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Abstract

Background

Between January 2015 and August 2016, two epidemic waves of Zika virus (ZIKV) disease

swept the Northeastern (NE) region of Brazil. As a result, two waves of Guillain-Barré Syn-

drome (GBS) were observed concurrently. The mandatory reporting of ZIKV disease began

region-wide in February 2016, and it is believed that ZIKV cases were significantly under-

reported before that. The changing reporting rate has made it difficult to estimate the ZIKV

infection attack rate, and studies in the literature vary widely from 17% to > 50%. The same

applies to other key epidemiological parameters. In contrast, the diagnosis and reporting of

GBS cases were reasonably reliable given the severity and easy recognition of the disease

symptoms. In this paper, we aim to estimate the real number of ZIKV cases (i.e., the infec-

tion attack rate) and their dynamics in time, by scaling up from GBS surveillance data in NE

Brazil.

Methodology

A mathematical compartmental model is constructed that makes it possible to infer the true

epidemic dynamics of ZIKV cases based on surveillance data of excess GBS cases. The

model includes the possibility that asymptomatic ZIKV cases are infectious. The model is fit-

ted to the GBS surveillance data and the key epidemiological parameters are inferred by

using a plug-and-play likelihood-based estimation. We make use of regional weather data to

determine possible climate-driven impacts on the reproductive number R0, and to infer the

true ZIKV epidemic dynamics.
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Findings and conclusions

The GBS surveillance data can be used to study ZIKV epidemics and may be appropriate

when ZIKV reporting rates are not well understood. The overall infection attack rate (IAR) of

ZIKV is estimated to be 24.1% (95% confidence interval: 17.1%—29.3%) of the population.

By examining various asymptomatic scenarios, the IAR is likely to be lower than 33% over

the two ZIKV waves. The risk rate from symptomatic ZIKV infection to develop GBS was

estimated as ρ = 0.0061% (95% CI: 0.0050%—0.0086%) which is significantly less than cur-

rent estimates. We found a positive association between local temperature and the basic

reproduction number, R0. Our analysis revealed that asymptomatic infections affect the esti-

mation of ZIKV epidemics and need to also be carefully considered in related modelling

studies. According to the estimated effective reproduction number and population wide sus-

ceptibility, we comment that a ZIKV outbreak would be unlikely in NE Brazil in the near

future.

Author summary

The mandatory reporting of the Zika virus (ZIKV) disease began region-wide in February

2016, and it is believed that ZIKV cases could have been highly under-reported before

that. Given the Guillain-Barré syndrome (GBS) is relatively well reported, the GBS surveil-

lance data has the potential to act as a reasonably reliable proxy for inferring the true

ZIKV epidemics. We developed a mathematical model incorporating weather effects to

study the ZIKV-GBS epidemics and estimated the key epidemiological parameters. It was

found that the attack rate of ZIKV was likely to be lower than 33% over the two epidemic

waves. The risk rate from symptomatic ZIKV case to develop GBS was estimated to be

approximately 0.0061%. The analysis suggests that it would be difficult for another ZIKV

outbreak to appear in Northeastern Brazil in the near future.

Introduction

The Zika virus (ZIKV) was first identified in 1947 in the Zika forest of Uganda [1], and within

a few years was found spreading in human populations of Nigeria [2, 3]. Transmitted through

the bites of mosquito vectors (usually of the Aedes genus), ZIKV is an arbovirus from the fam-

ily Flaviviridae [4, 5]. Other transmission routes have also been found (materno-fetal, sexual

transmission, and via blood transfusion) but they are less common [6, 7, 8, 9]. By the 1970s,

the virus was circulating widely in West Africa, although it was considered a relatively mild

human infection that generally results in only fever, rash and possibly conjunctivitis [3, 10]. By

2007, the virus had escaped Africa to the island of Yap in Micronesia where, according to

some estimates, it infected up to 75% of the island population [11]. ZIKV reached Polynesia in

2013, and at least by 2015, it had invaded Brazil and then very quickly the rest of South Amer-

ica where it reached epidemic levels [12, 13].

Since its appearance in French Polynesia and Brazil, the virus has been associated with

severe neurological disorders linked to birth defects. ZIKV infection was found to pass from

mother to fetus during pregnancy with the potential to result in microcephaly which causes

fetal abnormalities including possible skull collapse [5]. In addition, since 2014 ZIKV was

found to be strongly associated with the Guillain-Barré syndrome (GBS) amongst a small
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proportion of those infected [14, 15]. GBS can result in long-term muscle weakness, pain, and

in some circumstances death [16]. Many studies found a causal link between GBS and ZIKV

disease [17, 18, 19]. In summary, GBS has many times been associated with ZIKV outbreaks in

many countries [15], making the empirical association unusually strong.

While considered relatively benign for decades since 1947, ZIKV disease suddenly became

a major global disease threat. A Public Health Emergency of International Concern (PHEIC)

was announced by the WHO on February 01, 2016 [20], in the lead-up to the Rio Olympic

Games in Brazil. But until then, because of the relatively low interest in the ZIKV, surveillance

in most areas was of low quality with poor coverage and consequently a large under-reporting

of cases. There was little knowledge of key parameters: for example the true attack rate, the

proportion of asymptomatic cases amongst infected ZIKV cases, the reproductive number.

This has led to stepped up activity in surveillance and modelling efforts in recent years. But

given the poor case-data available and the lack of knowledge of a reporting rate (which

changed significantly in time and location) for those infected with ZIKV, results from model-

ling efforts have often proved to be inconsistent. Here, we take a new approach that attempts

to overcome some of the problems associated with the large uncertainties associated with the

reporting of ZIKV cases. Instead, we work with time series of GBS cases which should be far

more reliable. We argue that a high proportion of people infected with GBS will in fact report

to the doctor. Fig 1 makes clear the strong association between ZIKV cases and GBS by

Fig 1. Total ZIKV (top) and GBS (bottom) cases as time series summed over the different states and countries: Bahia State, Colombia, the

Dominican Republic, El Salvador, Honduras, Suriname, and Venezuela from April 01 of 2015 to March 31 of 2016. Data from Ref. [25]. Note that

the data shown in this figure were merely to illustrate the match between ZIKV and GBS cases data, and the data are not involved in the modelling

analysis.

https://doi.org/10.1371/journal.pntd.0007502.g001

PLOS NEGLECTED TROPICAL DISEASES Zika versus Guillain-Barré Syndrome
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plotting reported cases of both diseases on the same axes. It is clear that the dynamics of the

two diseases are closely in step. The unique feature of our work is that we draw on this prop-

erty and fit our model to GBS data collected during and following the period of a ZIKV out-

break. We use this to infer the true numbers, and dynamics in time, of ZIKV cases.

For the modelling work that follows, it is useful to consider some of the above events in

more detail on a country-specific basis. This provides further important background informa-

tion that justifies our approach in using GBS as a proxy for Zika-cases, on data sources and on

choices of parameter values.

French Polynesia

From October 2013 to April 2014, a severe ZIKV outbreak hit French Polynesia, and the attack

rate (IAR) was first estimated as 66% [21], but updated soon after to 49% [22]. An outbreak of

42 GBS cases was simultaneously reported, but with a three-week delay in the peak timing, and

was linked to the ZIKV outbreak [23]. Based on the IAR of [22], the risk of ZIKV induced GBS

can thus be roughly calculated as 0.32 GBS cases per 1,000 ZIKV infections, or just ρ =

0.00032. [23] estimated the proportion to be ρ = 0.00024. Aubry et al. also found that, the ratio

of asymptomatic to symptomatic infections (asymptomatic ratio) was about 1:1 in the general

population and 1:2 among school children [22]. These findings are notably different from esti-

mates for a previous ZIKV outbreak in Yap island in 2007, where the asymptomatic ratio was

4.4:1 and the estimated overall ZIKV IAR was about 75% [11].

Following the ZIKV outbreak in French Polynesia, the region experienced a Chikungunya

virus (CHIKV) disease outbreak with an estimated 66,000 cases from October 2014 to March

2015, and 9 GBS cases occurred [24]. The crude risk of CHIKV induced GBS was found to be

0.136 per 1,000 CHIKV infections. Thus, based on these studies [23, 24], a ZIKV infection is of

(0.32� 0.136 =) 2.35-fold more likely to induce GBS when compared to a CHIKV infection.

Cauchemez et al. (2016) [21] also found that the risk of ZIKV induced microcephaly was 95

cases (34-191) per 10,000 women infected in their first trimester during 2013-14.

Northeastern Brazil

The Northeastern (NE) region of Brazil was the hardest-hit region in the Americas during

2015-16. In this period three mosquito-borne diseases—dengue virus, ZIKV, and CHIKV, co-

circulated, and weekly cases were documented [26]. In addition, local GBS and microcephaly

cases were also recorded. Over the two years, two waves of ZIKV disease were accompanied by

two waves of reported GBS cases, as shown in Fig 2, which indicated a possible epidemiological

association. A striking wave of microcephaly cases with a 23-week delay to the first ZIKV wave

was identified and discussed in [26]. The delay arises because ZIKV infections in the first tri-

mester of pregnancy are most likely to induce microcephaly [21, 27, 28, 29]).

A substantial CHIKV wave was also observed during the second ZIKV wave in 2016 as

indicated in Fig 2 and [26]. CHIKV can induce GBS with a smaller risk ratio (1 to 2.35)

than ZIKV as discussed above and according to results in [24, 30, 31, 32, 33]. Note that in

the latter studies, no cases of GBS induced by dengue epidemics were reported. One recent

cohort study was conducted on 345 pregnant women with ZIKV rash observed (presenting

at the Oswaldo Cruz Foundation) in Rio de Janeiro (the largest city in Eastern Brazil)

between September 2015 and May 2016 [29]. The IAR of CHIKV was found to be approxi-

mately 17%; and in contrast, the IAR of ZIKV was 53%, as based on PCR tests. In addition,

a strong cross-protection between ZIKV and CHIKV was also observed, but no cross-pro-

tection was observed between ZIKV and dengue virus (DENV). The IAR of CHIKV was

21.1%, and 41.7% for ZIKV-negative women while only 2.8% of ZIKV-positive women
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were infected with CHIKV. Thus, among pregnant women with rash observed in this

period, the ratio of ZIKV and CHIKV is (roughly) 5 to 2. Evident cross-protection between

CHIKV and ZIKV (but not between DENV and ZIKV) can be deduced from the same

study with the same women [29]. Therefore, we suspect that the two waves of excess GBS

cases in NE Brazil were largely due to ZIKV disease rather than CHIKV, for two reasons: (i)

ZIKV is 2.35-fold likely to induce GBS than CHIKV; and (ii) ZIKV IAR could be three

times higher than that of CHIKV based on the Rio de Janeiro study [29] to project the situa-

tion in NE Brazil.

Our work is based on the fact that it is difficult to estimate the infection attack rate (IAR) of

ZIKV directly from the reported ZIKV cases time series given the non-constant reporting

efforts over 2015 and 2016. In the literature, estimates of the IAR of ZIKV in Brazil (especially

Northeast Region of Brazil) vary from less than 20% to more than 60%, and thus appear incon-

clusive. A summary table is provided in the S1 Text. Most previous works were based on

Fig 2. The reported ZIKV cases, excess (or surplus) GBS cases and GBS-to-ZIKV ratio in the NE region of Brazil from January 2015 to November

2016. The red dotted line represents weekly ZIKV disease cases, the dark blue dotted line represents weekly surplus GBS cases and the light blue bars

are GBS-to-ZIKV ratios. The CHIKV outbreak of 2016 is denoted with different shades of green according to number of weekly cases. The GBS-to-

ZIKV ratios are not plotted for the initial few weeks as the scale of the ZIKV data is not large enough to compute a meaningful ratio.

https://doi.org/10.1371/journal.pntd.0007502.g002
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unreliable ZIKV surveillance data. In this work, we aim to use the relatively reliable GBS data

in NE Brazil to infer the ZIKV epidemic.

The under-reporting of ZIKV cases in 2015 also appears to be reflected in what was felt to

be a high number of microcephaly cases (after a 26-week delay [26]). This is because micro-

cephaly cases are easier to identify and are thus better reported [20]. Nevertheless, the report-

ing criteria of microcephaly cases also changed significantly over the two years [34] leading to

overall unreliable estimates. Given this known and documented unreliability [34], we felt it

might not be wise to estimate IAR of ZIKV directly based on the reported number of micro-

cephaly cases. Also, we would need to consider the effect of time-varying birth rates if using

microcephaly cases to infer ZIKV cases.

However, it seems a reasonable approximation to assume that the number of GBS cases

per ZIKV infected individual should remain constant in time, and that the reported GBS

cases are relatively well reported over time. The reporting criteria of GBS should be rela-

tively accurate and stable owing to the distinct identifiable and severe clinical features of

GBS [16]. By assuming the GBS-ZIKV risk ratio is constant, we attempted to fit an epidemic

model and infer this ratio based on the GBS cases time series. Because of the co-circulation

of both dengue fever and ZIKV during the two waves, misdiagnoses of ZIKV could occur

[29, 27, 26], especially given both diseases have similar symptoms. Nevertheless, no GBS

induced DENV was reported in the 2015 and 2016 years. Thus, the large-scale ZIKV out-

break was the major source of the excess GBS cases [26]. For these reasons, we use the excess

GBS cases time series to infer the pattern of ZIKV outbreak and the overall IAR of ZIKV in

Northeastern Brazil.

Mathematical modelling provides a possible way to infer the epidemic waves of ZIKV (or

together with a minor proportion of CHIKV). First, we assume a constant risk ratio between

symptomatic ZIKV cases and reported GBS cases (ZIKV-GBS ratio), denoted by ρ. Second, we

simulate our ZIKV model, and fit the model to observed GBS cases with a time-dependent

ZIKV transmission rate. Finally, by using iterated filtering techniques, we find the maximum

likelihood estimates of ρ and the overall IAR.

Data and methods

Data

Brazil has a territory of more than 8.5 million km2 and is one of the largest countries in the

world with an estimated population of 211 million [35]. The Northeastern (NE) region of

Brazil is one of five regions, and has an area of 1.6 million km2. The region has a population

of 57 million, but 75% of the population live in the major cities of the coastal area which

stops at the Atlantic on the East. While larger Brazil exhibits spatially heterogeneous climate

trends, a large part of the heterogeneity can be attributed to its five relatively homogeneous

climate regions [36]. We are interested in the NE Brazil climate region, which temporally

has a known seasonal cycle in terms of climate variables, e.g., temperature and rainfall, that

impresses itself over all the region, and is relatively spatially uniform especially over the

coastal areas.

The reported weekly excess (or surplus) GBS cases time series of NE Brazil, from Jan 2015

to Nov 2016, were kindly provided by Professor Oliveira from the Ministry of Health in Bra-

zil, as used in their important recent study [26]. The time series are plotted in Fig 2 with

datasets of ZIKV and CHIKV for the period. The GBS data used in this work follow the case

definitions given in S1 Text. In Fig 2 we observe that the GBS-to-ZIKV ratio of 2016 was sig-

nificantly lower than in 2015, which was likely due to the under-reporting of ZIKV epidemic

before 2016 [20].
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Daily mean temperature and total rainfall (beginning from December 1, 2014) data were

obtained from six cities having some of the largest populations in NE Brazil (source: https://

www.worldweatheronline.com/). A map of the locations of the six cities is given in the S1 Text.

We calculated the daily average temperature and the total rainfall across the six cities and

smoothed them with R function smooth, and used these averages to model the overall situation

in the large area as NE Brazil [37, 38, 39]. Spatially speaking, the relative climate homogeneity

is evident from studying the data for coastal cities [36], as displayed in the figures in S1 Text.

We justify our methodology of spatially aggregating the climate data in S1 Text. We provide

the GBS surveillance data and weather data in the S1 Text.

Methods

In previous work [6, 40], we developed a ZIKV transmission model, including both host

and vector, based on mosquito-borne and sexual (human-to-human) transmission of ZIKV.

Hosts infected with ZIKV generate a proportion of GBS cases as determined by ρ which is

the ratio of reported GBS cases to symptomatic ZIKV cases. In our earlier work, asymptom-

atic ZIKV cases were assumed to be non-infectious. However, in this work the asymptom-

atic ZIKV cases are now assumed to be infectious, and we study their impact on the

estimation of IAR and the ratio (ρ). The basic reproduction number (R0) of the model is

derived and estimated. We apply the plug-and-play likelihood-based inference framework

for model fitting [41].

ZIKV-GBS model. Fig 3 shows the model diagram of the ZIKV disease transmission

pathways of both humans and the mosquito vector. Following our previous work [6, 40], we

continue to assume that hosts infected with ZIKV are infectious during the convalescent stage

and can infect other susceptible hosts through sexual transmission [8, 9]. However, they are

assumed to be noninfectious to susceptible mosquito vectors [22, 42, 43].

Fig 3. Diagram of the ZIKV-GBS epidemic model. The black arrows represent the infection status transition paths.

Red dashed arrows represent transmission paths, and the light blue arrows represent the natural birth and death of

mosquito vectors. Square compartments represent the host classes, and circular compartments represent the vector

classes. Red compartments represent infectious classes, and the grey compartment is the (weekly) excess GBS cases

(ZGBS). Sh, Eh, Ih, Rh represents the numbers of Susceptible, Exposed, Infected and Recovered host population with

respect to ZIKV, respectively. Please see text below Eq (1) for complete listing of all compartment codes.

https://doi.org/10.1371/journal.pntd.0007502.g003
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It is supposed that the asymptomatic cases are infectious at a weaker level than symptomatic

cases and do not develop to the convalescent stage, which is biologically and clinically reason-

able [8, 9]. We therefore arrive at the following ordinary differential equation (ODE) system

(1).

S0h ¼ � ab �
Iv
Nh

Sh � b �
ZAh þ Ih1 þ tIh2

Nh
Sh;

E0h ¼ ab �
Iv
Nh
þ b �

ZAh þ Ih1 þ tIh1

Nh

� �

Sh � shEh;

A0h ¼ ð1 � yÞ � shEh � ghAh;

I0h1
¼ y � shEh � gh1Ih1;

I0h2
¼ gh1Ih1 � gh2Ih2;

R0h ¼ ghAh þ gh2Ih2;

ZðiÞGBS ¼
Z

week i
rgh1Ih1 dt;

S0v ¼ BvðtÞ � ac �
ZAh þ Ih1

Nh
Sv � mvSv;

E0v ¼ ac �
ZAh þ Ih1

Nh
Sv � ðsv þ mvÞEv;

I0v ¼ svEv � mvIv:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

Here, Sh is the susceptible host class, Eh is the exposed host class (i.e., within ZIKV infection

latent period), Ah denotes the asymptomatic host class, Ih1 denotes the host class infected with

ZIKV, Ih2 denotes the convalescent host class, and Rh denotes the host’s recovered class. The

variable ZðiÞGBS denotes the simulated weekly excess (or surplus) reported GBS cases for the i-th

week during the study period. Sv is the susceptible vector class, Ev is the exposed vector (i.e.,

within ZIKV infection latent period) and Iv denotes the infectious vector class. The parameter

ρ denotes the ratio of reported (excess) GBS cases per symptomatic case of ZIKV. The model

(1) parameters are summarised in Table 1.

In addition,

Nh ¼ Sh þ Eh þ Ah þ Ih1 þ Ih2 þ Rh and

Nv ¼ Sv þ Ev þ Iv;

where Nh and Nv represent the total number of hosts and vectors respectively, of which Nv is

time-dependent. The population of the Northeastern (NE) region of Brazil in 2014 was Nh =

56.7 million [52].

As in our previous work, it is assumed that the total mosquito population is given by:

NvðtÞ ¼ mðtÞ � Nh; ð2Þ
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where m(t) is the (time-dependent) ratio of mosquitoes population (Nv(t)) to humans popula-

tion (Nh). In the model simulation, in order to reflect the changing dynamics of m(t), we

increase the susceptible mosquitoes appropriately when m(t) increases, and remove the sus-

ceptible and infectious mosquitoes when m(t) decreases to compensate. In other words, the

human population (Nh) is fixed to be constant, whereas we vary the mosquito population

(Nv(t)) to reconstruct the time-dependent m(t).
Basic reproduction number. Following previous studies, the basic reproduction number,

R0, is derived using the next generation matrix method [6, 53, 54, 55]. We have

R0 ¼
Rh þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2

h þ 4R2

v

q

2
;

ð3Þ

where

Rh ¼ b � Z �
1 � y

gh
þ y �

1

gh1

þ
t

gh2

� �� �

;

and

Rv ¼ a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bcm �
ygh þ ð1 � yÞZgh1

ghgh1

�
sv

mv � ðmv þ svÞ

s

:

From Eq (3), it can be seen that R0 depends on the mosquito-borne transmission path (in

term of Rv) and the human-to-human transmission path (in term of Rh). Furthermore, if

one excludes the exposed and asymptomatic compartments, limRh!0þR0 ¼ Rv ¼ a �
ffiffiffiffiffiffiffi
bcm
gh1mv

q
,

which provides the basic reproduction number of the classical Ross-Macdonald malaria

model [6, 56, 57].

Table 1. Summary table of model parameters in Eq (1). The “H” denotes human hosts’ population, and “V” denotes mosquito vectors’ population. “X!Y” denotes

ZIKV infected class X infects the (ZIKV) susceptible class Y.

Parameter Notation (Value)/Range Remark/Unit Status Source(s)

Mosquito biting rate a (0.5) 0.3—1.0 per vector�day fixed [6, 44, 45]

Transmission prob. of host b (0.4) 0.10—0.75 per bite fixed [6, 44, 45]

Transmission prob. of vector c (0.5) 0.30—0.75 per bite fixed [46]

Transmission rate by contact β (0.05) 0.001—0.10 per day fixed [6]

Host latent period s� 1
h (5) 2—7 days fixed [10, 47]

Vector latent period s� 1
v (10) 8—12 days fixed [45, 48]

Asymptomatic infectious period g� 1
h (7) 5—10 days assumed Nil

Infectious period g� 1
h1

(5) 3—7 days fixed [6, 47]

Convalescent infectious period g� 1
h2

(25) 14—30 days fixed [42, 43]

Proportion of symptomatic θ (50%) 20%—80% Nil to be estimated [22]

Infectivity scale of asymptomatic η 0.0—0.99 H!H, H!V to be estimated Nil

Infectivity scale of convalescent τ (0.3) 0.01—0.99 H!H fixed [6]

Female vector lifespan m� 1
v (14) 4—35 days fixed [49, 50, 51]

Ratio:
reported GBS

symptomatic ZIKV
ρ 0.001%—0.1% Nil to be estimated [15, 22, 23]

Ratio:
mosquito population
human population

m(t) 0—20 time-dependent to be estimated [6, 40, 44]

Initial susceptible proportion Sh(0)/Nh 0.25—1.0 Nil to be estimated [6]

https://doi.org/10.1371/journal.pntd.0007502.t001
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PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007502 April 29, 2020 9 / 23

https://doi.org/10.1371/journal.pntd.0007502.t001
https://doi.org/10.1371/journal.pntd.0007502


Model fitting and parameter estimation. To evaluate our methodology, model (1) was

set up to fit the real epidemic data in NE Brazil. The time series of the number of weekly excess

GBS cases in NE Brazil from Fig 2 (not Fig 1) is modelled as a partially observed Markov pro-

cess (POMP, also know as hidden Markov model) with a “spillover” rate (ρ) from local symp-

tomatic ZIKV cases. Here ρ is the combined effect of the GBS reporting ratio and the risk rate

of symptomatic ZIKV inducing GBS i.e., the ratio r ¼
reported GBS

symptomatic ZIKV (see Table 1).

The simulated (weekly) number of excess GBS cases (ZGBS) from model (1) is considered as

the theoretical or true number of cases. And the corresponding observed GBS cases of the i-th

week, CðiÞGBS, are assumed to have a Negative-Binomial (NB) distribution [6, 41, 44, 58, 59, 60].

CðiÞGBS � NB n ¼
1

t
; p ¼

1

1þ tZðiÞGBS

 !

with mean : mi ¼ ZðiÞGBS: ð4Þ

Here, τ denotes an over-dispersion parameter that needs to be estimated. Finally, the overall

log-likelihood function, ℓ, is given by

‘ðYjCð1ÞGBS; . . . ;CðNÞGBSÞ ¼
XT

i¼1

log ½LiðC
ðNÞ
GBS j C

ð1Þ

GBS; . . . ;Cði� 1Þ

GBS ;YÞ�: ð5Þ

The vector Θ denotes the parameter vector under estimation. The Li(�) is the likelihood func-

tion associated with the i-th NB prior defined in Eq (4). The term T denotes the total number

of weeks during the study period.

Our methodology reconstructs the mosquito abundance m = m(t) which is otherwise

unknown but variable and time-dependent over the study period. Following Eq (3), the basic

reproduction number is a function of m(t), and thus we also allow R0 to be time-dependent

(i.e., R0 ¼ R0ðtÞ). The time-dependent m(t) is climate-driven and modelled as an exponential

function of the daily average temperature and rainfall time series, together with a two-piece

step function for the baseline component. It is modelled as follows

mðtÞ ¼ mðt; t0; t1; p1; p2; p3; p4Þ

¼ exp½p1Temperatureðt � t0Þ þ p2Rainfallðt � t0Þ þ p31ðt < t1Þ þ p41ðt⩾t1Þ�:
ð6Þ

The term τ0 is the time delay between the occurrence of weather factors and their effects on

the GBS epidemic. It contains the lagged effect on the local mosquito population, the progress

from ZIKV to GBS development and any reporting delay. Previous studies [26, 61] suggest

there exists a time delay of at least 3 weeks between the exposure of patients to ZIKV and the

development of GBS (i.e., an incubation period plus a typical reporting delay). For the mos-

quito, the life cycle progresses from an egg to an adult, and maturity takes approximately 8-10

days [62]. Therefore, the time lag of the effects from the weather factors are taken to be one

month in total i.e., τ0 = 3 × 7 + (8 + 10)/2 = 30 days.

In Eq (6), p1 and p2 are the scale parameters controlling the effects of local temperature and

rainfall respectively. The two terms p3 and p4, are time-driven baseline effects characterizing

trends in m that switch on depending on the time period τ1. The parameter τ1 could be viewed

as the timing of baseline change in the mosquito population, due to the possible interference

between ZIKV and CHIKV for instance, and/or local mosquito control measures. The func-

tion 1(�) is an indicator function, which equals 1, if the condition in the brackets is true; but is

0 otherwise.
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Based on fitting and comparisons, the scale of p2 was found to be negligible in magnitude,

indicating that the effects of the local rainfall is negligible compared to temperature. Thus, in

most parts of the analysis that follows, we neglect the rainfall term in Eq (6) for simplicity.

Bellan (2010) [49] argued that the mosquito lifespan is 30 days on average but under control

and/or age dependent mortality the lifespan is much shorter. For this reason Kraemer et al

(2017) [63] implemented a mosquito lifespan of average 7 days but with a maximum of 30

days. However, according to the results of Bellan (2010) [49] this would correspond to a high

level of mosquito control or age-dependence. We believe a more appropriate (less extreme)

choice for the NE Brazil context would correspond to an average 14 day mosquito lifespan.

According to Eq (3), R0 is a function of m(t) and thus R0 is also time-dependent. Hence,

R0 can also be determined by the parameters in Eq (6), i.e.,

R0 ¼ R0ðmÞ ¼ R0ðt; t0; t1; p1; p2; p3; p4Þ. Besides the climate-driven model, we also test a

non-mechanistic model where the mosquito population (or transmission rate) is an exponen-

tial of a cubic spline function (S1 Text). Similar techniques were used in our previous work

[44]. We compare the result with the climate-driven model and the non-mechanistic model.

The parameter fitting and inference process are rigorously and exhaustively checked within

biologically and clinically reasonable ranges. We should have confidence that the fits of

observed time-series are realistic because of the consistency with the true underlying epidemi-

ological processes rather than because of artificial model over-fitting. The maximum likeli-

hood estimate (MLE) approach is adopted for model parameter estimation. The 95%

confidence intervals (CI) of parameters are estimated based on the parameter ranges in

Table 1, using the method of profile likelihood confidence intervals [40, 41]. More details for

finding the uncertainty of R0ðtÞ estimation is in S1 Text.

The Bayesian Information Criterion (BIC) is employed as a criterion for model compari-

son, and quantifies the trade-off between the goodness-of-fit of a model and its complexity

[64]. The simulations were conducted by deploying the Euler-multinomial integration method

with the time-step fixed to one day [41, 56]. We deploy iterated filtering and plug-and-play

likelihood-based inference frameworks to fit the reported number of excess GBS cases time

series [6, 41, 44, 65, 66]. Since a plug-and-play inference framework has been adopted, our

model (simulation scheme) includes both demographic noise (Euler-multinomial type) and

measurement noise (negative binomial). The deterministic model we analyse in the main

results is the mean field model of the stochastic version. The inference scheme which infers

model parameters, requires that the underlying model is stochastic, which is the case here. The

R package “POMP” is available via [67]. Parameter estimation and statistical analysis are con-

ducted by using R (version 3.3.3) [68], and the equations are written in C programing language

(see S1 Text).

Results

Connecting the GBS and ZIKV data, and changing reporting rates

Fig 1 plots the time series of ZIKV cases and GBS from the period April 1 of 2015 to March 31

of 2016. The data are an aggregation of the six countries Columbia, the Dominican Republic,

El Salvador, Honduras, Suriname, and Venezuela as well as the Bahia State in Brazil. These

time series demonstrate the tight connection between the reported ZIKV disease and GBS,

whose case numbers closely mimic one another in time. The connection is the basis of our

method for estimating ZIKV cases from GBS reports, which as we have discussed, are by their

nature, reasonably reliable records.

The Northeastern Brazil datasets which are analysed in this paper are plotted in Fig 2. The

time series indicate two epidemic outbreaks of reported ZIKV cases, where the second
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outbreak in 2016 is far stronger than the first in 2015. Despite this, the two waves of GBS

appear similar over the two years, although a close examination reveals there were fewer cases

in 2016. If one ignores the possible regional difference and adopts the GBS-ZIKV risk rate of

0.032% i.e., 0.32 GBS cases per 1,000 ZIKV infections (asymptomatic and symptomatic) calcu-

lated in [23], the total cases of ZIKV can be approximated according to the excess GBS cases

time series (Fig 2). But this is a naive calculation and we will seek ways to improve this.

Tallying the case numbers, in 2015 there were 233 excess GBS cases and 38,641 reported

ZIKV cases, but in 2016 there were 168 excess GBS cases and 70,916 reported ZIKV cases. The

ratio of GBS/Zika reported cases is plotted (blue) in Fig 2, and one sees the transition from

GBS/ZIKV(repoted) (= 233�38641 = 0.60% in the first year (2015) to GBS/ZIKV(reported)

=168�70916 = 0.24% in the second year (2016).

Let us first assume that the GBS/ZIKV (reported) ratio did not change in time in any major

way over the two years 2015 and 2016. Our analysis of data from the time series in Fig 2 shows

that as GBS cases dropped from 233 cases in 2015, to 168 cases in 2016, i.e. by a factor of 0.72

(168/233), the number of reported ZIKV cases rose by a factor of 70, 916�38, 641 = 1.8. The

only explanation for this is that there must have been a major under-reporting of ZIKV cases

in the first year of 2015 [60, 69]. This also seems reasonable since in 2015 the official WHO

ZIKV reporting program had not yet been launched [20]. Suppose now the GBS/ZIKV

(reported) ratio was 0.24% in both 2015 and 2016 even though we know that this could not be

the case. A simple calculations shows that there should have been some 98,353 (=

233 × 70916�168) ZIKV reported cases in 2015 rather than only the 38,641 cases that were

reported in reality. Thus for the 2015 year, it would appear that ZIKV was under-reported by a

factor of 2.5 when compared to the ZIKV reporting rate in 2016.

Fitting the model to GBS data

We fit model (1) based on the reported excess GBS cases time series shown by the dark blue

dotted line in Fig 2. This was repeated for different sets of baseline parameters, with several dif-

ferent (possible) values of η (asymptomatic ZIKV relative infectivity) and θ (proportion of

symptomatic ZIKV infections) considered. The θ = 0.5 simulations correspond to a 1:1 ratio of

the symptomatic to asymptomatic ZIKV infection of [22]. Simulations with θ = 0.2 correspond

to the 4:1 ratio of the symptomatic to asymptomatic ZIKV infection of [11].

Fig 4 shows the fitting results with θ = 0.5 and η = 0.3. The mean GBS values for 1000 simu-

lations are plotted in time (red) and fit the trajectory of the reported GBS cases (black line)

closely. The grey shading gives the 95% credible interval (CI) of the case numbers for each day

of the simulation. The model fits the data well, and all 95% CI cover the associated observa-

tions. This indicates the simulation outcomes are not statistically different from the observa-

tions, and thus our model successfully reconstructed the two waves of the ZIKV epidemic in

NE Brazil. Since we adopted a Negative Binomial type measurement noise in Eq (4), the weekly

simulated cases have a variance larger than the mean. Thus, the simulation has a wide CI. We

estimate the time-dependent R0ðtÞ which ranged from 1.1 to 3.3 over the whole study period.

In Fig 4, the green region denotes the 95% CI of R0ðtÞ. For the detailed method, please see S1

Text. The simulations determine the best fitting initial condition of susceptible population is

Sh(0) = 0.55. The inserted panel shows the parameter estimation of ρ found where the likeli-

hood profile reaches the minimum BIC value. Namely, we fix ρ at 20 values over a range, fit

the model (1) to the GBS data, and calculate the BIC. While the minimum is ρ = 0.00061, a

value of ρ from 0.00005 to 0.0001 will yield an (almost) equivalent level of BIC given the flat-

ness of the curve in this regime.
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In addition to the mechanistic reconstruction of R0ðtÞ in the main results here, we also

present a non-mechanistic reconstruction in S1 Text. The non-mechanistic approach is imple-

mented by using a cubic spline function to reconstruct R0ðtÞ. The model also fits the disease

surveillance data well. The BIC of the non-mechanistic model is 7 units larger than the above

climate-driven model in Fig 4. We find that the non-mechanistic reconstruction of R0

matches the daily temperature reasonably well. This suggests the weather-driven R0ðtÞ in our

main results here is neither coincidental nor artificial.

Estimation of the infection attack rate (IAR) and model parameters

The estimates of the GBS/ZIKV ratio ρ and the IAR are summarised in Table 2. For the ZIKV

symptomatic ratio parameter, θ, we follow the previous serological study conducted in French

Polynesia that found the asymptomatic: symptomatic case ratio as 1: 1 in the general popula-

tion [22]. Thus, θ is set at θ = 0.5 for the scenarios in the main results section. But with thus set-

ting (θ = 0.5), the estimation of ρ is found to sit roughly at ρ = 0.000063 (= 0.0063%). This

appears to hold even if η, the relative infectivity of the asymptomatics, is changed over the

Fig 4. The fitting results for θ = 0.5 and η = 0.3. The fitting results in the main panel show the best scenario, which attains the smallest BIC. The red

line is the mean GBS cases averaged from 1000 simulations plotted as a function of time. The dashed blue curve is the R0ðtÞ estimate which minimizes

the BIC, and the green region shows the 95% of confidence interval R0ðtÞ. The grey shaded area shows the 95% CI of the simulated GBS cases. The inset

panel shows the profile of BIC as a function of ρ. The minimum occurs at ρ = 0.000061, which is our best estimate for ρ.

https://doi.org/10.1371/journal.pntd.0007502.g004
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interval (0, 1). Estimates of ρ thus appear to be reasonably insensitive to the change of relative

infectivity of the asymptomatics (η). However, ρ is sensitive to the change of the symptomatic

proportion of ZIKV infections (θ). Setting θ = 0.2 gives ρ = 0.00013, but as Table 2 reveals, this

result is also relatively insensitive to changes in η.

To calculate the number of ZIKV cases and the IAR, we use the estimate obtained for ρ (ρ =

0.00061—ratio of reported GBS to symptomatic ZIKV), and denote the ZIKV symptomatic

ratio as θ, as before. ρ can be estimated from the model. Then, the number of ZIKV cases

equals (the number of reported GBS)� [reported GBS/symptomatic ZIKV]� (ZIKV symp-

tomatic ratio), which is the number of the reported GBS/ρ/θ. The IAR equals the number

ZIKV cases� the total population in the NE Brazil.

For all pairs of θ and η in Table 2, the estimated IARs are similar with IAR varying approxi-

mately from 22% to 28% and the 95% CIs largely overlap. Thus, for θ = 0.5, we can be at least

95% sure the IAR of the ZIKV epidemic is below 33%, and is likely to be well below.

The estimates of the initial susceptible levels (Sh(0)) and the parameters (p1, p3 and p4) that

control the temporal pattern of R0ðtÞ are summarised in Table 3. Note that according to Eq

(3), m is proportional to R2

v (i.e., m / R2

v), a key term in the formula for the basic reproduc-

tion number. It is not hard to show that [exp(0.5p1) − 1] × 100% is the change rate in Rv when

there is one unit (˚C) increase in temperature. From Table 3, one unit increase in temperature

will lead to an increase of (exp(0.5 × 0.52) − 1 =) 29.7% in Rv when η = 0.1. And one unit

increase in temperature will lead to (exp(0.5 × 0.53) − 1 =) 30.3% increase in Rv when η = 0.3.

Eq (3) shows the R0 is comprised of Rv and Rh, where the Rh is the contribution from the sex-

ual transmission path. The sexual transmissibility of ZIKV can be ignored owing to (i) the con-

tribution of this path is negligibly small [6, 7]; and (ii) the recommendation to abstain from

sexual contact during ZIKV epidemics [10]. Hence, the term Rh could be very close to zero,

and its contribution to the whole R0 is probably far less than the mosquito-borne transmission

Rv. According to Eq (3), when Rh ¼ 0, then R0 ¼ Rv. Provided limRh!0þR0 ¼ Rv, the effect

of the temperature on Rv, is determined by the estimate for p1 estimate, is (almost) equiva-

lently applicable to R0.

In Table 3, the initial susceptibility Sh(0) is estimated to be 0.55 (95% CI: 0.47-0.73) when

η = 0.1, and 0.57 (95% CI: 0.46-0.74) when η = 0.3. The large overlap in the 95% CIs indicates

Table 2. Summary table of the estimation results of ρ and IAR. The estimates with θ = 0.5 and η = 0.3 are used as main results, also in Fig 4.

θ η ρ 95% CI IAR 95% CI

0.5 0.1 0.000053 (0.000046,0.000080) 0.2792 (0.1841, 0.3234)

0.5 0.3 0.000061 (0.000050,0.000086) 0.2411 (0.1711, 0.2932)

0.5 0.5 0.000063 (0.000049,0.000086) 0.2352 (0.1711, 0.3005)

0.5 0.7 0.000063 (0.000050,0.000084) 0.2352 (0.1753, 0.2932)

0.5 0.9 0.000067 (0.000053,0.000086) 0.2186 (0.1711, 0.2792)

0.2 0.1 0.000139 (0.000083,0.000169) 0.2645 (0.2175, 0.4423)

0.2 0.3 0.000129 (0.000117,0.000178) 0.2847 (0.2071, 0.3140)

https://doi.org/10.1371/journal.pntd.0007502.t002

Table 3. Summary table of the estimation results of the initial susceptibility (Sh(0)) and parameters p1, p3 and p4 in Eq (6). The estimates with θ = 0.5 and η = 0.3 are

used as main results, also in Fig 4.

θ η Sh(0) 95% CI p1 95% CI p3 95% CI p4 95% CI

0.5 0.1 0.55 (0.47,0.73) 0.52 (0.44,0.63) 0.53 (0.40,0.67) 0.25 (0.16,0.37)

0.5 0.3 0.57 (0.46,0.74) 0.53 (0.44,0.63) 0.44 (0.34,0.55) 0.21 (0.13,0.31)

https://doi.org/10.1371/journal.pntd.0007502.t003
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that the two Sh(0) estimates are not statistically different. According to the 95% CIs of Sh(0), it

is likely that over a quarter (i.e., > 25%) of the whole population were not involved in the

2015-16 ZIKV epidemic.

The time points (τ1) when the baseline of m(t) (or R0ðtÞ) changes from p3 to p4 in Eq (6)

may also be estimated. It was found that τ1 is most likely to be March 7 of 2016. For the param-

eters p3 and p4, we find significant difference in the baseline levels of m, which suggested the

existence of the non-weather-driven temporal changes in the ZIKV transmissibility.

Results of the sensitivity analysis

As is conventional, the Partial Rank Correlation Coefficients (PRCC) are adopted to perform a

sensitivity analysis of the model [6, 44, 66, 70, 71]. Firstly, 1000 random samples are taken

from uniform distributions of each model parameter. The ranges as set out in Table 1. Sec-

ondly, for every random parameter sample set, the ZIKV-GBS model was simulated to obtain

the target biological quantities (e.g., R0 and total number of GBS cases in this study). Finally,

PRCCs were calculated between each parameter and target biological quantities.

Results of the sensitivity analysis are presented in Fig 5, which indicates how model param-

eters impact the basic reproduction number (R0) and the total reported GBS cases. R0 is most

sensitive to the vector’s biting rate (a), the vector to host ratio (m) and the vectors’ lifespan

(m� 1
v , or vectors’ natural death rate, μv), indicating the importance of the mosquitoes role in

disease transmission. The total reported GBS cases are considerably sensitive to the proportion

of symptomatic cases (θ), and the ratio (or risk) of excess GBS cases to symptomatic ZIKV

infections (ρ).

Fig 5. The Partial Rank Correlation Coefficients (PRCC) of the basic reproduction number, R0, (panel (a)) and total GBS cases (panel (b)) with

respect to model parameters. The Sh(0) in this figure denotes the initial susceptible ratio, i.e, Sh(0)/Nh. The black circle is the estimated correlation, and

the bar represents 95% CI. The ranges of parameters are in Table 1.

https://doi.org/10.1371/journal.pntd.0007502.g005
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Discussion

The epidemiological modelling approach used in this paper (Eq (1)), is based on the assump-

tion that populations are mixing homogeneously and climate variables are spatially homoge-

neous over NE Brazil. We discuss our justification in using these assumptions in great depth in

S1 Text. The assumption of mixing populations in a region this size is often considered a work-

able approximation for epidemiological models given modern commuting patterns, given the

robustness of the SIR modelling approach, and given the ability of an infection to rapidly

spread through a large set of cities that are even weakly connected within a country. The same

approach has been used in many related papers and appears to be successful when used with

care. Previous studies in large populations, such as measles in England and Wales (population

size 50 million [72, 73]) cholera in Yemen (population size 27 million [74]), have yielded

acceptable results. Our modelling framework (the temperature function and using GBS as a

proxy for ZIKV) would work better if more data were available at the city or state level, but

currently this is not obtainable.

A careful discussion on the limitations of aggregating the weather data, as used in Eq (6) is

given in S1 Text. There we explain that our approach in which data is spatially aggregated was

inspired from the success of de Oliveira et al. (2017) [26] in studying Zika virus and its impact

on human populations including microcephaly numbers and its relation to GBS. Their analy-

sis heavily relies on the property that there is coherence in the dynamics of infectives and

microcephaly populations when aggregated over all NE Brazil. That is the spatially averaged

data generates a coherent and meaningful signal in time. We also demonstrate that spatial cli-

mate homogeneity, the assumption behind spatial aggregation, is a reasonable approximation

according to recent literature on the climate distribution of NE Brazil.

Nevertheless, we explain that the city of Petrolina is an outlier in terms of its high Summer

temperatures (which could have major impact on the mosquito dynamics), and this is why

spatial aggregation needs to be performed with care and with caution. Checks need to be made

with historical data to show that the climate variables are at least approximately spatially uni-

form, as was found to be the case here. Finally, we point out that aggregation of data is a com-

monly used approach (when it can be justified) for epidemiological analyses at the country

level for many regions in the world ([72, 12], including NE Brazil ([12, 26].

Based on the parallel between cases of ZIKV disease and cases of GBS (eg., as seen in Fig

1), we have proposed a ZIKV model that is calibrated on case data of GBS. ZIKV case num-

bers are obtained by scaling up from GBS. The advantage of this practice is that the GBS case

numbers are more trustworthy and reliable compared to numbers obtained through surveil-

lance of ZIKV where there is much scope for errors in the reporting rate. Our model consid-

ers heterogeneity in symptomatic and asymptomatic ZIKV infections (i.e., θ and η) as well

as the local mosquito population (m). Model (1) was fitted to the reported excess GBS cases

time series with different sets of parameters for symptomatic proportion (θ) and asymptom-

atic infectivity (η).

From a recent metadata study [23] and a serological study [22], the ratio ρ of GBS to symp-

tomatic ZIKV cases was found to be 0.00024 and 0.00032 respectively (see Introduction of this

study). Similarly, based on the data from eleven countries, Mier-y-Teran-Romero et al. [15]

found the overall estimate for the risk of reported GBS “was 2.0 (95% CI 0.5-4.5) GBS reported

cases per 10,000 ZIKV infections, i.e., 0.02%, (which is) close to the point estimate of 2.4 GBS

cases per 10,000 ZIKV, i.e., 0.024%, infections estimated using only data from French Polyne-

sia.” In this study, the model estimation finds a ratio between GBS and symptomatic ZIKV

cases as ρ = 0.000061 or equivalently ρ = 0.0061% with 95% CI 0.0050%-0.0086%. That is, 1

GBS case per 16,400 ZIKV symptomatic cases which is approximately one quarter or 25% the
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magnitude of existing estimates. Our estimate, although still tentative and based on reasonable

first approximations, seems plausible since ZIKV surveillance was generally unreliable and

probably severely under-reported, especially before 2016 [60, 69]. For this reason, we avoided

using the ZIKV surveillance data to fit the epidemic model, and our estimate of ρ depends on

the more reliable GBS data.

We considered different values of θ (proportion of symptomatic cases) and η (infectivity

scale of asymptomatic) in this study. It is worth noting that η is a parameter that was over-

looked previously. The values of θ we used, and our estimated IAR are in line with previous

studies, e.g. [75] in Martinique. According to Cousien et al. [75] as well as the key literature

they refer to, “the proportion of asymptomatic infections (40% with 95%CI of 23-56%) was

low compared with previous estimates from a Yap island outbreak (80%) or among pregnant

women in French Guiana (77%). However, it was consistent with estimates obtained in a

household investigation in Puerto Rico (43%), a sero-survey in French Polynesia (50%), a sur-

vey among blood donors Martinique (45%), and the reanalysis of surveillance data from

French overseas territories (<50%).” Our current setting of θ = 0.5 and θ = 0.2, i.e., asymptom-

atic of 50% and 80% respectively, are consistent with these previous studies, and cover the indi-

cated range.

The model analysis estimated the IAR of ZIKV cases in NE Brazil to lie between 22% to

28% for the two waves. This is based on the assumption that the proportion of symptomatics θ
= 0.5, which appears to be reliable according to the serological results of Aubry et al. [22]. It is

also in line with a number of models and empirical estimates for other areas of Brazil and

South America. For example, Zhang et al. (2017) estimated some 18% IAR for the areas in Bra-

zil [12]. In pointing this out, we must also note that most IAR estimates in the literature need

to be treated with caution. Due to poor surveillance, limited knowledge about the ZIKV

reporting ratio and population seropositivity, the estimates may have been based on samples

that were not representative of the general population as a whole. Previous estimates of IAR

relied on poor ZIKV data in Brazilian regions: some estimates appear to be less than 20%, and

others yield more than 50% (see S1 Text). However, as mentioned, all these estimates must be

treated with caution. This study is the first to use the more reliable GBS data as a proxy to esti-

mate the IAR of ZIKV epidemics. We found that the IAR is likely to be below 33% in the

whole NE Brazil.

de Oliveira et al. [26] also identified a striking relationship between the dynamics in time of

the first wave of excess GBS and that of microcephaly. Their Fig 1B shows the dynamics in a

time of these two conditions are almost identical apart from a delay of 23 weeks and differing

otherwise by a scale factor. The remarkable similarity in the different epidemic time series

allows us to compare the rates of GBS cases to those of microcephaly. By examining the peak

heights of the two diseases, the ratio between them is 6.1 (maximum of microcephaly divided

by maximum of GBS wave), which corresponds to 1 GBS case for every 6.1 microcephaly

cases. If we make the reasonable assumption that the reporting rate of both conditions is simi-

lar, it is clear that GBS is a much rarer disease than microcephaly. Nevertheless, we still chose

to predict ZIKV cases based on GBS rather than microcephaly cases, because of problems in

the correct reporting of microcephaly over the study period. For example, the criteria for iden-

tifying microcephaly changed dramatically at different times over the two year period and in

different areas, making the reporting coverage highly unstable. Moreover, previous to this

period, reporting was not compulsory nor was there consistently defined criteria for identify-

ing the condition.

Return now to the dynamics of the reconstructed ZIKV cases generated by Eq (1) as cali-

brated on the GBS data (Fig 4). The reproductive number, R0ðtÞ, which quantifies the trans-

mission rate, was reconstructed by modelling the local meteorological data with Eq (6). The
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estimated R0ðtÞ was found to oscillate due to seasonality between the values 1:1 < R0 < 3:3,

and on average was found hR0i ¼ 2:2. The average level and estimated range of R0ðtÞ are in

line with previous studies [12, 60, 69]. Because of temperature dependence, R0ðtÞ reached

minimum values in winters. The range of values the model predicted for R0ðtÞ is very similar

to the intensities reported in Fig 3 of [12] for ZIKV in Brazil.

As the net growth rate of mosquitoes tends to increase as temperature increases [12, 76, 77],

it is not surprising that our estimated p1 > 0 (the temperature dependence parameter in m(t))
is positive. The positive association between temperature and transmissibility has also been

observed in the literature [69]. Significant nonzero estimates were found for parameters p3 and

p4, which also control m(t), and thus the reproductive number R0. This immediately suggests

the existence of non-weather-driven temporal changes in the ZIKV transmissibility. The base-

line drop in m(t) would also lead to a drop in R0ðtÞ, and indicates a decrease in ZIKV trans-

missibility across the two epidemic waves. Since the official mandatory ZIKV reporting began

in February 2016, this may have increased public awareness of ZIKV risk, and thus reduced

the spread of infection [70, 78, 79, 80, 81]. Disease control measures were also introduced by

some local authorities during the second epidemic wave. The time-change point (τ1) when the

baseline p3 switches to p4 in the model corresponds to March 7 of 2016. Interestingly, this time

point coincides with the peak timing of the concurrent CHIKV outbreak [26]. Also, very close

to this date, R0ðtÞ passed through a local minimum and then increased for a two month

period, generating, in turn, an increase in GBS cases.

We compared the results of a non-mechanistic model in S1 Text which did not take into

account climatic factors, and those from the climate-driven model in Fig 4. Although the non-

mechanistic model did not perform as well, it nevertheless provided useful insights by produc-

ing results that matched the impact of the daily temperature on R0, the transmission of ZIKV.

Continuing further, we now attempt to estimate the reporting rate of ZIKV. We argue that

the reporting rate of ZIKV disease increased dramatically around February and March of 2016,

as suggested also in the literature [69]. Thus, it is reasonable to assume that the data for the sec-

ond wave of ZIKV in 2016 is more reliable than that of the first. Taking the maximum of the

second ZIKV wave divided by the maximum of the GBS wave, we find the ratio between the

two diseases is 436; i.e., 1 GBS case per 436 reported ZIKV cases. However, our model fitting

finds a ratio between GBS and symptomatic ZIKV cases as ρ = 0.000061, or 1 GBS case per

16,400 ZIKV symptomatic cases. Thus, we can conclude that the reporting ratio of symptomatic

ZIKV cases is roughly 16, 400/436� 38. Namely, for every 38 symptomatic ZIKV cases, there

was 1 case reported, over the second wave in 2016. Hence we arrive at an estimate for the

reporting ratio of ZIKV, namely 1:38. Moreover, as mentioned, when taking this reporting ratio

into account our estimated IAR falls in the reasonable range 22% to 28% for the two waves.

Results in Table 3 indicate that the initial population susceptibility, Sh(0), was likely below

0.75. There are several plausible explanations. First, it has recently come to light that a large

proportion of the population was already exposed to dengue before the 2015 Zika outbreak

and this may have provided a significant proportion of the population with cross-immunity

[82]. As found in Rodriguez-Barraquer et al. [82] the “pre-existing high antibody titers to den-

gue virus were associated with reduced risk of ZIKV infection and symptoms.” A similar out-

come was noted in Gordon et al. [83]. Second, Faria et al. [84] indicated that the Zika virus

(Asian ZIKV genotype) may already have been in Brazil as early as 2013, and thus, there may

have been some exposure and build up of immunity by 2016. However, given the almost non-

existent reports of ZIKV, it is unlikely that this generated any major population immunity.

Third, there exists significant spatial heterogeneity in the Brazilian population distribution

[35]. Messina et al. [85] reported that most of the ZIKV incidences of NE Brazil were
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distributed in the coastal areas, and thus population in the inland areas were likely spared

from the epidemic. This may also contribute to our estimated initial susceptibility.
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