples. The autogenous shrinkage almost stopped after 
approximately 24 h. The total autogenous shrinkage was less 40 µε for both internally cured samples. In particular, 
the autogenous shrinkage of the IC-5% sample was nearly zero. The self-desiccation caused by cement hydration 
was fully compensated by the internal curing water released by the microcapsules. Thus, cement composites with 
near zero autogenous shrinkage can be fabricated via internal cuing by microcapsules.

Figure 7. Compressive strength of mortar-microcapsules system at 3, 7 and 28 days.

Figure 8. Autogenous shrinkage for mortar-microcapsules system.
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Figure 9. displays the heat evolution of the mortar-microcapsule system. The main peak height is slight 
reduced upon addition of microcapsules, regardless of whether the core water existing, compared to mortar 
without microcapsules. It means that microcapsules addition reduces the maximum heat release rate from cement 
hydration. The rightward peak shift for IC-3% and IC-5% indicates a slightly delay in the cement hydration from 
the inclusion of microcapsules. Figure 9(b) demonstrates the total hydration heat of the mortar-microcapsules 
system. At the initial time, the hydration heat process is similar for all the mortar-microcapsules systems, 
although the control samples exhibited slightly higher hydration heats than the IC samples. Note that at 42 h, the 
mortar with microcapsules (IC-3% and IC-5%) begin to release higher hydration heat than the control samples 
(Control-0% and Control-5%). This result may indicate that internal water form the microcapsules is beginning 
to participate in the hydration reactions. The internally cured concrete releases a higher amount of hydration heat 
than the control samples, as has been previously reported7,21.

Fluorescence microscope was carried out to identify the status of the microcapsules in the cementitious 
matrix. Figure 10(a) shows that the fluorescent green microcapsules were uniformly distributed in the hardening 
cementitious matrix as a discrete phase of individual particles. The same results were observed in SEM image, 
Fig. 10(b). Thus, microcapsules can be well dispersed in cementitious materials after mixing or vibration. The 
even distribution of microcapsules in a matrix enhances curing of neighbouring matrix with an optimal amount 
of IC water. Fig. 6Ac shows that microcapsules were also evenly dispersed in the water solution without any addi-
tional dispersion method. This result could be attributed to the beneficial morphology, physical and mechanical 
effects of particles with standardized spherical shapes and smooth surfaces. The angularity of SAP particles results 
The angularity of SAPs particles results in an inhomogeneous dispersion, especially for small particle size5. This 
observation may explain why SAP application has not been reported for mass concrete.

A schematic for the mechanism of water release from microcapsules into a cementitious matrix is shown in 
Fig. 1 above. The water release behaviour depends on the swelling and fracture of the polymer shell. The swelling 
degree of a polymer in an alkaline environment is expected to increase with time. A sufficiently large morpholog-
ical change of the polymer shell induces shell rupture, thereby completely releasing the water inside the micro-
capsules within a well-defined time. The mechanism of water release was verified by the SEM images. The SEM 
images in Fig. 10(c) show that the microcapsules were exposed to the cementitious matrix. The appearance and 
propagation of cracks were clearly observed on the surface of the microcapsules, reflecting the process of release 
of the internal water triggered by the saline environment. Figure 10(d) shows the dissolution process after the 
microcapsules fractured and released the internal water.

Discussion
Several parameters affect the efficiency of internal curing, such as the quantity, type and size of particles and the 
water saturation state of the IC agents. However, the recent research indicates that the overriding parameter seems 
to be the internal structure of the IC agents22. Thus, in this study, a novel core-shell microcapsules structure was 
designed for an internal curing system. These novel microcapsules offer three advantages over conventionally 
used IC agents.

Conventional IC materials, especially LWAs with large pores, provide excessive free water to the cementitious 
matrix, which reduces the matrix strength2. The extremely high strength of high-performance concrete results 
from the low water to cement ratio, very low porosities, and extremely small defects in the microstructure. Thus, 
it is of significance to perform internal curing without substantially impacting strength5. In comparison, the 
microcapsule cores effectively encapsulate plenty of water without introducing free water into the matrix at the 
beginning of cement hydration.

The stable organic shell efficiently retains the core water to ensure that each particle is in a SSD condition23. 
The size and dissolution of the microcapsules results in few defects being introduced into the microstructure of 
cementitious system, thereby preventing strength reduction.

Moreover, microcapsules are much smaller than LWAs, with smooth surface and standard sphere, which dis-
tributes curing water more evenly. Bentz and Snyder24 found that cement paste should lie within a sufficiently 
small distance from the internal curing water reservoir so that the internal water could efficiently penetrate. 
Clearly, IC agent with small inter-particle spacing promote internal curing in cement paste. Thus, it is important 
that IC agents are small and evenly distributed. However, small size may result in small pores that hold water 

Figure 9. (a) Heat evolution rate, and (b) total hydration heat; matrix with water/binder = 0.25.
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tightly, reducing efficiency22. Thus, the structure of the IC agents is an important parameter19. Using a different 
mechanism for water release from microcapsules could solve the size issue. The main driving forces in LWAs for 
the migration of internal curing water is the gradient of capillary pressure between a LWA and surrounding paste 
matrix. migration of curing water in microcapsules depends on both the moisture gradient and the degree of shell 
rupture. A high IC efficiency can enhance strength and elimination of autogenous shrinkage.

Finally, microcapsules provide controlled water release over a well-defined time. In previous study, LWA typi-
cally exhibited a low efficiency for high performance concretes25,26. This result mainly resulted from poor porous 
structure and low degree of saturation of the concrete. The release of IC water from LWAs could not be controlled 
and either released too early or too fast. An excessively rapid release of IC water (before final setting) increase the 
total water-to-cement ratio. An excessively slow release of IC water maintains a reservoir of water and does not 
perform internal curing4. Thus, IC water needs to be released at an appropriate time during cement hydration. 
Jensen and Lura27 noted that the absence of method for inducing the water into the particles or ensuring the 
temporally appropriate release of water. In this study, the core-shell microcapsules were used to supply a possible 
pathway. The experimental results indicate that internal water release behaviour can be artificially controlled by 
tailoring the shell thickness and microcapsules size by varying the polymer dosage and stirring rate during emul-
sification. Thus, it can be concluded that the artificially modifiable core-shell structure is critical for the controlled 
release mechanism. Theoretically, water is most available for internal curing when the largest pore is the size of a 
particle2. However, among currently used IC agents, neither LWA nor SAP possess such a pore structure. Thus, in 
addition to optimizing the particle distribution, an IC agent should also be structurally modified to increase the 
IC efficiency. Table 1 is a comparison of physical characteristics and effects of microcapsules, SAPs and LAWs.

In summary, novel microcapsules have been has successfully synthesized for use as an internal curing system. 
These microcapsules were introduced into high-performance cementitious materials and demonstrate to control-
lably release internal water into a saline matrix. This new internal curing system can achieve near zero autogenous 
shrinkage and enhance compressive strength for high performance concrete. The microcapsules eliminate the 
detrimental effect of current IC agents on the compressive strength of cement paste. Moreover, this method can 
deliver other functional materials for high performance concrete. The microcapsule can function as intelligent 
carriers to change rheological behaviour, adjust the heat of cement hydration, for self-healing, for rust resistance. 
The novel microcapsule developed this study exhibit superior characteristics as IC agents, but are more expensive 

Figure 10. (a) Fluorescence image of microcapsules in hardening cementitious matrix for a slice from the 
IC-5% sample with a field of view is 620 mm × 890 mm; (b) SEM image of microcapsules in hardening 
cementitious matrix; (c) SEM image of cracking on microcapsules triggered by cementitious matrix. (d) SEM 
image of dissolved microcapsules in cementitious matrix; microcapsule fabrication: polymer dose, 1%; stirring 
rate, 250 rpm; PVA concentration in outer water phase, 0.5%.
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than LWA or SAB. In fact, this problem also affects the on-site application of some advanced and functional 
concrete materials, including for self-healing28, self-sealing29 and corrosion-resistance30, amongst other uses. 
Fabrication of composites of organic and inorganic materials may provide a feasible means of preparing micro-
capsule, economically. Further study by our research group is underway.

Methods
Fabrication of novel microcapsules. A water-in-oil-in-water (W1/O/W2) double emulsion solvent evap-
oration method was employed to prepare microcapsules with a water core-polymer shell structure12. Initially, 
water containing 0.1% PVA and 0.1% methylene-blue was emulsified with the CH2Cl2 solution containing 1% 
PMMA using a high-performance disperser 16000 HZ for 10 min. The W1/O emulsion was then poured into the 
outer water phase containing 0.5% PVA. The obtained W1/O/W2 emulsion was stirred continuously at 200 rpm 
and a temperature of 35 °C until all the CH2Cl2 evaporated. In this method, PVA was used to stabilize W1/O and 
O/W2 emulsion system. The volume ratios of the oil phase to the inner water phase and outer water phase to the 
oil phase was 5.0. Prior to characterization, the microcapsules obtained in each experiment were collected by 
filtration, washed with water, and dried in a fume hood. Finally, saturated surface dry (SSD) microcapsules were 
obtained with no surface moisture23. These SSD microcapsules were stored in a sealed condition at 4 °C before 
testing. A series of experiments was conducted to study the main factors (including polymer dosage and stirring 
rate) affecting the characteristics of microcapsules. In each experiment, one factor was varied while maintaining 
all the other factors at the designed baseline level. The baseline condition corresponded to the previous men-
tioned procedure. Then, different polymer dosages (1, 3, 5 and 7%) and stirring rates (200 and 300 rpm) were used 
to vary the shell thickness and size of the microcapsules.

Water release behaviour test. To investigate the water release behaviour of microcapsules, methylene-blue 
dye was emulsified into microcapsules. In the primary emulsion(W1/O), 0.1% methylene-blue was added to 
water containing 0.1% PVA and emulsified with a CH2Cl2 solution containing 1% PMMA. A total of 2 g of the 
methylene-blue-dye microcapsules were dispersed in 50 mL of sodium hydroxide solution (pH 13) to simulate 
an alkaline environment for a cementitious matrix. The methylene blue concentration was measured by a UV-Vis 
spectrometer (Shimadzu UV-2600) to evaluate the water release behaviour. The absorbance was recorded every 
15 min until a balance between the interior and exterior of microcapsules was reached, defined as the complete 
release of the dye/IC water.

Characteristics of microcapsules. The morphology of the synthetic microcapsules was observed using an 
optical microscope (Leica MC170 HD) and a scanning electron microscope (SEM, JOEL JCM-6000 Plus). The 
microcapsules were fractured by freezing with liquid nitrogen and then coated with gold. Then, the shell thick-
ness of microcapsules was evaluated by measuring at least 100 individual microcapsules in each SEM image. The 
microcapsule size was measured using a laser diffractometry particle size analyser (Beckman Coulter LS 13 320). 
The thermal stability and water content of microcapsules were characterized by a thermogravimetric analyzer 
(TGA, TA InstrumentsQ500). Approximately 10 mg of microcapsules were heated in a nitrogen atmosphere at 
a rate of 20 °C/min up to 650 °C for complete decomposition. The water content of the microcapsules was deter-
mined as the weight loss below 100 °C.

Characteristics of mortar-microcapsule system. Table 2 shows the four mix proportions that were 
designed to assess the performance of the cement mortars. The water-to-binder ratio and binder-to-sand ratio 
were 0.4 and 1.0, respectively. The autogenous shrinkage of a mortar (D35 × L430mm) was measured by using 
an automated testing system based on the ASTM C1698 method31. The sample length was continuously recorded 
after final setting up to 7days with an interval of 1 min. The compressive strength of mortar-microcapsule 

Category Size Surface Shape Structure
Expansion 
in water

Autogenous 
shrinkage Strength

This study Microcapsule 44.3-115.8 μm Smooth Sphere Core-shell No 95% down 10% up

Justs3 SAP 250 μm (dry) Rough Angularity Solid Yes 82% down 9% down

Sensale24 SAP 45-150 μm (dry) Rough Angularity Solid Yes 43% down 3% down

Sensale24 LWA 1-2 mm Rough Angularity Solid No 57% down 16% down

Zhutovsky22 LWA 2.36-4.75 mm Rough Angularity Solid No 80% down 10% down

Table 1. Comparison of microcapsules with SABs and LWAs.

Cement 
kg/m3

Fly ash 
kg/m3

Sand  
kg/m3

Water 
kg/m3

SP  
kg/m3

Microcapsules 
kg/m3

IC water 
kg/m3

Control_0 954 106 1060 238 8 0 0

Control_5 954 106 957 238 8 55 0

IC_3 954 106 998 238 8 33 18

IC_5 954 106 957 238 8 55 30

Table 2. Proportions of mortar mixtures.
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samples (100 × 100 × 100 mm cubes) was tested at 3, 7 and 28 days by a mechanical testing machine according 
to EN12390-332. The mortar-microcapsule samples were crushed into pieces of appropriate size for fluorescence 
image and SEM observation. An isothermal calorimeter (Calmetrix–I-Cal 8000) was employed to monitor the 
heat evolution of cement paste and the paste-microcapsule system. Each sample contained 30.0 g of Portland 
cement, 7.5 g of water and different weights of microcapsules (0 g, 2.7 g, 1.6 g and 2.7 g). The heat evolution in the 
first 72 hours was recorded continuously.
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