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There is a pressing need to shorten the development period for newmaterials possessing desired properties. For
example, bulk metallic glasses (BMGs) are a unique class of alloy materials utilized in a wide variety of applica-
tions due to their attractive physical properties. However, the lack of predictive tools for uncovering the relation-
ships betweenBMGs' alloy composition anddesiredproperties limits the further application of thesematerials. In
this study, a machine-learning (ML) approach was developed, based on a dataset of 6471 alloys, to enable the
construction of a predictive ML model to describe the glass-forming ability and elastic moduli of BMGs. The
model's predictions of unseen data were found to be in good agreement with most experimental values. Conse-
quently, we determined that an alloy with a large critical-casting diameter would likely have a high mixing en-
tropy, a high thermal conductivity, and a mixing enthalpy of approximately−28 kJ/mol, and that a BMGwith a
small average atomic volume would likely have a high elastic modulus. The efficacy of ML was demonstrated in
furnishing a mechanistic understanding and enabling the prediction of metallic-glass properties.
© 2019 Brunel Centre for Advanced Solidification Tecnhnology, Brunel University London. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
i), zhangty@shu.edu.cn

ion Tecnhnology, Brunel University L
/).
1. Introduction

The amorphous structure of metallic glasses results in distinct me-
chanical and physical properties that are not exhibited by conventional
crystalline alloys. For example, the disordered structure leads to high
yield strength and wear resistance [1,2], high magnetic permeability
ondon. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND li-
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[3], and high corrosion resistance [4] in somemetallic glasses, meaning
that bulk metallic glasses (BMGs) are promisingmaterials for engineer-
ing applications. Paradoxically, however, the absence of structural order
in metallic glasses is not conducive to their bulk manufacture, which
hinders their use and application. Fewer than 1000 BMGs have been de-
veloped in the last 50 years, andmany of these comprisedmultiple com-
ponents; indeed, BMGs usually contain three or more components [5].
In addition, the nonequilibrium nature of the amorphous phase indi-
cates that various processing parameters, such as cooling rates and en-
hanced surface diffusion, affect the formation ability of amorphous
metallic glass [6]. This generates an enormous combinatorial space of
composition-processing parameters for BMGs, rendering a trial-and-
error based design method extremely challenging.

The conventional development of metallic glasses mainly relies on
experience; for instance, metallic glasses are known to form in systems
near deep eutectics [7]. In recent decades, various empirical models
based on factors such as thermodynamics [8–10], valence electron dis-
tribution [11], atomic sizemismatches [12], and transformation temper-
atures [13] have provided fundamental insights into metallic glass-
forming conditions. However, these models are usually limited to cer-
tain metallic glass compositions, and there is no universal model capa-
ble of predicting the glass-forming ability of unknown alloys.

Recently, machine-learning (ML) approaches have been utilized to
predict the properties of metallic materials. For example, Xue et al. de-
veloped ML models to search for shape memory alloys with targeted
transformation temperatures [14,15]. Cheng et al. formulated a mate-
rials design strategy combining ML models with experiments to find
high entropy alloys with large hardness [16]. Feng et al. utilized a
deep neural network to predict the defects in stainless steel [17]. Sun
et al. developedMLmodels to predict the glass-forming ability of binary
metallic alloys [18].Ward et al. constructed aML framework for acceler-
ating the design of engineeredmetallic glasses and validated it via com-
mercially viable fabrication methods [19]. Ren et al. introduced ML-
based iteration and high-throughput experiments to rapidly discover
new glass-forming systems [20]. Several studies have used ML ap-
proaches to identify the correlations between glass-forming ability
and the experimentally measured properties of an alloy [21,22]. These
studies thus confirmed that ML methods were reliable and efficient in
discovering new metallic glasses and predicting their properties.

In this work, we developed and validated a general ML framework
for the prediction of the properties and design of metallic glasses,
based on their compositions. A dataset of metallic glasses was created
by collecting data from several related studies [23–34] and the
Landolt-Bornstein handbook on amorphous ternary alloys [35]. These
data covered variables such as BMGglass-forming ability, critical casting
diameter, and elastic properties. ML tools such as random forest (RF)
and symbolic regression were used to create models for predicting the
desired properties ofmetallic glass compositions. Key descriptors or fea-
tures were screened by a three-step selection method during model
constructions, and symbolic regression was used to developmathemat-
ical expressions based on these features. ThisML frameworkwas shown
to accelerate the development of new metallic glass-forming systems
and provide a greater understanding of the physics underpinning the
properties of metallic glasses.
2. Method

2.1. Data collection

The data on BMGs were collected from several publicly available re-
sources and partitioned into four training sets: glass-forming ability
(GFA); critical casting diameter (Dmax); characteristic transformation
temperatures (CTTs); and elastic moduli (EM). The training sets repre-
sented a wide range of elements, including metals and metalloids,
with the GFA and Dmax datasets containing 54 elements, the CTT
datasets containing 42 elements, and the EM datasets containing 48 el-
ements (Fig. 1).

GFA describes whether an alloy can form an amorphous bulk (i.e., a
BMG) via rapid cooling (e.g., by copper-mold casting, injectionmolding,
or suction casting), an amorphous ribbon (i.e. a ribbonmetallic glass, or
RMG), or a crystalline alloy (CRA). If there have been conflicting reports
about the GFA of individual alloys, the highest GFA was selected for our
dataset. For example, Al25Gd55Ni20 was reported in the Landolt-
Bornstein handbook [35] to form an RMG, but Fang et al. found that
this alloy can form a bulk sample with a diameter of 3 mm [32], so it
was denoted a BMG in our dataset. This GFA dataset consisted of 6471
unique alloy compositions in total, comprising 1211 BMGs, 1552 CRAs,
and 3708 RMGs.

In terms of physical metallurgy, the critical cooling rate of an alloy is
the most reliable and quantifiable measurement of its GFA [34]. This is
the slowest cooling rate above which no crystallization occurs during
the solidification of an alloy, and is determined using data frommultiple
solidifications at different cooling rates. Dmax is a slightly less rigorous
parameter and much easier to experimentally obtain than the critical
cooling rate, as it is the largest diameter or the largest section-
thickness of an alloy when it is cast into a fully amorphous rod or
plate. In general, the slower the cooling rate, the larger the Dmax, and
the higher the GFA.

The Dmax dataset contained values for 5934 entries. For BMG alloys,
only the critical copper-mold casting diameter values reported in the lit-
erature were included, i.e., the Dmax of samples from injection molding
and suction casting were not considered. For RMG alloys, a single and
small value of 0.1 mm for Dmax was assumed as appropriate for this
dataset, as this was half the Dmax of the smallest reported BMG,
Ti50Cu42.5Ni7.5 [34]. The Dmax of CRAs was set at 0. As with the GFA
dataset, if there were multiple values of Dmax, the highest was used.

Various criteria have been proposed to compare the GFA of alloys,
with most based on CTTs [36]. Varying combinations of transformation
temperatures have been found to determine the relationship of Dmax to
GFA criteria, such as the supercooled liquid range ΔT= Tx− Tg [36] and
the reduced glass transition temperature Trg = Tg/Tl [37]. Here, Tg is the
glass transition temperature, Tx is the onset of crystallization tempera-
ture, and Tl is the liquidus temperature. The CTT dataset was assembled
from 674 measurements of differential thermal analysis or differential
scanning calorimetry at a constant heating rate, withmost of the entries
obtained at rate of 20 K/min. When multiple values of a CTT were re-
ported, their averaged value was used here.

The EM data included the shear moduli G and bulk moduli B of
BMGs. The ratio of G to B correlated with the fracture toughness, intrin-
sic plasticity, and GFA of metallic glasses [34]. The Young's moduli can
be calculated with G and B based on the isotropic mechanical property
of BMGs. In addition, strong linear relationships between fracture ten-
sile strength and Young's moduli, hardness and Young's moduli, yield
shear stress and shear moduli were found in the previous works
[34,38,39]. The EM dataset contained 278 unique BMGs, and their mod-
uli were measured with resonant ultrasonic spectroscopy (RUC). The
dataset shows all reported values of a property for each given alloy, in-
dicating that there are multiple values for some properties of a given
alloy. However, the difference between the multiple values is small. To
simplify the following ML process, the average of multiple values was
used for such property of a particular BMG. For example, the values of
shear modulus of Mg65Cu25Tb10 were 19.4 GPa and 19.6 GPa reported
by Wang et al. [34] and Chen et al. [39], respectively. Thus, the mean
of 19.5 GPa was used in the following analysis for the shear modulus
of Mg65Cu25Tb10.

2.2. Feature candidates

Candidate features (X) are the input for an ML model (f) to predict
the desired properties (Y), i.e., Y= f(X). Thus, for a given target property
Y, an adequate set of X had to be identified to ensure that a well-



Fig. 1. The elements included in the four constructed datasets, which described a BMG alloy in terms of its GFA (red fill), Dmax (green fill), CTT (yellow fill), and EM (blue fill).
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performing ML model was generated. As the physics underlying the
glass transformation of an alloy are notwell understood, asmanypoten-
tial descriptions as possible should be included to predict the GFA and
Dmax. The feature candidates of an alloy were thus compiled with the
basic elemental parameters, thermodynamic parameters, valence elec-
tron distribution, and atomic volume of the alloy elements.

The elemental parameters were based on the elemental properties
from experiments or density functional theory (DFT) simulations, and
comprised, inter alia, atomic fundamental properties (e.g., atomic num-
ber, period, group in the periodic table), chemical properties
(e.g., Pauling electronegativity, Mulliken electronegativity), and physi-
cal properties (density, melting temperature, specific heat capacity).
The alloy feature candidateswere calculated from the corresponding el-
emental properties (shown in Table 1) based on the linear mixture rule
(x1) [40] and the reciprocal mixture rule (x2) [41], and their deviation
(xD) [42] and discrepancy (xd) were also calculated [42], with
Eqs. (1)–(4).

x1 ¼ ∑N
i¼1aixi ð1Þ

x2 ¼ ∑N
i¼1

ai
xi

� �−1

ð2Þ

xD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1ai xi−x1ð Þ2
q

ð3Þ

xd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1ai 1−xi=x1ð Þ2;
q

ð4Þ
Table 1
The used 20 basic elemental properties and their values can be seen in Table S1.

Elemental Property (Abbreviation)

Atomic number (AN) Density (D) Mulliken electronegativity
(XM)

Atomic weight (AW) Melting point (Tm) Pauling electronegativity (XP)
Group (Gp) Boiling point (Tb) First ionization potential (I1)
Period (P) Heat capacity (Cp) Second ionization potential

(I2)
Covalent radius (Rc) Thermal conductivity

(K)
Electron affinity (Eea)

Metallic radius (Rm) Heat of fusion (Hf) Work function (W)
Valence electrons
(VEC)

Lattice volume (LP)
where ai and xi are the atomic fraction and elemental properties of the i-
th constituent, respectively.

Thermodynamic parameters reflect the driving force for glass trans-
formation, and these parameters (which are defined in the equations
below) include themixing enthalpy (Hmix) based on Miedema's empir-
ical method [43] (Eq. (5)), the normalized mixing entropy (Smix/R),
based on fundamental thermodynamics [44] (Eq. (6)), the normalized
mismatch entropy (Smis/kB), estimated via a relationship given by
Takeuchi et al. [12] (Eq. (7)), as well as two parameters denoted PHSmis

(Eq. (8)) and PHSS (Eq. (10)) proposed by Rao et al. [45], and a similar
self-defined parameter PHSmix (Eq. (9)):

Hmix ¼ 4
XN
j¼i

XN
i¼1

ΔHijaia j ð5Þ

Smix=R ¼ −
XN
i¼1

ai lnai ð6Þ

Smis=kB≅ Rmdð Þ2=21:92 ð7Þ

PHSmis ¼ Hmix � Smis=kB ð8Þ

PHSmix ¼ Hmix � Smix=R ð9Þ

PHSS ¼ Hmix � Smis=kB � Smix=R; ð10Þ

whereΔHij is themolarmixing enthalpy for binary liquid alloys [12],R is
the gas constant, kB is the Boltzmann constant, Rmd is the discrepancy of
Rm calculated with Eq. (4).

The valence electron distributions comprised the number (sVEC,
pVEC, dVEC) and the fraction (fs, fp, fd) of electrons in the s, p, d valence
orbitals of an element, based on the linearmixture rule [46], as given by
Eq. (11). The equation for the average atomic volume (Vmm and Vmc)
was constructed by Wang et al. [47] to predict the bulk modulus,
which may affect the GFA, and is given by Eq. (12):

f s;p;dð Þ ¼ s;p; dð ÞVEC=VEC1 ð11Þ

Vm m;cð Þ ¼ ∑N
i¼1ai �

4
3
πR3

m;cð Þ ð12Þ

where VEC1 is the average number of valence electrons, as calculated by
Eq. (1).

Image of Fig. 1
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In summary, 94 feature candidates, termed as zero-generation fea-
tures, were generated for further study.

2.3. Feature scaling

As the range ofmagnitudes of the generated feature candidate alloys
varied broadly, the use of Euclidian distances in computations such as
decision trees, neural networks, and K-nearest neighbors (KNN), typical
of some ML models, may not be appropriate. Therefore, the feature-
scaling method was adopted to normalize the scale of features, thus
serving as a preprocessing step prior to feature selection andmodel con-
struction [48]. The min-max normalization (or min-max rescaling)
method was applied to rescale features in this work, and the feature
candidate alloys were scaled to a predefined domain [a, b], according
to Eq. (13):

x0 ¼ aþ b−að Þ x− minxð Þ
maxx− minx

ð13Þ

where a= 0.2, b= 0.8, x is the original feature, x′ is the normalized fea-
ture, andmin x andmax x are theminimum andmaximum value of the
original feature. Tang et al. [49] found that the general domain [0, 1]
might affect the performance of some ML algorithms, e.g. neural net-
works, and they recommended the use of smaller domains, such as
[0.2, 0.8].

2.4. Feature selection

Feature selection is a key process that has a critical effect on the
performance of the ML model. It involves selecting a subset of rel-
evant features for model construction, and enables some irrelevant
features to be discarded with minimal loss of information. Thus, a
three-step feature-selection method (TFS) was adopted to screen
the normalized feature candidates in the GFA and Dmax dataset
(as shown in Fig. 2).

Initially, a feature that is highly correlatedwith other features can be
considered to contain similar information. Thus, a correlation-based fea-
ture selection (CFS) method was used to remove these redundant fea-
tures. The Pearson correlation coefficient (PCC) is a measurement of
the linear correlation between two features X1 and X2, and is given by
Fig. 2. The three-step feature selection method, involving the selection of first-generation fea
selection of second-generation features by comparison of the performance of the variance thr
by comparing the results of sequential forward selection (SFS) and sequential backward select
Eq. (14):

PCC X1;X2ð Þ ¼ E X1−E X1½ �ð Þ X2−E X2½ �ð Þ½ �
σX1σX2

; ð14Þ

where σX1
and σX2

denote the standard deviation of features X1 and X2,
and E is the expectation. PCC has a value between−1 and 1, where−1
represents a wholly negative linear correlation, 1 represents a wholly
positive linear correlation, 0 represents no linear correlation, and a
value N 0.75 or b−0.75 indicates a strong correlation. The highly
cross-correlated features are thus revealed and able to be removed,
and the remaining n features are denoted the first-generation features.
The selection of the first-generation features is also based on domain
knowledge. For example, metallic glass structures are generally built
based on a hard spheres model, wherein the atoms are assumed to be
densely and randomly packed. Thus, Rc1 is removed when it is highly
correlated with Rm1.

After this, a widely used filter method known as variance threshold
(VT)was adopted to further screen the first-generation features. The VT
method assumes that a low-variance feature generally has very little
predictive power, and thus m features whose variance (Var) is below
a certain threshold (as determined by Eq. (15) below) are removed:

Var Xð Þ ¼ E X−E X½ �ð Þ2
h i

: ð15Þ

The ReliefF feature selection algorithm [50] searches for k nearest
neighbor samples from the same class H(x), and for k nearest neighbors
from each different class M(x). During this process, the weights of fea-
tures are adjusted by comparing in-class distances and inter-class dis-
tances after N iterations. This procedure is given by

WN
f ¼ WN−1

f

þ
X

C≠Class xð Þ

P xð Þ
1−P class xð Þð Þ

Pk
i¼1 x−Mi xð Þj j

Nk � range xð Þ

0@ 1A−

Pk
j¼1 x−Hj xð Þ�� ��

Nk � range xð Þ ;

ð16Þ

where P(x) is theprobability of x, and range(x) is thedifference between
the maximum value and minimum value of each feature, which is 0.6
for the normalized features in this study. Next, a subset containing (n-
m) features is selected using of the ReliefF algorithm to accurately
tures by correlation-based feature selection from the feature candidates, followed by the
eshold and the ReliefF algorithm, and finally the determination of the final feature subset
ion (SBS).

Image of Fig. 2
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compare the performance of these features, and the results are denoted
the second-generation features.

Finally, wrapper methods were used to determine the final feature
subsets. Wrapper methods are based on greedy search algorithms, in-
cluding sequential forward selection (SFS) and sequential backward se-
lection (SBS). These evaluate possible feature subsets and select the
subset that produces the best performance for a specific ML algorithm
(which was an RF in this work). Thus, for a given dimensional feature
set X⁎, SFS starts from the null set, and sequentially adds the best feature
x+ that maximizes the prediction accuracy (J) when combined with the
already selected feature subset Xk, until the accuracy is satisfied [51].
This is expressed by

Xkþ1 ¼ Xk þ xþ; xþ ¼ arg max J Xk þ x
� �

; x∈X�−Xk: ð17Þ

In contrast, SBS starts from the full set X⁎ and sequentially removes
the worst feature x− that least reduces the prediction accuracy from
Xk, until the accuracy is satisfied [51], as given by

Xk−1 ¼ Xk−x−; x− ¼ arg max J Xk−x
� �

; x∈Xk: ð18Þ

2.5. Machine learning models

Around 20 ML algorithms available in the WEKA library, including
linear ML algorithms (linear regression, logistic regression, elastic net,
ridge regression), nonlinear ML algorithms (naive bayes, bayes net, de-
cision tree, k-nearest neighbors, locally weighted learning, support vec-
tor machines, Gaussian regression, neural network), ensemble ML
algorithms (random forest, bagging, stacking), were used evaluated in
terms of second-generation features via the cross-validation test [52].
The random forest (RF) algorithm super-performed over the other ML
algorithms and thus was used for further in the study. Sincemathemat-
ical expressions for regression problems were not available in the RF
model, symbolic regression based on genetic programming was used
to distil mathematical formulas from the desired properties and chosen
features [53]. The initial expressions were generated by randomly com-
bining mathematical operators, functions, constants, and non-
normalized chosen features. Next, new formulas were continuously it-
erated by genetic programming and finally evolve to the optimal
formula.

The performance of the classification models wasmeasured by their
classification accuracy, which describes the proportion of the samples
thatwere correctly classified. The performance of the regressionmodels
was measured by the correlation coefficient r

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 byi−y
� 	2

∑n
i¼1 yi−yð Þ2

vuut ð19Þ

and the root mean square error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

1
n

ŷi−yið Þ2
vuut ð20Þ

where byi is the prediction and y is the average of yi, and the r value lies
between 0 and 1, with 1 indicating a perfect fit.

2.6. Cross-validation test

The k-fold (with k= 100) cross-validation (CV) test was conducted
here to evaluate the performance of different ML models. The initial
dataset was randomly and equally split into k sub-datasets, a training
set with (k-1) sub-datasets, and a testing set with the remaining sub-
datasets. The ML model was built on the training set, and the
performance was measured with the testing set. This process was re-
peated k times, and the cross-validation accuracy was obtained by the
average value of the k results; this could be regarded as an estimation
of the testing accuracy.

3. Results and discussion

Here we describe the building of a classification model to determine
the GFA of alloys, a regression model based on alloy composition, an-
other regression model based on CTT to predict Dmax, and two regres-
sion models to predict the EM of an alloy. In addition, mathematical
expressions were developed by symbolic regression and the linear
least-squares method for regression problems.

3.1. GFA model

The Pearson correlation coefficient (PCC) between two features X1

and X2 were calculated, where Xi (i = 1, 2, 3, … 94) denotes the 94
zero-generation features, and the target variable of the GFA data was
not included. Based on the PCC values between −0.75 and 0.75, 35
first-generation featureswere selected from the 94 zero-generation fea-
tures and thus from theGFA dataset. Fig. 3c shows that the CV classifica-
tion accuracy of the ML model built on the CFS subset (CFS-GFA) can
reach 89.52%, which is greater than that of the ML models constructed
on the feature candidates and other subsets.

However, the dimensionality of feature space must be further re-
duced to achieve a balance between performance and complexity,
with a tolerance of 2% for CV classification accuracy. Thus, as shown in
Fig. 3a and b, 14 features with a variance N 0.01 were selected by VT,
and another subset containing 14 features was given by use of the
ReliefF algorithm. The VT subset leads to a cross-validation classification
accuracy (88.89%), more or less the same as that of 88.21% based on the
ReliefF subset. Feature selection was further conducted with the two
subsets by using the SBS and SFS methods. The results show that the
SBS and SFS give the same subset. This feature selection yields the VT-
SS-6 with the six features of VEC1, sVEC, Hfd, Tb2, Gp1, and Wd from the
VT subset and the ReF-SS-6 with the six features of KD, Kd, VECd, Wd,
Smix/R, and Tbd from the ReliefF subset, clearly indicating that VT-SS-6
and ReF-SS-6 have completely different features. Fig. 3c shows that
the ML model with the six VT-SS-6 features (VTS6-GFA) had a CV clas-
sification accuracy of 88.13% and the ML model with the ReF-SS-6 fea-
tures had a CV classification accuracy of 87.15%. The difference
between the two CV classification accuracies is about 1%, although the
two six-features subsets are completely different. This resultmight indi-
cate that there are some correlations between the two subsets. Never-
theless, to simplify the following ML analysis, we took the VT-SS-6
subset as the final feature subset.

A goodMLmodel should be able to provide accurate predictionwith
as less as possible number of features. The CFS-GFA model had the best
classification accuracy of 89.52% with 36 features. The VTS6-GFA model
uses only six features and has a classification accuracy of 88.13%, which
indicates that the six-features play the major role in the classification,
although the classification accuracy is reduced by 1.39%.

Fig. 4a shows the confusion matrix of the VTS6-GFA model, which
has an accuracy of 88.13%. In this context, precision is the ratio of rele-
vant samples to retrieved samples. For example, 1151 alloys were clas-
sified as BMG alloys by theMLmodel, and 1073were labeled as BMGs in
our dataset, meaning that the precision of BMG classificationwas 93.2%.
In addition, recall or true positive rate is the fraction of retrieved rele-
vant samples among the total relevant samples: for instance, 3463 out
of 3708 RMG-labeled alloys were classified as RMG alloys by the ML
model, and thus the recall of RMG was 93.4%. Thus, if one wants to
use this ML model to distinguish GFAs (BMG or RMG) from non-GFAs
(CRA), the precision of GFA predictions is 92.5%, and the recall can
reach as high as 96.4%.



Fig. 3. (a) The variance and (b) the weight of the first-generation features. (c) The k-fold CV classification accuracy of a random forest model of various feature subsets.
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Another widely used measurement, the receiver operating charac-
teristic (ROC) curve, is shown in Fig. 4b. The ROC curve is created by
plotting the true positive rate against the false positive rate. The false
positive rate is the probability of falsely rejecting the null hypothesis.
For example, 70 of 1552 RMG-labeled and 8 of 3708 CRA-labeled alloys
were categorized as BMG alloys by our VTS6-GFA model, and thus the
false positive rate of predicting BMG using this model was 1.5%. The
area under the ROC curve (AUC) can be applied to describe the perfor-
mance of a classification model. AUC usually varies between 0.5 and 1,
where 0.5 represents the uninformative classifier or so-called “random
guess”, a value N 0.95 represents an excellent classifier and a value =
1 is the perfect classifier. The AUC of classifying crystalline alloys and
amorphous alloys classifications is 0.95, and the AUC of distinguishing
BMG-labeled alloys from other alloys can reach 0.98. This excellent pre-
diction accuracy indicates that our model can be used to discover new
GFAs.

The GFA distributions of 6471 alloys with six SBS-chosen features
are shown in Fig. 4c–e, and provide some information on the key fea-
tures required for the formation of BMGs. Alloys should be composed
of elements with significant differences inwork function and heat of fu-
sion; valence electrons might weaken the glass-forming ability; the
boiling temperature of alloys cannot be high; and the presence of sub-
family elements, such as La and Zr, might enhance the glass forming
ability. The 764 incorrect predictions of our ML model are marked
with white crosses, and it was possible that the ML model incorrectly
classified an alloy whose neighbors in the feature space had a different
GFA.

3.2. The Dmax model based on compositions

TheDmax dataset was constructed from the GFA dataset by removing
these BMGswhich did not have the value ofmeasuredDmax. In this way,
the Dmax dataset has the same 35 first-generation features as those in
theGFAdataset. Subsequently, 13 high-influence featureswere selected
by VT and ReliefF to compare their performance. Finally, two six-feature
subsets were selected by SBF and SFSwith a 0.01 reduction of the corre-
lation coefficient (r).

Fig. 5a shows that the ML model (CFS-Dmax) on the CFS subset out-
performs other feature subsets in the k-fold CV test. The ML model on
the ReliefF subset (r = 0.8542) performs much better than the VT sub-
set (r = 0.8339) in the k-fold CV test, i.e., features in the ReliefF subset
are the second-generation features. It can be seen that the ML model
based on the SBS-6 subset (r = 0.8503) has a similar r value to that of
the SFS-6 subset (r = 0.8511). Fig. 5b indicates that the ML model ap-
plied to the SFS-6 subset (Smix/R, Hfd, Hmix, Wd, Tb2, K1) had a smaller
RMSE than does SBS-6 (AN1, KD, Tmd, Tb2, ANd, Tbd) in the k-fold CV
test. The ML model applied to the SFS-5 subset (Smix/R, Hfd, Hmix, Wd,
Tb2) had an r value of 0.8419 and an RMSE of 1.2389 mm, and the

Image of Fig. 3


Fig. 4. The performance of the VTS6-GFA model shown as (a) the confusion matrix; (b) the receiver operating characteristic curve for distinguishing the CRA (red curve), RMG (green
curve) and BMG (blue curve) alloys; the GFA distributions with (c) Hfd-Wd pair, (d) VEC1-sVEC pair and (e) Gp1-Tb2 pair, where the incorrect classifications of the VTS6-GFA model are
marked with white crosses.
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performance increased significantly (r = 0.8511, RMSE = 1.2063 mm)
when adding feature K1. Compared with the best-performing CFS-
Dmax model, 28 features were removed with only a 0.0089 reduction
of r and 0.0272 mm increase of RMSE in the SFS-6 subset.

Fig. 5c shows a plot of theML-predicted values against themeasured
values for Dmax with the SFS-6 subset. Setting a ± 10 mm predicting
Fig. 5. The (a) r and (b) RMSE of the random forest model applied to various feature subsets in k
error.
error yields nine outliers, six of them shown in Table 2 have anerror big-
ger than ±15 mm. The ML model applied to the SFS-6 subset (SFS6-
Dmax) significantly overestimated the Dmax of Zr41Ti14Cu12.5Ni8C2Be22.5,
which can be explained by the fact that it has a much lower Dmax than
a similar composition of Zr41.2Ti13.8Cu12.5Ni10Be22.5. This also might be
the reason for the underestimated Dmax of Zr41.2Ti13.8Cu12.5Ni10Be22.5.
-fold CV. (c) ML-predicted values versus the measured values, with a ±10mm predicting

Image of Fig. 4
Image of Fig. 5


Table 2
Measured and predicted Dmax of six outliers whose predicting error is bigger than
±15 mm.

Alloy Measured Dmax Predicted Dmax

Zr41Ti14Cu12.5Ni8C2Be22.5 5 mm 21.8 mm
Zr41.2Ti13.8Cu12.5Ni10Be22.5 50 mm 5.3 mm
Y36Sc20Al24Co20 25 mm 7.4 mm
Y36Sc20Al24Co10Ni10 25 mm 5.1 mm
Mg59.5Cu22.9Ag6.6Gd11 27 mm 6.2 mm
Pd40Ni40P20 25 mm 0.1 mm
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Therewere four Al-Co-Sc-Y alloys and three X36Y20Al24Co20 (X=Sc, Gd,
Y) alloys in our dataset, and most of these had measured Dmax values
b5 mm, except Y36Sc20Al24Co20. Thus, the Dmax of Y36Sc20Al24Co20 and
Y36Sc20Al24Co10Ni10 were underestimated. The alloys
Mg65Cu15Ag10Gd10 (measured Dmax = 7.5 mm) and Ni-P-Pd RMG
(measured Dmax = 0.1 mm) perturbed the prediction of
Mg59.5Cu22.9Ag6.6Gd11 and Pd40Ni40P20, respectively. In summary, the
discrepancies between predictions and observations might be caused
by two reasons. The first is that the ML model is not able to predict
the property that changes abruptly from its neighbors in the feature
space. In this case, a more rigorous ML model should be developed to
enhance themodel capacity. The other reason is that some observations
may not be reliable. More experiments should be conducted to ensure
the reported experimental data. Reliable data are essential to ML, espe-
cially when the dataset is small. Overall, the SFS6-Dmax model can pre-
dict the Dmax of alloys well.

Symbolic regression (SR) was used to search for a parameter that
can be generated using non-normalized features in the SFS-6 subset
without the six outliers mentioned above, and with the integer con-
stant, and the operators fþ;−;�;�;

ffiffip
; expg. A series of parameters

of Dmax were generated with 1, 2, and 3 features, respectively. Next,
three linear least-square (LLS) models were built with these parame-
ters, revealing that the LLS model using γ3 had the highest r value of
0.7125. Its performance in the k-fold CV test is shown in Fig. 6a.

Eqs. (21) and (22) indicate that a high Smix (mixing entropy,
J · mol−1 · K−1) can promote GFA, whichmeets the confusion principle
[55]. Eqs. (22) and (23) show that K1 (the thermal conductivity,
W ·m−1 · K−1) of a solid alloy will affect its GFA, and that high thermal
conductivity might lead to a slow critical cooling rate, i.e. big casting di-
ameter [56]. The influence of Hmix (mixing enthalpy, kJ · mol−1) can be
seen in Eq. (23), where a weakmixing enthalpy fosters the formation of
a solid-solution phase, and an ultra-negative mixing enthalpy leads to
Fig. 6. (a) The performance of LLSs based on the symbolic regression parameter γ3 in the k-fold
test.
the formation of a intermetallic phase [56]; both of these hinder glass
formation. Thus, three prerequisites for forming BMGs are (1) a high
mixing entropy, (2) a high average thermal conductivity, and (3) an ap-
propriate negativemixing enthalpy, approximately equal to−28 kJ/mol

(
∂γ3

∂Hmix
¼ 0).

D max−1F∝γ1 ¼ exp
−6

Smix=R

� �
ð21Þ

D max−2F∝γ2 ¼ K1 exp
−7

Smix=Rð Þ2
 !

ð22Þ

D max−3F∝γ3 ¼ Smix=Rð Þ3

þ K1Smix=R−78

791þ 56Hmix þ H2
mix þ exp 1917−1744Smix=Rð Þ ð23Þ

3.3. Dmax model based on CTTs

One RF model, one LLS model based on symbolic regression, and 20
LLSmodels based on previously proposed GFA criteria were built on the
CTT dataset without six outliers described in Section 3.2. The perfor-
mance of these models was compared by a k-fold CV text. It can be
seen in Table 3 that the ML model (Fig. 6b) outperformed other formu-
las in the k-fold CV test, as it had a much higher r (0.7723) and smaller
RMSE (2.8915 mm). The next best was the LLS model based on SR (r=
0.6721), and then the χ-criteria.

The PCC values of 94 feature candidates and three CTTs were calcu-
lated. The CTTs and six features, namely Tm1, Hf1, Gpd, Gp1, XP1, and XPd,
were highly correlated with each other. Thus, the symbolic regression
was conducted using these six non-normalized features, the integer
constant, and the operators fþ;−;�;�;

ffiffip
; expg. SR parameters were

generated for Tg, Tx, and Tl, respectively, as given by Eqs. (24), (25),
and (26):

Tg∝φg ¼ 17
37

Tm1−
H3

f1

148
þ 1354

Hf1

 !
ð24Þ

Tx∝φx ¼ Tm1 ð25Þ

Tl∝φl ¼ Tm1−3Rm1Tm1: ð26Þ
CV test. (b) The performance of the RF model on transition temperatures in the k-fold CV

Image of Fig. 6


Table 3
r values and RMSE values of the RF model and LLS model applied to the symbolic regression parameter and 20 GFA criteria.

GFA criteria Formula ref R RMSE

ΔTx Tx − Tg [36] 0.4261 4.1121
Trg Tg/Tl [37] 0.2047 4.4493
γ Tx/(Tg + Tl) [23] 0.4713 4.0089
ΔTrg (Tx − Tg)/(Tl − Tg) [57] 0.5054 3.9221
α Tx/Tl [58] 0.4088 4.1482
βM (Tx/Tg) + (Tg/Tl) [58] 0.4847 3.9757
δ Tx/(Tl − Tg) [59] 0.2951 4.3430
γm (2Tx − Tg)/Tl [60] 0.4934 3.9535
φ Trg(ΔTx/Tg)0.143 [61] 0.4685 4.0157
ξ (Tg/Tl) + (ΔTx/Tx) [62] 0.4649 4.0243
βY (TxTg)/(Tl − Tx)2 [63] 0.3957 4.1745
1/ωL ωL = (Tg/Tx) − [2Tg/(Tg + Tl)] [64] 0.5362 3.8369
ωJ [Tl(Tl + Tx)]/[Tx(Tl − Tx)] [65] 0.4307 4.1024
θ [(Tx + Tg)/Tl] · [(Tx − Tg)/Tl]0.0728 [66] 0.4438 4.0731
ωA [Tg/(2Tx − Tg)] − (Tg/Tl) [67] 0.4972 3.9438
γc (3Tx − 2Tg)/Tl [68] 0.5136 3.9001
β′ (Tg/Tx) − (Tg/1.3Tl) [69] 0.4890 3.9649
ωB (2Tx − Tg)/(Tl + Tx) [70] 0.5036 3.9270
Gp [Tg(Tx − Tg)]/[(Tl − Tx)2] [21] 0.5520 3.7901
χ [(Tx − Tg)/(Tl − Tx)] · [Tx/(Tl − Tx)]1.47 [71] 0.5527 3.7883
RF Dmax = f(Tg,Tx,Tl) This work 0.7723 2.8915

SR
T2
g

T3
l

þ 1940
136263Tl−1426TlðTx−TgÞ þ

T2
g

39Tlð14Tl−ðTx−TgÞ2Þ
This work 0.6721 3.3655
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The SR results showed that Tg, Tx, and Tl (critical transition tempera-
ture, K) are largely and directly influenced by Tm1 (averagemelting tem-
perature, K), which is shown by the fact that r N 0.93 in Fig. 7a. Eq. (24)
indicates that the glass transition temperature will increase then de-
crease asHf1 (average heat of fusion, kJ · mol−1) increases. The liquidus
temperaturewill increase asRm1 (average atomic radius, nm) decreases,
and the small atomic radiusmight enhance the resistance of the alloy to
phase transition.

3.4. EM model

In our previous work on the prediction of the mechanical properties
of metal-metal amorphous alloys [72], four features (Xp1, Vmm, Rmd, and
Smix/R) were found to be crucial. Extending the results to the dataset
built in this work, ML models have been constructed to predict the EM
of metallic-metallic and metalloid-metallic bulk metallic glasses. The
global optimization method and the exhaustive feature selection
method was utilized in this low-dimensional feature space. Fifteen ML
models were built on all possible subsets of four influential features,
and the performance of these ML models was compared (as shown in
Fig. 8a and b) to find the best predictive model for the shear (G) and
bulk (B)moduli, respectively. The r value of theMLmodel for predicting
shearmoduli reached amaximum of 0.9836when the subset contained
Fig. 7. (a) The linear relationship between the critical transformation temperature and average
regression parameter (b) φg and (c) φl in a k-fold cross-validation test.
Rmd and Xp1, and the RMSE reached a minimum of 3.609 GPa. The r
value for bulk moduli reached a maximum of 0.9843 when the subset
contained all features, and this decreased slightly to 0.9840 when Rmd
was removed. Thus, the subset containing Xp1, Vmm, and Smix/R, which
had an RMSE of 9.531 GPa, was considered as the best subset for bulk
moduli.

Fig. 8c and d show the excellent predictive power of this subset, in
the plot of the ML-predicted values against the measured values for G
and B, respectively, with the best selected subset having three features.
There are four exceptions, shown as Table 4 and dots outside the blue
region. The high measured shear modulus (N75 GPa) of
Fe49Cr15Mo14C15B6Er1 and Fe50Mn10Mo14Cr4C16B6, whose Xp1 are close
to Ni80P20, led to the overestimation of Ni80P20. The Vmm value of
Fe71Nb6B23 (measured B = 182.6 GPa) is similar to that of Fe80P11C9;
therefore, the ML model overestimated the modulus of Fe80P11C9. The
similarity of Vmm and Xp1 values between Pt74.7Cu1.5Ag0.3P18.0B4.0Si1.5
and Au49.0Ag5.5Pd2.3Cu26.9Si16.3 led to the incorrect ML model-based
prediction of their bulk moduli.

The SR parameters α and β were generated using four non-
normalized features, the integer constant, and the operatorsfþ;−;�;�
;
ffiffip
; expg. The performances of LLS models built on two-features pa-

rameters in the k-fold CV test are shown in Fig. 9. The LLS models
based on these SR parameters all performed well, with r N 0.93.
melting temperatures. The performances of linear least square models based on symbolic

Image of Fig. 7


Fig. 8. The performance of RF models on all possible subsets of four influential features in predicting (a) shear moduli and (b) bulk moduli. The performance of the MLmodel on the best
subset of three features in predicting (c) shear moduli with a ±15 GPa error and (d) bulk moduli with a ±30 GPa error.

10 J. Xiong et al. / Materials and Design 187 (2020) 108378
The SR results are given by Eqs. (27)–(29), and show that a smaller
Vmm (average atomic volume, Å3) results in a higher G (shear modulus,
GPa) and B (bulk modulus, GPa). Eq. (28) supports Park's work, as it
shows that high mixing entropy coupled with disordered amorphous
structure manifests small shear transformation zone sizes, which
could make the shear bands more difficult to form and propagate,
Table 4
Measured and predicted elastic modulus of four exceptions.

Alloy Measured EM Predicted EM

Ni80P20 G = 36.7 GPa G = 56.1 GPa
Fe80P11C9 B = 148 GPa B = 187 GPa
Pt74.7Cu1.5Ag0.3P18.0B4.0Si1.5 B = 216.7 GPa B = 161.9 GPa
Au49.0Ag5.5Pd2.3Cu26.9Si16.3 B = 132.3 GPa B = 203.4 GPa
leading to higher shear moduli [73]. When considering Pauling electro-
negativity, higher electronegativity corresponds to stronger atomic
bonding, and therefore higher bulk moduli.

G1F∝α1 ¼ 1
Vmm

ð27Þ

G2F∝α2 ¼ 1
Vmm−2Smix=R

ð28Þ

B1F∝β1 ¼ 1

4169þ 2V3
mm

ð29Þ

B2F∝β2 ¼ 1366X2
P1

Vmm þ 4X2
P1

þ 456

214−V2
mm

ð30Þ

Image of Fig. 8


Fig. 9. The performance of the LLS based on SR parameters in predicting (a) shear moduli and (b) bulk moduli.
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3.5. Experimental validation and iterations

We address a design problem as finding new kinds of BMG alloys. In
this section, we will show a ML solution for this issue.

The ability to form a bulk metallic glass was not measured during
melt spinning, i.e., the bulk-forming ability of an RMG alloy is unknown.
This limits the ability of the MLmodel to classify RMG alloys, especially
distinguish RMG from BMG alloys. Thus, we can find new BMG alloys
from RMG alloys (shown as Table S2) which are categorized as BMG al-
loys by the VTS6-GFA model. Thirteen RMGs with a high probability
(N60%) of belonging to BMGwere chosen and their glass-forming ability
were rechecked, five of them, La55Al20Cu25 [74], Zr60Al15Cu25 [75],
Pd56Ni24P20 [76], Mg65Cu25Ce10 [77], and La50Al25Cu25 [78] are found
to form bulk samples. The classification performance of the VTS6-GFA
model improved as shown in Fig. 10. Those validations and iterations
confirm the correctness, generalization and predictive ability of our
ML model.
4. Conclusion

In this study, we have presented a general ML framework for the
prediction, design, and understanding of metallic glasses. These models
were constructed based on datasets built from metallic glass experi-
ments comprising over 6000 samples. We used these datasets to train
and cross-validate ML models with an RF algorithm to predict the
GFA,Dmax, shearmoduli, and bulkmoduli. A three-step feature selection
Fig. 10. (a) The performance of the updated VTS6-GFA model shown as the confusion matrix;
updated model with feedback.
method was proposed for ML, and it performed well with the GFA and
Dmax models.

Based on theML-based GFAmodel, BMGs should be composed of el-
ements with significant differences in work function and heat of fusion;
valence electrons might weaken the glass-forming ability; the boiling
temperature of alloys cannot be high; and the presence of subfamily el-
ements might enhance the glass forming ability.

In addition, mathematical expressions were generated from SR and
LLSs for regression problems. Three properties that favor the formation
of BMGs with large casting diameters were proposed, as follows:
(1) high mixing entropy, (2) high average thermal conductivity, and
(3) appropriate negative mixing enthalpy, of approximately −28 kJ/
mol. The CTTs of metallic glasses were thus determined to be largely
and directly influenced by the average melting temperatures of the al-
loys of which they are composed. The shear and bulk moduli of BMGs
are negatively correlatedwith the average atomic volume of the constit-
uent alloys, themixing entropy enhance the shearmoduli and the aver-
age Pauling electronegativity influences the bulk moduli of BMGs.

This ML framework can guide the discovery and understanding of
new BMGs with desired properties.
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