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Abstract: Mathematically describing the physical process of a sequential data assimilation system
perfectly is difficult and inevitably results in errors in the assimilation model. Filter divergence is a
common phenomenon because of model inaccuracies and affects the quality of the assimilation results
in sequential data assimilation systems. In this study, an approach based on an L1-norm constraint
for filter-divergence suppression in sequential data assimilation systems was proposed. The method
adjusts the weights of the state-simulated values and measurements based on new measurements
using an L1-norm constraint when filter divergence is about to occur. Results for simulation data
and real-world traffic flow measurements collected from a sub-area of the highway between Leeds
and Sheffield, England, showed that the proposed method produced a higher assimilation accuracy
than the other filter-divergence suppression methods. This indicates the effectiveness of the proposed
approach based on the L1-norm constraint for filter-divergence suppression.

Keywords: sequential data assimilation system; filter divergence; gain matrix; L1-norm constrained;
short-term traffic flow forecasting

1. Introduction

Short-term traffic flow forecasting is a crucial component in many intelligent transportation
systems (ITSs) [1–3]. Short-term traffic flow forecasting refers to predicting traffic flow in units of
seconds and minutes mainly for traffic control and guidance, which can better describe real traffic
conditions [4,5]. To achieve dynamic traffic management or provide advanced traveler information,
short-term traffic flow forecasting that reflects real-time local fluctuations or traffic congestion resulting
from fast-changing traffic flow values is necessary [6,7]. Due to the stochastic nature of traffic flow, robust
and accurate prediction algorithms have become increasingly important [4,8–10]. Taking advantage
of measurements and models is commonly used to make predictions [11–13]. Data assimilation
(DA) is an important method that can be used to estimate the state vectors by integrating physical
model information and measurements [14–17]. It can take advantage of measurements and models
to make predictions by fusing measurement information during the model process based on the
spatial–temporal distribution of the data and errors in the measurement and background fields [18].
Related DA methods have been applied to short-term traffic state predictions [11,12,19]. A DA system
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has three indispensable components: the assimilation model, the measurements, and the assimilation
method. The mathematical expression of DA is as follows [20]:

Xk = Mk,k−1Xk−1 + Gk,k−1wk−1 (1)

yk = HkXk + vk (2)

Equation (1) is a dynamic state equation, which expresses changes of the state vector over the time.
M is the dynamic state model with a discrete time index k. Equation (2) is an observation equation.
H is the time-dependent observational operator that connects the state X and measurements y. w and
v are Gaussian random noise functions with wk ∼ N(0, Qk) and vk ∼ N(0, Rk). G is a coefficient matrix.

The assimilation model, measurements, and sequential assimilation method constitute the
sequential data assimilation (S-DA) system. As one of the implementation classes of data assimilation,
the sequential assimilation method posteriorly estimates state vectors when measurements are
available [21–24]. The filter-divergence phenomenon always occurs in S-DA systems, especially in
Kalman series assimilation algorithms such as the Kalman filter (KF) or the ensemble KF (EnKF)
methods [14,25,26]. The goal of this paper was mainly to study how to suppress the filter divergence
phenomenon that occurs in the KF method and how to apply it to short-term traffic flow forecasting.
Although the EnKF method behaves well in nonlinear and high-dimensional systems, especially when
the system is extremely complicated and its gradient is difficult to acquire, it is popular in geophysical
or meteorology areas, but rarely used in short-term traffic flow forecasting. The KF method outperforms
many other methods in many traffic flow predictions [27,28]. It is a well-known technique in linear
system to track state values over time [29] and it is a basic algorithm in S-DA systems. It updates the
state variables using real-time measurements and adapts to changes in traffic flow [29–32]. Furthermore,
the KF method provides efficient computations and requires little information storage [33]. Based on
these advantages, the KF algorithm was used in the S-DA systems and is presented below to study how
to suppress the filter divergence phenomenon and apply it to the prediction of traffic flow. Forecasting
and updating are two components of the KF method, and the equations for both are shown in Table 1.

Table 1. Kalman filter method adapted from [34].

Forecast x f
k = Mk,k−1xa

k−1
P f

k = Mk,k−1Pa
k−1Mk,k−1

T + Gk,k−1Qk−1Gk,k−1
T

Update
Kk = P f

k Hk
T
(
HkP f

k Hk
T + Rk

)−1

xa
k = x f

k + Kk

(
yk −Hkx f

k

)
Pa

k = (I−KkHk)P
f
k

Matrix Q and R are the covariance matrix of the Gaussian noise of state and the measurement
equation, respectively. In the KF method, they are assumed to be uncorrelated [30,31,34]. The K matrix
in the updated component of the KF method shown in Table 1 is the Kalman gain matrix and is the
weight of the state forecast values and measurements.

In theory, the reason for the filter-divergence phenomenon in the KF method is that the K matrix
becomes increasingly smaller over the assimilation evolution. This decrease results in a weak correction
of the measurements on the state model and ultimately leads to a filter-divergence phenomenon [15,35].
The filter-divergence phenomenon in the KF method mainly arises from two factors. The first factor
is the limitation of the computer word length, which causes errors such as rounding errors [36].
The accumulation of these errors reduces the filtering accuracy. When the accumulation of errors is
significant, it causes the calculation error variance matrix to lose its positive definiteness and symmetry.
Consequently, the deviation between the calculated and theoretical K matrices will increase. The second
factor is a cognitive limitation, which results in improper and inaccurate descriptions of the model and
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its statistical noise information. Furthermore, this limitation causes mismatching between the simulated
values from the state model and the measurements as the unknown model errors propagate in the
covariance matrix during the KF method process [15]. In other words, as the algorithm progresses,
the measurement covariance Q grows, whereas the model covariance P shrinks. Thus, the model
credibility increases, and the estimated values are mainly acquired from the model’s analog outputs.
This study addressed solutions for suppressing the filter divergence in the KF method of the S-DA
systems resulting from these cognitive limitations. Selecting a classic case as an example, that is, target
tracking with uniform motion [37], it was possible to intuitively demonstrate the phenomenon of
filter divergence arising from cognitive limitations. The assimilation models for target tracking are
expressed as follows: {

xk+1 = xk + v× k + wk
yk = xk + δk

(3)

where xk is the position of the tracking target at time k, and x0 = 205m.v is the speed with v = 1 m/s;
yk denotes the measurements of the target position; wk and δk are the noise of the dynamic state and
observation models with wk ∼ N(0,Γw) and δk ∼ N(0,Γδ), respectively. Γw and Γδ were assumed to be
1 in this test.

Due to cognition limitations, it is supposed that the model given by Equation (3) was mistakenly
selected as follows: {

xk+1 = xk + wk
yk = xk + δk

(4)

The KF assimilation method was used to estimate the target position under the two models given
by Equations (3) and (4). The errors between the predicted values and the real measurements were
calculated through 1000 simulations. The results are shown in Figure 1.
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Figure 1. Errors of the assimilation results under the two models.

As shown in Figure 1, the simulation errors acquired from the correct model in Equation (3) were
far smaller than those obtained from the incorrect model in Equation (4). Filter divergence occurred in
the forecasting results of the target position using the wrong forecasting model with the KF method.
The main reason that filter divergence occurred in the incorrect model was that this model did not
consider the speed information. As v× k items were missing in the incorrect model, the model errors
were underestimated.

Various methods have been proposed to suppress the filter divergence caused by inaccurate
assimilation models. Initially, gain matrix adjustment methods were commonly used [38,39] including
constant gain methods, stage-constant gain methods, and finite-lower-bound gain methods. These
methods force the filter gain matrix K to decrease to a certain value to avoid filter divergence. However,
these methods are not precise enough, as the determination of the constant gain matrix and its limited
values always rely on experiences. The limited memory method also can effectively suppress filter
divergence [40]. This method reduces the influence of historical data on the gain matrix construction;
however, the length of the memory is difficult to select. In addition, the covariance weighting (C-W)
method [41] and the adaptive Kalman filter (A-KF) method [42–46] have commonly been used and
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are effective for suppressing filter divergence. The C-W method [41] suppresses the filter divergence
by adding a weight or a fading factor to inflate the model error covariance matrix. After this, the
dependence of the forecasting results on inaccurate models can be reduced, and the suppression of the
filter divergence can be achieved. This method is often used in fields that require a balance of precision
and computational efficiency. The A-KF method can estimate the state model error covariance matrix
Q and the measurement error covariance matrix R online in real time to suppress filter divergence.
The A-KF method is usually used in fields in which an accurate noise model is not available, but high
precision is required. These two methods suppress the filter-divergence phenomenon by adjusting the
model error covariance matrices during the KF method process in real-time to reduce the influence of
the model error or model discrepancy term in the propagation of the covariance matrix on the filtering
results. However, selecting a weight or inflating factor in the C-W method is difficult. Additionally,
in the A-KF method, it is challenging to ensure that the calculation error covariance matrix is suitable
for the dynamic noise in an actual dynamic process [47].

In this paper, an approach based on an L1-norm constraint for filter-divergence suppression in the
S-DA system was proposed and applied to short-term traffic flow forecasting to verify its effectiveness.
The advantages of the filter-divergence suppression method based on the L1-norm constraint method
are that it can guarantee high precision and it is easy to implement. Three critical items were
investigated: (i) an inaccurate S-DA system that generates filter divergence for short-term traffic
flow forecasting; (ii) an approach based on the L1-norm constraint for filter-divergence suppression;
and (iii) the application of the S-DA system based on the L1-norm constraint method to short-term
traffic flow forecasting to verify its effectiveness compared with other methods.

The remainder of the paper is organized as follows. In Section 2, an inaccurate S-DA system
that generated filter divergence for short-term traffic flow forecasting is presented. In Section 3,
a filter-divergence suppression method based on the L1-norm constraint is proposed. Section 4 gives
a numerical example. In Section 5, short-term traffic flow forecasting application experiments are
described. Section 6 presents the results and Section 7 presents our conclusions.

2. Representation of Filter Divergence Phenomenon in Sequential Data Assimilation System for
Short-Term Traffic Flow Forecasting

Filter divergence occurs in parametric models in the S-DA system. Recently, vector
autoregressive (VAR) models have been widely applied to short-term traffic flow forecasting [48,49].
VAR models are based on the assumption that the traffic flow of the current path in time
interval [kT, (k + 1)T], expressed as qpc(k + 1), is related not only to its own traffic flow values
in n previous time intervals qpc(k), qpc(k− 1), · · · , qpc(k + 1− n), but also to the corresponding
values of its m adjacent paths: [qpa1(k),qpa2(k),· · · ,qpam(k)] [qpa1(k− 1),qpa2(k),· · · ,qpam(k− 1)],· · · ,
[qpa1(k + 1− n),qpa2(k + 1− n),· · · ,qpam(k + 1− n)]. T is the forecasting time period, and k = 1, 2, . . ..
Future values can be acquired from the past values and their correlations analyzed. In this study,
the traffic flow forecasting of qpc(k + 1), which can be obtained from the VAR model presented
previously, is expressed as follows [50]:

qpc(k + 1) = f (F(k), F(k− 1), . . . , F(k− n)) (5)

where F(k) denotes the traffic flow values of the current and adjacent paths at time interval [(k− 1)T, kT],
and f (·) denotes a nonlinear function.

Equation (5) can be rewritten in detail as follows:

r(k + 1) = ξ0(k) × S(k) + ξ1(k) × S(k− 1)+
ξ2(k) × S(k− 2) + . . .+ ξn(k) × S(k− n) + ν(k)

(6)

with
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r(k + 1) =

qpc(k+1)
qpc(k+1)

S(k) =
[

qpc(k)
qpc(k)

qpai (k)
qpai (k)

]T
(i = 1, 2, 3, . . . , m)

(7)

The unknown parameters [ξ0(k), ξ1(k), . . . , ξn(k)] in Equation (6) are treated as state vectors,
which are also shown in Equation (8) and these vectors need to be calculated in the S-DA system.
In Equation (7), qpc(k + 1) denotes the average value of the traffic flow along the current path calculated
by historical flow measurements at time interval [kT, (k + 1)T] on the same day in previous consecutive
weeks; qpc(k) represents the historical traffic flow values of the current path at time interval [(k− 1)T, kT];
qpc(k) is the corresponding average value; qpai(k) represents the traffic flow values of adjacent paths pai
at time interval [(k− 1)T, kT], and qpai(k) represents the corresponding average values. In this study,
n was set to 2.

The form of Equation (6) can be related to Equations (1) and (2) as follows:
Mk,k−1 = I, Gk,k−1 = 0
Xk = [ξ0(k), ξ1(k), . . . , ξn(k)]

T

yk = r(k + 1)
Hk =

[
ST(k), ST(k− 1), ST(k− 2), . . . , ST(k− n)

] (8)

In the S-DA system, filter divergence will occur if the assimilation model is not correct. The essence
of filter divergence is that the Kalman gain matrix K becomes increasingly smaller and even tends
to zero over the assimilation evolution process. Consequently, the relative deviation between the
estimated state values and the true values becomes increasingly larger. To display this phenomenon
intuitively, it was assumed in this study that our understanding of the traffic flow forecasting system
was incomplete and inaccurate. The system in Equation (7) was incorrectly taken as follows:

S(k) =

qpc(k)

qpc(k)
,

qpa1(k)

qpa1(k)
, · · · qpa j(k),

qpa j+1(k)

qpa j+1(k)
, · · ·

T

(9)

As an example to display the filter divergence more intuitively, the traffic flow forecasting results
of path 7768 (LM838), which is a path of England’s highway system, were obtained using the correct
and incorrect models. Without loss of generality, the forecasting results on workday Monday and
non-workday Saturday are given. Figure 2 shows that the filter-divergence phenomenon occurred on
both Monday and Saturday using the incorrect model with the S-DA system based on the KF method.
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3. Methodology

Figure 3 shows the overall technical framework of the filter-divergence suppression approach
based on the L1-norm constraint in the KF assimilation method of the S-DA system.
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Filter-Divergence Suppression Approach Based on L1-norm Constraint:
The key to suppressing filter divergence is to calculate the proper weights of the state estimation

and new measurements, that is, the Kalman gain matrix K. When filter divergence occurs, it means
that the Kalman gain matrix K is too small to balance the weight between the simulated and measured
values when calculating the forecasting results. This also means that the new measurements have
a weak correction effect on the state model during the assimilation process. Thus, we proposed
an approach to calculate the proper Kalman gain matrix K when divergence was about to occur by
improving the ability of the new measured values to correct the state. The specific way to acquire
the matrix K in the proposed method was to force the measurement value ycal calculated from the
assimilation model to be close to the true measured value yobs.

Thus, the objective function is the minimum value between ycal and yobs based on the L1-norm
criterion. The L1-norm and L2-norm are commonly used as objective functions to be minimized [51].
However, objective functions based on the L1-norm criterion have better resistance to noise. The L1-norm
constraint function for calculating the Kalman gain matrix K is as follows:

min: ‖ycal
k (K) − yobs

k ‖1 (10)

where ycal is the estimated measurement calculated from the state information, and yobs is the new
measurement at the current interval [(k− 1)T, kT].

Based on Table 1 and Equations (2), (7), and (8), ycal can be calculated as follows:

ycal
k (K) = qpc(k) = Hk·xa

k(K)·qpc(k) (11)

where xa
k is an expression involving the K matrix.

Combining Equations (10) and (11), the objective function can be further expressed as:

min: ‖Hk·xa
k(K)·qpc(k) − yobs

k ‖1 (12)
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To acquire optimal solution of the gain matrix K when Equation (12) is minimum, the gradient
projection method [52–54] or conjugate gradient method [55–57] can be used.

To determine whether filter divergence occurs, a more commonly used criterion is as follows [58]:

vkvT
k ≤ r·

(
HkP f

k Hk
T+Rk

)
(13)

where vk = yk −Hkx f
k and r ≥ 1. Filter divergence will occur if Equation (13) is not satisfied.

4. Numerical Study

To verify the effectiveness of the filter suppression approach based on the L1-norm constraint,
two commonly used and effective methods for suppressing filter divergence were employed, namely
the C-W and A-KF methods. The original KF method [34], C-W method [41], A-KF method [44],
and proposed method based on the L1-norm constraint were applied in the numerical example of
filter-divergence suppression, as shown in Equation (4) and Figure 1. As selecting a weight or inflating
factor in the C-W method is difficult, in following experiments, an adaptive inflation was used to
acquire the weight or fading factor to inflate the model error covariance matrix [41]. The results were
then compared and analyzed.

To display the results clearly, the cumulative absolute errors average (Cum-AEA) values of each
method were given, calculated as follows:

Cum−AEA =
1
k

k∑
i=1

∣∣∣x̂(i) − x(i)
∣∣∣ (14)

where x̂(i) denotes the forecasted traffic flow value, and x(i) denotes the corresponding true value.
The smaller the values of Cum-AEA, the better the forecasted results. Figure 4 shows the Cum-AEA
values acquired using the four methods mentioned previously.
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using four methods.

To evaluate the assimilation forecasting results, two commonly used evaluation criteria, the root
mean square error (RMSE) [1,6,59,60] and the mean absolute percentage error (MAPE) [1,6], were used
and were calculated as follows: 

RMSE =

√
1
n

n∑
k=1

(x̂(k) − x(k))2

MAPE = 1
n

n∑
k=1

|x̂(k)−x(k)|
x(k)

(15)

where x̂(k) denotes the forecasted traffic flow value, and x(k) denotes the corresponding true value.
The smaller the values of RMSE and MAPE, the better the forecasted results.
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Table 2 displays the RMSE and MAPE (%) values of the assimilation results acquired from
the original KF method, the C-W method, the A-KF, and the proposed method based on the
L1-norm constraint.

Table 2. Root mean square error (RMSE) and the mean absolute percentage error (MAPE, %) values of
the assimilation results acquired using the four methods.

RMSE MAPE (%)

KF method 0.5647 31.81
C-W method 0.0368 0.16
A-KF method 0.0356 0.14

Proposed method 0.0340 0.12

As shown in Figure 4 and listed in Table 2, a filter-divergence phenomenon occurred using the KF
method. The corresponding RMSE and MAPE values were 0.5647 and 31.81%, respectively. Compared
with the results from the KF method, filter divergence was suppressed to various degrees under the
C-W method, the A-KF method, and the proposed method based on the L1-norm constraint. The RMSE
and MAPE values acquired from the proposed method were 0.0340 and 0.12%, respectively, which were
the smallest values out of all methods. Compared with the C-W and A-KF methods, the RMSE values
were reduced by 7.61% and 4.49%, respectively, and the MAPE values were reduced by 25% and 14.29%,
respectively. This result indicates that the proposed method based on the L1-norm constraint could
suppress the filter divergence problem efficiently with the highest assimilation accuracy. To verify the
applicability of the proposed method, an empirical study is presented in the next section.

5. Empirical Study

5.1. Study Area and Material Description

The datasets used in this study were downloaded from the Highways England website
(highwaysengland.co.uk). The data were from a sub-area of the highway between Leeds and Sheffield,
England, as shown in Figure 5a. Data from Monday to Sunday for each path were collected. The time
interval for the data was 15 min. The data for each path used in the S-DA system contained eight days
from consecutive weeks. As the mean traffic flow values are needed in the assimilation models shown
in Equations (6) and (7), datasets of the former seven days were used for model construction in the
S-DA system, and the data from the eighth day were employed to test the effectiveness of the proposed
approach. Without loss of generality, traffic flow forecasting results from Monday to Sunday were
acquired and analyzed. Furthermore, as traffic flow in the early morning and late night was low and of
little concern to traffic management, the forecasting results from 6:00 a.m. to 9:00 p.m. were examined.
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5.2. Test Design

In this section, the S-DA system based on the proposed L1-norm constraint-based method was
applied with the original KF method [34], the C-W method with an adaptive inflation [41], and the
A-KF method [44] to acquire the traffic flow forecasting results of the paths shown in Figure 5a.
The effectiveness of the proposed method was verified by comparing the results. To illustrate the
analysis in detail, the forecasting performances of the six paths shown in Figure 5b are listed first.

6. Results and Discussion

Traffic flow predictions on workday Monday and non-workday Sunday for path 7078(LM862),
which was part of the study area shown in Figure 5b, were computed first using the KF method, the C-W
method, the A-KF method, and the proposed L1-norm constraint-based method under the incorrect
model shown in Equation (9) as an example to demonstrate the performance of the proposed method
in detail and the results are shown in Figures 6 and 7, respectively. The results presented showed
that filter divergence occurred when only using the KF method under the incorrect model; however,
the filter divergence was alleviated to different degrees after using the C-W, A-KF, and L1-norm
constraint-based methods. Furthermore, the true values were added to verify the effectiveness of
these three filter-divergence suppression methods. Results showed that the best performance for
filter-divergence suppression was obtained using the L1-norm constraint-based method on both
Monday and Sunday.
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To evaluate the assimilation forecasting results, the two commonly used evaluation criteria shown
in Equation (15) were used. The RMSE and MAPE values for the six paths shown in Figure 5b were
acquired from the S-DA system based on the KF, C-W, A-KF, and L1-norm constraint-based methods
under the incorrect model and the KF method under the correct model (Equation (7)). The values are
presented in Figures 8 and 9, respectively. The RMSE and MAPE values calculated from the KF method
using the correct model were set as a reference to verify the effectiveness of each filter-divergence
suppression method. Figure 9 showed that the MAPE values of each path acquired using the KF
method under the incorrect model reached almost 100%, which indicated that filter divergence occurred.
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The traffic flow forecasting performances improved to different degrees when using the C-W, A-KF,
and L1-norm constraint-based methods. The RMSE and MAPE values of each path on Monday to
Sunday acquired using the C-W, A-KF, and L1-norm constraint-based methods were smaller than those
from the KF method under the incorrect model. Furthermore, compared with the results from the C-W
and A-KF methods, the results obtained using the proposed L1-norm constraint-based method were
much closer to those from the KF method under the correct model. This indicates the effectiveness of
the proposed L1-norm constraint-based method.
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The average RMSE and MAPE values of the forecasting results for the six paths shown in
Figure 5b acquired using the KF (under both incorrect and correct models), C-W, A-KF, and L1-norm
constraint-based methods are listed in Tables 3 and 4, respectively. Compared with the KF method
under the incorrect model, the average RMSE and MAPE values decreased significantly, especially
those obtained using the proposed L1-norm constraint-based method. The best performance of the
L1-norm constraint-based method reduced the average RMSE by 823.3 (from 901.86 to 78.56), and the
relative accuracy improved by 91.29%. The corresponding average MAPE decreased by 92.51% (from
99.75% to 7.24%).

Table 3. Average RMSE values for the six paths from Monday to Sunday.

RMSE

KF C-W A-KF Proposed Method KF
(Correct Model)

Monday 842.65 394.20 152.55 85.37 77.38
Tuesday 829.18 340.98 178.67 85.69 74.59

Wednesday 857.94 346.18 164.94 88.85 80.74
Thursday 856.66 360.62 227.82 84.82 75.18

Friday 901.86 412.18 211.86 78.56 69.80
Saturday 584.92 210.12 134.08 41.29 39.22
Sunday 579.88 145.76 104.04 35.77 30.16

Table 4. Average MAPE values for the six paths from Monday to Sunday.

MAPE (%)

KF C-W A-KF Proposed Method KF
(Correct Model)

Monday 99.56 39.67 15.31 7.23 6.76
Tuesday 99.71 35.72 17.99 7.91 6.82

Wednesday 99.70 34.62 15.15 7.58 7.00
Thursday 99.69 37.70 22.18 7.56 6.66

Friday 99.75 40.51 20.83 7.24 6.26
Saturday 99.65 35.94 22.05 6.70 6.15
Sunday 99.48 28.73 21.58 6.60 5.74

Table 5 presents the differences in the average RMSE and MAPE values for the three
filter-divergence suppression methods under the incorrect model and the KF method under the
correct model. The values in Table 5 show that the average RMSE and MAPE values acquired from the
proposed L1-norm constraint-based method were much closer to those from the KF method under the
correct model than the values from the other two filter-divergence suppression methods. The smallest
average RMSE and MAPE differences were 2.07% and 0.47%, respectively.

Table 5. Differences in average RMSE and MAPE values between three filter-divergence suppression
methods and KF method under the correct model.

RMSE MAPE (%)

C-W A-KF Proposed Method C-W A-KF Proposed Method

Monday 316.82 75.17 7.99 32.91 8.55 0.47
Tuesday 266.39 104.08 11.10 28.90 11.17 1.09

Wednesday 265.44 84.20 8.11 27.62 8.15 0.58
Thursday 285.44 152.64 9.64 31.04 15.52 0.90

Friday 342.38 142.06 8.76 34.25 14.57 0.98
Saturday 170.90 94.86 2.07 29.79 15.90 0.55
Sunday 115.60 73.88 5.61 22.99 15.84 0.86
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The traffic flows for all of the paths shown in Figure 5a predicted using the S-DA system based
on the KF, C-W, A-KF, and proposed L1-norm constraint-based methods were calculated. Tables 6
and 7 show the average RMSE and MAPE values, respectively, of each path from Monday to Sunday.
The average MAPE values for all paths from Monday to Sunday obtained using the KF method under
the incorrect model were all above 97%. This indicates that filter divergence occurred. The average
MAPE values acquired from the C-W, A-KF, and L1-norm constraint-based methods decreased by
different amounts. For the sake of analysis, the forecasting results for all paths on workday Monday and
non-workday Saturday were taken as examples. The best filter-divergence suppression performances
were obtained using the L1-norm constraint-based method. The average RMSE value from the L1-norm
constraint-based method decreased by 524.82 (from 596.29 to 71.47), and the relative accuracy improved
by 88.01% on Monday compared with the results from the KF method under the incorrect model.
The corresponding relative accuracy improved by 90.87% on Saturday. Furthermore, the average
MAPE value from the L1-norm constraint-based method decreased by 89.05% (from 98.39% to 9.34%)
on Monday and 89.64% (from 98.50% to 8.86%) on Saturday compared with those obtained using the
KF method under the incorrect model.

Table 6. Average RMSE values of all paths from Monday to Sunday.

RMSE

KF C-W A-KF Proposed Method KF
(Correct Model)

Monday 596.29 233.39 156.14 71.47 55.70
Tuesday 591.97 204.79 145.25 70.72 53.58

Wednesday 607.66 208.28 143.06 72.54 54.74
Thursday 606.60 213.69 161.17 95.87 52.45

Friday 649.17 252.80 222.20 68.37 50.28
Saturday 419.31 127.81 111.40 38.30 26.53
Sunday 414.71 102.03 96.47 36.77 23.62

Table 7. Average MAPE values of all paths from Monday to Sunday.

MAPE (%)

KF C-W A-KF Proposed Method KF
(Correct Model)

Monday 98.39 31.56 21.61 9.34 7.12
Tuesday 98.88 28.13 19.98 9.63 7.19

Wednesday 98.43 27.77 19.08 9.57 7.07
Thursday 97.99 28.91 21.59 10.06 6.87

Friday 98.15 32.42 25.47 8.90 6.55
Saturday 98.50 26.12 22.56 8.86 6.42
Sunday 97.94 25.80 24.11 9.23 6.71

Table 8 presents the differences in the average RMSE and MAPE values of all paths for the
filter-divergence suppression methods under the incorrect model and the KF method under the correct
model. The average RMSE and MAPE values acquired using the L1-norm constraint-based method
were much closer to those obtained using the KF method under the correct model. On workday
Monday, the difference in the average RMSE and MAPE values between the C-W and KF methods
under the correct model was 177.69 and 24.44%, respectively. The corresponding differences between
the A-KF and KF methods were 100.44 and 14.49%, respectively. The differences in the average RMSE
and MAPE values between the proposed L1-norm constraint-based method and the KF method were
15.77 and 2.22% on Monday, respectively. Similar results were obtained for non-workday Saturday.
The smallest average RMSE and MAPE differences were 11.77 and 2.44%, respectively, which were
acquired using the L1-norm constraint-based method.
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Table 8. Differences in the average RMSE and MAPE values between three filter-divergence suppression
methods and the KF method under the correct model.

RMSE MAPE (%)

C-W A-KF Proposed Method C-W A-KF Proposed Method

Monday 177.69 100.44 15.77 24.44 14.49 2.22
Tuesday 151.21 91.67 17.14 20.94 12.79 2.44

Wednesday 153.54 88.32 17.80 20.70 12.01 2.50
Thursday 161.24 108.72 43.42 22.04 14.72 3.19

Friday 202.52 171.92 18.09 25.87 18.92 2.35
Saturday 101.28 84.87 11.77 19.70 16.14 2.44
Sunday 78.41 72.85 13.15 19.09 17.40 2.52

Overall, the results in Tables 3–8 suggest that in suppressing the filter divergence and improving
the short-term traffic flow forecasting accuracy, the L1-norm constraint-based method outperformed the
C-W and A-KF methods. This indicates that using the proposed L1-norm constraint-based method to
suppress filter divergence is effective. Unlike suppressing the filter divergence phenomenon in the C-W
method by adding an inflation factor to model the covariance matrix, in the proposed method, the gain
matrix K based on the actual conditions was directly and adaptively adjusted. The difficulty of selecting
a weight or inflating factor and the propagation from the model or measurement error covariance
to the K matrix estimation in the C-W method were therefore also avoided. Moreover, compared
with the A-KF method, this method was simpler and required less storage space. Furthermore, the
proposed method adjusted the gain matrix directly without adjusting the model error covariance
matrix. This prevented the uncertainties of the indirect operations in the A-KF method from affecting
the assimilation results.

7. Conclusions

In this study, an approach for filter-divergence suppression in an S-DA system for short-term
traffic flow prediction was proposed. The approach allowed for the simulated values from the state
model to be close to the measured values when divergence was about to occur based on an L1-norm
criterion. The proposed L1-norm constraint-based method was compared with two other commonly
used methods, the C-W and A-KF methods, to suppress filter divergence in short-term traffic flow
forecasting. The empirical results confirmed the following.

1. The proposed approach based on the L1-norm constraint can suppress the filter-divergence
phenomenon that occurs in the KF assimilation method of the S-DA system.

2. The proposed approach based on the L1-norm constraint had a higher assimilation accuracy for
suppressing filter divergence than the other two methods.

Therefore, the proposed filter-divergence suppression method based on the L1-norm constraint is
feasible and effective for filter-divergence suppression in an S-DA system for short-term traffic flow
predictions. In future work, the proposed method is planned to be used in other fields to expand its
range of applications.
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