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Abstract: While in-situ estuarine discharge has been correlated and reconstructed well with localized
remotely-sensed data and hydraulic variables since the 1990s, its correlation and reconstruction using
averaged GPS-inferred water storage from satellite gravimetry (i.e., GRACE) at the basin upstream
based on the water balance standardization (WBS) approach remains unexplored. This study aims to
illustrate the WBS approach for reconstructing monthly estuarine discharge (in the form of runoff

(R)) at Mekong River Delta, by correlating the averaged GPS-inferred water storage from GRACE
of the upstream Mekong Basin with the in-situ R at the Mekong River Delta estuary. The resulting
R based on GPS-inferred water storage is comparable to that inferred from GRACE, regardless of
in-situ stations within Mekong River Delta being used for the R reconstruction. The resulting R from
the WBS approach with GPS water storage converted by GRACE mascon solution attains the lowest
normalized root-mean-square error of 0.066, and the highest Pearson correlation coefficient of 0.974
and Nash-Sutcliffe efficiency of 0.950. Regardless of using either GPS-inferred or GRACE-inferred
water storage, the WBS approach shows an increase of 1–4% in accuracy when compared to those
reconstructed from remotely-sensed water balance variables. An external assessment also exhibits
similar accuracies when examining the R estimated at another station location. By comparing the
reconstructed and estimated Rs between the entrance and the estuary mouth, a relative error of 1–4%
is found, which accounts for the remaining effect of tidal backwater on the estimated R. Additional
errors might be caused by the accumulated errors from the proposed approach, the unknown signals
in the remotely-sensed water balance variables, and the variable time shift across different years
between the Mekong Basin at the upstream and the estuary at the downstream.

Keywords: GPS estuarine discharge; water balance standardization

1. Introduction

River freshwater discharge, being expressed in the form of runoff (R) near estuary mouths, is a
significant water balance variable of a river basin [1,2]. It is essential to capture floods and droughts
in river deltas, and to prepare for potential economic losses [3–6]. However, insufficient funding
for facility operation [7] has resulted in a decreasing number of in-situ gauges around the world [8].
Therefore, an approach for estimating river freshwater discharge in an ungauged basin is sought.
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This problem was addressed by using passive remotely-sensed quantities. These quantities,
including hydraulic parameters [9], floodplain [10], vegetation index (e.g., NDVI) [11], and land surface
temperature (LST) [12], have been used immediately to reconstruct the water level or river freshwater
discharge since the 1990s, notwithstanding indirect relations to river freshwater discharge. Besides the
above passive remotely-sensed quantities, active remotely-sensed quantities from satellite altimetry
and gravimetry, have currently been used to reconstruct the water level [13] or river freshwater
discharge [14,15].

Satellite altimetry (e.g., TOPEX/Jason/Envisat) actively records water level variations of lakes,
rivers, and reservoirs [16]. In this way, the observed water level is directly correlated with nearby in-situ
river freshwater discharge time series [14,17]. Its accuracy is, however, significantly lower when land
surface is partly contained in a radar reflected signal [18]. Satellite gravimetry (e.g., Gravity Recovery
and Climate Experiment (GRACE)) infers monthly water storage variations by actively measuring
time-variable gravity changes through distance ranging [19,20]. In fact, water storage presents a direct
functional relationship with river freshwater discharge [21]. More recently, GRACE-inferred water
storage has been correlated very well with the water level [13] and estuarine discharge (in the form of
R) [15]. Its standardized form, it can further improve the correlation and accuracy of the water level
and R reconstruction. This is possible because standardization can minimize certain biases through the
subtraction process, and, hence, sharpens the regional anomalies [22,23].

The global positioning system (GPS) is another space geodetic technique that actively observes
vertical crustal displacement (VCD). Since 2000, GPS VCD has been used to monitor seasonal water
storage variations [24]. More recently, it has also been employed to infer water storage [25,26].
Conversely, the GRACE-inferred water storage can also be converted into vertical surface deformations
(in terms of VCD), being comparable to that measured from GPS [27–29] as verified in South America [30],
Himalayas [31], and the Tibetan Plateau [32]. Given the geophysical interchangeability between water
storage and VCD [26,27], GPS VCD can potentially be regarded as water storage in terms of water
balance context, when a sufficiently dense GPS network exists.

Precipitation (P), evapotranspiration (ET), water storage (S), and R are the four water balance
variables within a hydrological cycle. P, ET, and S can be obtained from Tropical Rainfall Measuring
Mission (TRMM), Moderate Resolution Imaging Spectrometer (MODIS), and GRACE (or indirectly
from GPS), respectively, whereas R can only be indirectly inferred based on the water balance equation
(i.e., R = P− ET − ∆S) [33]. Through the subtraction among the water balance variables, the inferred
R from the water balance equation could be expected to outperform the correlative relationship
between each individual water balance variable and in-situ R, let alone the inferred R from water
balance standardization (WBS). This WBS approach and its corresponding results are the objectives of
this paper.

Mekong Basin, being our study region with a catchment area of ~795,000 km2, is the most
important river basin in Southeast Asia [34] (Figure 1). Freshwater transports from the Northeastern
Tibetan Plateau to Southeast Asian countries and the Mekong River Delta, where it is affected by both
freshwater discharge and ocean tidal backwater seasonally [35,36] in addition to the R adjustment
due to the Tonle Sap Lake prior to transporting to the open ocean [37,38]. Along the main stream,
Lancang River, located in Yunnan, China, is a significant upstream portion of the Mekong Basin that
is climatically driven by an Indian monsoon [39]. Any changes of hydrological conditions upstream
would pose an adverse effect on human beings, particularly involving agricultural and economic losses
downstream [40]. This reason calls for research studies using upstream remotely-sensed observations
for downstream river freshwater discharge estimation [41].
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Figure 1. Indochina Peninsula including Yunnan Province (China) (bounded in grey) covered with
GPS stations (purple triangle) and Mekong Basin (bounded in blue) with in-situ hydrologic stations
(red dot) situated in the basin estuary.

On the other hand, the Mekong Basin is substantially modified by human activities.
Dam construction and operation at the upstream have been issues since the 1990s [42], which alters
the R at the downstream in different seasons [43]. Subsequently, water security becomes a significant
issue among different Southeast Asian nations, especially for the Mekong River Delta where it is
important for the fish supply [44] and water security [45] of Southeast Asia. However, the influence of
dams is not large enough as to alter the flow consistency [46]. Previous studies also indicated that the
influence on the annual change of R of the Mekong River Delta is insignificant [42]. The accumulated
effect of dam operations in the estuary area is almost systematic for a specified month every year [47].
Therefore, the subtraction and standardization process should be able to mitigate the accumulated
bias. Previously mentioned reasons justify a potential use of the WBS approach in the upstream to
reconstruct the downstream R time series located in the estuary.

This study explores the applicability of the GPS VCD at the upstream Mekong Basin employing
the WBS approach for reconstructing the R time series of a gauge station at the Mekong River Delta on a
monthly temporal scale. Based on the reconstructed relationship, the R time series estimated at another
location in the river delta are then compared with an independent in-situ R for an external assessment.
Other remotely-sensed hydrometeorological variables (RSHMVs) from TRMM and MODIS are used as
baselines for direct comparison to show the applicability of the GPS VCD.
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2. Data and Processing Strategies

2.1. Time Series of In-Situ Estuarine Discharge Gauges

The in-situ estuarine discharge data are requested at http://www.mrcmekong.org. To be consistent
with GPS time span, the estuarine discharge time span was extracted for a period between 2012 and
2014. Given the above geographic description, the in-situ estuarine discharge gauge stations should be
chosen to be representative for the whole Mekong Basin, while minimizing the backwater effect due to
ocean tides and the total discharge adjustment effect attributed to Tonle Sap Lake [38].

Tan Chau and Chau Doc stations, ~220 km away from the estuary mouth and located at the
Mekong River Delta entrance, were chosen for reconstructing R in this study (Figure 1). Can Tho
and My Thuan stations, which are the nearest stations before the coastlines, were also employed for
assessing the effect due to backwater on the estimated R time series. To reduce the backwater effect
due to short-period (i.e., half-daily period and daily period) ocean tides, the discharge time series of
Tan Chau and Chau Doc stations (hereafter called the TC-CD station) were summed up. The same
process was conducted for Can Tho and My Thuan stations (hereafter called CT-MT station).

To convert daily estuarine discharge (m3 per sec) into R (mm per month), the daily estuarine
discharge data were added up each month, which was followed by dividing the catchment area of the
basin. No matter which pair of stations (either CT-MT station or TC-CD station), both resulting time
series shared the same fluctuation pattern, despite differences in R peaks and troughs (Figure 2).
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Figure 2. Runoff generated from the sum of My Thuan and Can Tho stations, and the sum of Tan Chau
and Chau Doc stations.

2.2. Remotely-Sensed Water Balance Variables

Except for the indirectly determined runoff R, other water balance variables (P, ET, and S) can be
determined, respectively, from TRMM, MODIS, and GRACE, as mentioned above. To be consistent
with the GPS time span, these water balance variables from 2012 to 2014 were used.

TRMM measured P (hereinafter called TRMM-P) with a global coverage bounded between 50◦ N
to 50◦ S [48]. We used monthly gridded P data (TRMM 3B43 version 7) with a 0.25◦ × 0.25◦ spatial
resolution available at https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_V7/summary. These TRMM
data were generated from calibration using all precipitation gauges around the world [49].

MODIS measured and inferred a wide variety of environmental variables, including ET (hereinafter
called MODIS-ET). We used the gridded ET data (MOD16A2) that covers an area from 80◦ N to 60◦

S with a 0.5◦ × 0.5◦ spatial resolution. This dataset, calculated by an improved algorithm using
Penman–Monteith equation [50], is made available by the Numerical Terradynamic Simulation Group

http://www.mrcmekong.org
https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_V7/summary
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in the University of Montana (http://www.ntsg.umt.edu/project/modis/). TRMM-P and MODIS-ET are
generalized as remotely-sensed hydrometeorological variables (RSHMV) in this study.

GRACE measured time-variable gravity, and, thereby, inferred global S (hereinafter called
GRACE-S). The Center for Space Research (CSR) Release-06 (RL06) and its RL06-mascon solution
were employed because the above two solutions were developed by two different data pre-processing
techniques for their consistency to be validated from the resulting R reconstruction. Because the monthly
mascon solution was developed via Tikhonov regularization on regular spatial grids [51], the monthly
RL06-mascon solution can directly be used (http://www2.csr.utexas.edu/grace/RL06_mascons.html).
However, the monthly RL06 solution are expanded to 60◦ (equivalent to a spatial resolution of 3◦) in
the form of spherical harmonic coefficients representing the mass changes (http://www2.csr.utexas.edu/

grace/RL06.html). Therefore, post-processing steps are required for the monthly RL06 solution prior to
their use. These steps include adding degree-1 term with measured geocenter time series generated
from Satellite Laser Ranging [52], and replacing C20 term in the spherical harmonic coefficient to
improve the second zonal coefficient, respectively [53]. De-striping and 350-km radius Gaussian
filtering (hereinafter called RL06-G350) are then applied to attenuate spatially correlated errors [54].
The monthly S time series (in terms of Equivalent Water Height at a regular grid) are calculated using
Equation (14) in Reference [55], which is divided by the water density.

2.3. Data Processing for GPS-Determined VCD and its Conversion into Water Storage (S)

We used GAMIT version 10.4 [56] to preprocess 33 GPS stations’ raw observations in the upstream
Mekong Basin to determine daily VCD time series from 2012 to 2014, provided by Crustal Movement
Observation Network of China. We employed a network solution that is stochastically constrained to
24 IGS stations surrounding China (i.e., posing 5-cm standard error in 3D positioning) in which the
IGS stations are in ITRF2008 coordinate reference frame.

Standard procedures were applied during the GPS pre-processing steps. For instance, the antenna
offsets were corrected by the IGS provided antenna correction data files and the non-tidal atmospheric
loading was removed by using the MIT correction data files. The orbits were constrained to the final
precise ephemeris of IGS. The ionospheric delay was corrected up to the third-order term by choosing
options in GAMIT. The tropospheric delay was corrected by the combination of the Vienna mapping
function 1 and the global pressure and temperature model [57]. Earth Orientation Parameters were set
to a priori values, and the solid Earth tide and pole tide were corrected, according to the International
Earth and Rotation Service (IERS) Bulletin B standard [58]. The ocean tide loading was removed by
choosing the FES2004 model option in GAMIT. Lastly, the daily GPS VCD time series, being a time
series of relative height positions, were determined by subtracting the height from its average.

During the post-processing steps, the non-tidal ocean loading in the GPS VCD time series was
corrected externally by the modeled non-tidal ocean loading displacement from a Global Geophysical
Fluid Center (http://geophy.uni.lu/). Gross errors exceeding twice the standard deviation were
removed. To suppress the signal aliasing and draconitic errors (e.g., ~351 days [59,60]) in the seasonal
signal, we applied a spectral filtering in the frequency domain via Fast Fourier Transform technique.
Apparently, the first peak (i.e., 1 cycle per year) was recovered (Figure 3). We also observed that the
peaks and troughs of the GPS time series were reduced after inversely transforming the filtered GPS
spectra back into their respective time series. To be consistent with other monthly data, the daily GPS
VCD time series were averaged to form the VCD on a monthly scale.

http://www.ntsg.umt.edu/project/modis/
http://www2.csr.utexas.edu/grace/RL06_mascons.html
http://www2.csr.utexas.edu/grace/RL06.html
http://www2.csr.utexas.edu/grace/RL06.html
http://geophy.uni.lu/
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In principle, the time-varying VCD of each GPS station location is due to all neighboring S
contributions [61]. Therefore, the gridded GRACE-S data near the single GPS station location should
be acquired to conduct a spatially-weighted averaging process with respect to that single GPS station
location. In this study, we set a search area within 3◦ for a number of i gridded GRACE-S data with
respect to each GPS station location g. This spatially-weighted averaging for N number of gridded
GRACE-S at the GPS station g, denoted as Sg, is achieved by the following equation.

Sg =

N∑
i=1

wi · Si

N∑
i=1

wi

(1)

where

wi = exp
(
−

di
D

)
(2)

serves as a weighting factor according to each distance di, with respect to the station g, with a spatial
scale D set to 3◦ due to the previously mentioned spatial resolution of GRACE data and allowance for
including the hydrological loading effect farther than 3◦.

In essence, GPS VCD is related to S elastically in a linear fashion [62], which can be expressed as

(Sg)t = α ·VCDt + β (3)

Therefore, by a simple linear fitting with a slope α, and an offset β at the same time epoch t,
the parameters α and β can be determined via least-squares solution in order to convert VCD into
S. Note that α should be a negative value because S loads (unloads) the crust that yields the VCD
downward (upward).
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Only averaged GRACE-S fitted at the GPS station g with a Pearson correlation coefficient (i.e.,
Equation (7)) higher than 0.8 were used to calculate the mean α and β (Table 1). Given the criterion,
GRACE CSR RL06-mascon fitted at five GPS stations (i.e., KMIN, SCMB, YNGM, YNWS, and YNYL)
are excluded to calculate the mean α and β. Meanwhile, GRACE CSR RL06-G350 fitted at nine GPS
stations (i.e., GZSC, KMIN, SCMB, SCYX, YNGM, YNLA, YNWS, YNXP, and YNYL) were excluded.
We then used respective values α and β to convert all VCD into averaged S time series for the entire
preset square bounding Yunnan Province (Figure 1).

Table 1. Determined average slope α and offset β along with their respective uncertainties for converting
GPS VCD into water storage.

GPS S ¯
α (/mon)

¯
β (mm/mon)

RL06-G350 −8.4453 ± 0.7394 14.6906 ± 5.6426
RL06-mascon −10.6587 ± 0.8392 6.4034 ± 6.2864

3. Methodology

3.1. Reconstruction Based on Correlation and Water Balance Standardization

Each of the previously mentioned time series of remotely-sensed water balance variables within a
preset square bounding Yunnan Province were averaged and smoothed before the correlation analysis.
Employing the traditional practice in remote sensing, the R reconstruction is conducted by directly
correlating the remotely-sensed water balance variables with the in-situ R via a simple linear model
(i.e., an offset c and a slope d), which is expressed as:

yt = c + dxt (4)

where yt and xt are, respectively, the in-situ R and individual remotely-sensed water balance variable at
month t. Note that a forward two-month shift for TRMM-P and MODIS-ET data was applied because
this procedure yielded the highest correlation, which is attributable to hysteretic properties of the
hydrological process [21]. The parameters, c and d, are empirically determined via a least-squares
solution in which the determined parameters are then employed to reconstruct R using individual
time series of the remotely-sensed water balance variables.

Figure 4 visualizes all the time series, including GPS-derived S (hereinafter called GPS-S) from
CSR RL06 with 350-km Gaussian filtering and its mascon solution from 2012 to 2014. Similar temporal
fluctuations with the in-situ R are observed. However, variable time shift across different years is
detected for the upstream averaged GRACE-S when compared to the in-situ R (Figure 4). We speculate
that the climatic variability across different geographic zones of the entire Mekong Basin causes the
spatial differences in the water storage every year [63,64]. The water storage from GRACE RL06
solution displays a slightly smaller amplitude than that of mascon solution. This is because 350-km
radius Gaussian filtering was applied to RL06 solution that attenuated regional signals, while the
time-variable regularization matrix was employed to solve for the mascon solution via Tikhonov
regularization, which would not attenuate the regional signals [51]. The GPS-S exhibits a slower
downward trend against the in-situ R from January to April 2014. This might be because GPS is a
ground-observed technique that is more sensitive to local events or changes in water storage [26].
Overall, all individual time series of the remotely-sensed water balance variables, including GPS-S
with 350-km Gaussian filtering and its mascon solution, exhibit similar temporal patterns allowing the
direct use of Equation (4) for the R reconstruction, referred to as “reconstructed Rs”.
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Figure 4. In-situ runoff time series compared to averaged (a,b) remotely-sensed precipitation (TRMM-P)
and evapotranspiration (MODIS-ET), (c,d) GRACE water storage (GRACE-S) from CSR RL06 with a
350-km Gaussian Filtering (G350) and its mascon solution, and (e,f) GPS-inferred water storage (GPS-S)
from CSR RL06 with a 350-km Gaussian Filtering (G350) and its mascon solution at Can Tho and My
Thuan (CT-MT) station.

For the correlation procedures of the WBS approach in this study, the in-situ R are standardized
and correlated with the WBS of R. The standardization of the in-situ R, sR j,k, is calculated as

sR j,k =
R j,k −med(Rk)

sk
, (5)

where R j,k is the in-situ R, med(Rk) is the median of the in-situ R, and sk is the standard error of the
in-situ R for month k and year j. Equation (5) is also applied to the WBS of R, where R is derived by
subtracting ET and S from P as

R j,k = P j,k − ET j,k − ∆S j,k , (6)

when calculating corresponding standardization. Note that ∆S j,k is the difference between month k + 1
and k of year j of GRACE-S (or GPS-S). Equation (4) was further employed to empirically determine
the corresponding c and d between the standardization of the in-situ R and the R from the WBS.
This procedure allows the determination of the reconstructed Rs based on the WBS approach.

Note that the reconstructed Rs that are directly used to compare against the utilized in-situ
R time series using performance indicators illustrated in the next sub-section refers to the internal
performance. The subsequent usage of the determined parameters for the Rs estimated at another
locations with independent in-situ R time series in the river delta refers to estimated Rs. The estimated
Rs are then compared against the independent in-situ R time series that refers to external performance.
Both performance assessments examine the feasibility of our presented methodology.

3.2. Performance Indicators

The reconstructed and estimated Rs are assessed based on the utilized and independent in-situ R,
respectively, by using the following three performance indicators.
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Pearson correlation coefficient (PCC), being a measure between two variables ranging from
negative one to positive one, is defined by the equation below.

PCC =

1
N

∑N
i=1

(
R0(i) −R0

)(
Rm(i) −Rm

)
√

1
N

∑N
i=1

(
R0(i) −R0

)2
√

1
N

∑N
i=1

(
Rm(i) −Rm

)2
(7)

Normalized root-mean-square error (NRMSE), being a measure of RMSE normalized by the
maximum ranges of observations, is a relative accuracy indicator defined by the formula below.

NRMSE =

√
1
N

∑N
i=1(Rm(i) −R0(i))

2

max(R0) −min(R0)
(8)

The Nash-Sutcliffe efficiency (NSE) model coefficient [65], being an indicator to evaluate the
efficiency gain of the estimated R against the in-situ R time series, ranges from negative infinity to
one. The closer the NSE value to one, the better the efficiency of the estimated R. It is defined by the
equation below.

NSE = 1−

∑N
i=1(Rm(i) −R0(i))

2∑N
i=1

(
Rm(i) −R0

)2 (9)

where R0(i) and Rm(i) represent the in-situ and (estimated or reconstructed) Rs for each month i,
R0 and Rm are the average values of R0 and Rm, and max(R0) and min(R0) are the in-situ maximum
and minimum of R0, respectively.

4. Results and Evaluation

In this section, we examined internal and external performances of the reconstructed and estimated
Rs generated from TRMM-P, MODIS-ET, GRACE-S, GPS-S, and the WBS approach using GRACE-S
and GPS-S. Note that the CT-MT station is 120–150 km closer to the estuary mouth than the TC-CD
station. The combined internal and external performance assessments of both station pairs could help
quantify the remaining portion of a systematic ocean tidal backwater effect on both the reconstructed
and estimated Rs because the time series of R of each station pair have been summed up to mitigate
the ocean tidal effect.

The reconstructed Rs from the TRMM-P, MODIS-ET, GRACE-S, and GPS-S display similar
temporal pattern of in-situ R, despite slight discrepancies observed in peaks and troughs (Figure 5).
The reconstructed R from TRMM-P appears to be the best because the in-situ R should be highly
dependent on precipitation, as displayed in the performance indicators (Table 2).

Compared with the above reconstructed Rs from the TRMM-P, MODIS-ET, GRACE-S, and GPS-S,
the reconstructed Rs based on the WBS approach using the GRACE-S and GPS-S achieve better results
(Figure 6). In particular, the discrepancy in peaks and troughs are reduced regardless of reconstruction
based on GRACE-S and GPS-S (Figure 6). The WBS approach is based on the principle of water balance
(i.e., Equation (6)). The systematic errors in the remotely-sensed water balance variables cancel each
other through subtraction among themselves, let alone in the standardization in Equation (5). Hence,
the reconstructed R from the WBS approach yields the best performance among all reconstructions in
the study region. In general, all the estimated Rs are slightly less accurate than the reconstructed Rs
(Tables 2 and 3), whereas the relative ranking of their performances also remains the same, no matter
whether reconstructed at either CT-MT or TC-CD station.
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Figure 5. Reconstructed runoff based on remotely-sensed (a) precipitation (TRMM-P),
(b) evapotranspiration (MODIS-ET), (c) water storage (GRACE-S), and (d) GPS-inferred water storage
(GPS-S) with a 350-km Gaussian Filtering (G350) from CSR RL06 solution, and (e) water storage
(GRACE-S) and (f) GPS-inferred water storage (GPS-S) from CSR RL06 mascon solution (Mascon) at
Can Tho and My Thuan (CT-MT) station.

Table 2. Internal assessment for reconstructed runoff at Can Tho–My Thuan (CT-MT), and external
assessment for estimated runoff at Tan Chau–Chau Doc (TC-CD) using the determined parameters
during runoff reconstruction at Can Tho–My Thuan (CT-MT).

Station Variables PCC NRMSE NSE

CT-MT station
reconstruction

RSHMVs
TRMM-P 0.945 0.096 0.893

MODIS-ET 0.920 0.114 0.847

GRACE-S
RL06-G350 0.933 0.105 0.871

RL06-mascon 0.938 0.101 0.879

GPS-S
RL06-G350 0.945 0.096 0.892

RL06-mascon 0.942 0.097 0.888

WBS-GRACE
RL06-G350 0.965 0.076 0.932

RL06-mascon 0.965 0.076 0.932

WBS-GPS
RL06-G350 0.974 0.067 0.948

RL06-mascon 0.974 0.066 0.950

CT-MT station estimates
TC-CD station

RSHMVs
TRMM-P 0.921 0.135 0.824

MODIS-ET 0.935 0.120 0.860

GRACE-S
RL06-G350 0.932 0.124 0.851

RL06-mascon 0.927 0.129 0.839

GPS-S
RL06-G350 0.915 0.140 0.810

RL06-mascon 0.910 0.144 0.800

WBS-GRACE
RL06-G350 0.954 0.108 0.888

RL06-mascon 0.954 0.107 0.889

WBS-GPS
RL06-G350 0.961 0.101 0.900

RL06-mascon 0.961 0.101 0.900
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Figure 6. Reconstructed runoff based on the water balance standardization (WBS) approach for (a,b)
GRACE water storage (GRACE-S) from CSR RL06 with a 350-km Gaussian filtering (G350) and its
mascon solution, and (c,d) GPS-inferred water storage (GPS-S) from CSR RL06 with a 350-km Gaussian
filtering (G350) and its mascon solution at Can Tho and My Thuan (CT-MT) station.

Table 3. Internal assessment for reconstructed runoff at Tan Chau–Chau Doc (TC-CD), and external
assessment for estimated runoff at Can Tho–My Thuan (CT-MT) using the determined parameters
during runoff reconstruction at Tan Chau–Chau Doc (TC-CD).

Station Variables PCC NRMSE NSE

TC-CD station
reconstruction

RSHMVs
TRMM-P 0.921 0.125 0.849

MODIS-ET 0.935 0.114 0.874

GRACE-S
RL06-G350 0.932 0.116 0.869

RL06-mascon 0.927 0.120 0.860

GPS-S
RL06-G350 0.915 0.130 0.837

RL06-mascon 0.910 0.133 0.828

WBS-GRACE
RL06-G350 0.966 0.083 0.933

RL06-mascon 0.964 0.085 0.929

WBS-GPS
RL06-G350 0.967 0.082 0.935

RL06-mascon 0.966 0.082 0.934

TC-CD station estimates
CT-MT station

RSHMVs
TRMM-P 0.945 0.104 0.874

MODIS-ET 0.920 0.118 0.837

GRACE-S
RL06-G350 0.933 0.110 0.857

RL06-mascon 0.938 0.108 0.863

GPS-S
RL06-G350 0.945 0.104 0.872

RL06-mascon 0.942 0.106 0.867

WBS-GRACE
RL06-G350 0.956 0.092 0.901

RL06-mascon 0.955 0.092 0.900

WBS-GPS
RL06-G350 0.959 0.089 0.907

RL06-mascon 0.959 0.089 0.907

By examining the differences between the estimated Rs at CT-MT and TC-CD stations in terms
of the performance indicators shown in Tables 2 and 3, the usage of TC-CD station accounts for a
1–4% decrease in the relative error (in terms of NRMSE) when compared to that at the CT-MT station.
This should be a percentage of the remaining ocean tidal backwater effect at the CT-MT station in the
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estuary because the summation process of the R time series (as mentioned in Section 2) has already
reduced the ocean tidal effect. In addition, the WBS approach yields a 1–4% decrease in a relative
error (in terms of NRMSE) for the CT-MT station, while yielding an average of a 1.65% decrease for
the TC-CD station when compared to the remotely-sensed water balance variables. This represents a
substantial improvement because the peaks and troughs are better captured in which accurate peaks
and troughs are particularly essential for a comprehensive economic loss assessment during flooding
and drought events. The R estimated from the GPS-S using the WBS approach results in the highest
PCC (i.e., 0.959) and NSE (i.e., 0.907), and the lowest NRMSE (i.e., 0.089). Overall, the proposed WBS
approach using the upstream averaged GPS-S is empirically shown to be competitive among the
estimated Rs from the remotely-sensed water balance variables in the study region.

Nonetheless, remaining errors might still exist. These include the deficiency in our methodology,
unknown signals in the remotely-sensed water balance variables, and variable time shift across
different years between the Mekong Basin upstream and the estuary downstream. Moreover, in-situ
discharge time series in the river delta is needed for reconstruction. The chosen GPS stations should be
better located on the bedrock surface so that the seasonal elastic deformations can be clearly detected.
The previously mentioned considerations represent limitations of this study.

5. Conclusions

We have investigated the applicability of the water balance standardization (WBS) approach based
on using the GPS-inferred water storage (GPS-S) from satellite gravimetry (i.e., GRACE) averaged
from the upstream of Mekong Basin for reconstructing the runoff (R) on a monthly scale at the Mekong
River Delta estuary mouth. We acquired that the reconstructed R based on the WBS approach using
GPS-S reaches at least a PCC of 0.97 and an NSE of 0.93 at both the Can Tho–My Thuan station as
well as the Tan Chau–Chau Doc station pairs, which are comparable to those obtained based on
the gravimetrically-inferred water storage (GRACE-S). This finding indicates that the GPS-S could
be considered as an alternative to the GRACE-S within the water balance context under the WBS
approach, even though this method still relies on GRACE-S. In contrast to those R reconstructed from
the remotely-sensed water balance variables, the WBS approach shows a 1–4% increase in the accuracy.

We conducted the external assessment of the estimated R using an independent in-situ R. We found
out that the estimated and reconstructed Rs presented similar accuracy. By comparing the reconstructed
and estimated Rs at the Can Tho–My Thuan and Tan Chau–Chau Doc stations, we found out that the
remaining ocean tidal backwater effect on the estimated Rs accounted for a relative error of 1–4%,
even though the in-situ time series have been summed up to mitigate the ocean tidal backwater effect.

The R reconstructed based on the WBS approach from the GPS-S attains the lowest NRMSE value
(i.e., < 9%) in which the remaining errors are the limitations of this approach. This might include
the internal error in our methodology, the unknown signals in the remotely-sensed water balance
variables, and the variable time shift across different years between the Mekong Basin upstream and
its estuary downstream.

The proposed WBS approach using upstream-averaged GPS-S could be further expected to
estimate the discharge at a sub-basin scale in addition to achieving at a higher temporal scale since the
GPS VCD also offer relatively good precision at a daily temporal scale.
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