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Abstract: Compression garments can enhance performance and promote recovery in athletes.
Different body coverage with compression garments may impose distinct effects on kinematic
movement mechanics and thus basketball free-throw accuracy. The objective of this study was
to examine basketball free-throw shooting accuracy, consistency and the range of motion of body
joints while wearing upper-, lower- and full-body compression garments. Twenty male basketball
players performed five blocks of 20 basketball free-throw shooting trials in each of the following
five compression garment conditions: control-pre, top, bottom, full (top + bottom) and control-post.
All conditions were randomized except pre- and post-control (the first and last conditions). Range
of motion of was acquired by multiple inertial measurement units. Free-throw accuracy and the
coefficient of variation were also analyzed. Players wearing upper-body or full-body compression
garments had significantly improved accuracy by 4.2% and 5.9%, respectively (p < 0.05), but this
difference was not observed with shooting consistency. Smaller range of motion of head flexion
and trunk lateral bending (p < 0.05) was found in the upper- and full-body conditions compared
to the control-pre condition. These findings suggest that an improvement in shooting accuracy
could be achieved by constraining the range of motion through the use of upper-body and full-body
compression garments.

Keywords: range of motion; basketball shooting; proprioception

1. Introduction

Basketball is one of the most popular sports; at least 450 million people play basketball worldwide,
ranging from registered elite players to amateurs [1]. Basketball skills can be categorized into offensive
skills, including shooting, passing and dribbling and defensive skills, including blocking and stealing [2].
While shooting is the mean to score in the game, free-throws (or foul shots) are considered as one of
the easiest movements, yet they can significantly influence the outcome of a game [3,4]. Movement
mechanics and coordination are key to free-throwing performance [5,6] and may be regulated by
wearing compression garments [7].
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Compression garment can enhance performance and recovery in various sports [7,8]. Specifically,
compression garments improve joint awareness, reduce muscle soreness and encourage blood
circulation and thus, promote recovery [9]. Conversely, some studies have argued that upper-body
compression garment may impose negative effects in hot environments and the claimed benefits may
only be confined to perception of comfort [10,11]. Different movement tasks, selection of indicators,
and the physical status of the athletes may also contribute to the variability and effectiveness of using
compression garments during exercise, whereas garment design, such as type, coverage and tightness,
may affect the functions of the garment [9]. The tightness of the compression garment has been
hypothesized to change the interfacial pressure of the body [12]; however, there is a lack of studies
exploring the influence of body coverage with different compression garments.

The benefits of compression garments could be attributed to the enhancement of proprioception to
improve movement mechanics [13]. Hooper et al. [14] demonstrated the relationship between throwing
velocity and accuracy, and improved proprioceptive signals in upper-body compression garments
for baseball athletes. The compression on the cutaneous receptors or muscle spindle receptors not
only enhanced the sensory information, but also filtered irrelevant mechanoreceptor information [15].
Depending on the task, the nervous system integrated these signals or information at multiple levels
to mediate cutaneous and muscle afferent feedback, which is imperative for smooth coordination of
movements [15-17].

There is insufficient evidence to support the use of compression garments (upper-body or
lower-body) to enhance basketball performance. Atkins et al. [7] showed that wearing lower-body
compression garments overnight produced negligible effects on the countermovement jump, repeated
sprint and agility test performances, despite improvements in perceived fatigue and muscle soreness.
Other evidence indicated that lower-leg compression garments were found to significantly reduce the
range of abduction motion of the hip joint during a drop vertical jump, but produced minimal effects
on the kinematics/kinetics of other lower extremity joints [13].

Furthermore, lower-body compression was shown to improve lower limb balance and stability in
active females during a single-leg balance task [18]. Poor stability results in higher motion variability
and may potentially weaken shooting accuracy [6,19,20]. How these findings affect other functional
performances (e.g., basketball shooting) requires further investigation. Since compression garments
produce mechanical restraints on body segments and joints, range of motion (ROM) has been one
of the key parameters for the evaluation of kinematic effects during exercise in previous basketball
studies [13,21].

Considering the relationship between compression garment coverage (upper-body, lower-body
and combined) on the kinematics and shooting performance of basketball specific maneuvers is
currently questionable, coaches and athletes are eager to understand what type of compression garment
coverage could help them improve performance and consistency of performance. The objective of this
study was to examine the effect of upper- and lower-body compression garment coverage (top, bottom
and full) on the full body range of motion (ROM) and shooting accuracy of basketball free-throws. It was
hypothesized that a certain compression garment condition would improve free-throw performance
and consistency compared to the no-compression garment control group.

2. Materials and Methods

2.1. Participants

Twenty (n = 20) male basketball players were recruited from local universities. Their average age,
height and body mass were 22.6 + 1.1 years, 179.4 + 3.4 cmand 72.7 + 8.2 kg, respectively. All participants
had at least 4 years of experiences in playing basketball and were right hand dominant single-handed
shooters. The average basketball training experience and training time were 8.5 + 2.4 years and 5.2 = 1.6
h per week, respectively. All participants were physically fit and healthy and reported no injuries over
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the previous 6 months. Ethical approval (IRB-2017-BM-006) was granted from the institutional ethics
committee. Written informed consent was obtained from all participants.

2.2. Experimental Conditions and Procedure

All free-throw shooting conditions were performed in our biomechanical laboratory. The free-
throw distance and the height of the basketball rim were set according to the International Basketball
Federation standards [19]. The participants performed single-handed free-throws under five different
garment conditions, control-pre: no garment pre-control, Top: upper-body compression garment
(Li Ning, Powershell, AULMO043-1, Beijing, China), Bottom: lower-body compression garment bottom
(Li Ning, Powershell, AUDL101-1, Beijing, China), full: both upper-body and lower-body compression
garment and control-post: no garment post-control, as shown in Figure 1. Control-pre and control-post
were the first and the last test conditions. The remaining three compression garment conditions (top,
bottom and full) were randomly assigned as the second to the fourth conditions across participants.
As the experimental protocol compared the first and last conditions, we were able to evaluate the
fatigue effect [22]. For each free-throw condition, 20 free-throw shooting trials were performed. Testing
of the next condition started immediately after the participant changed their garments.

Top Bottom Top+Bottom

(a) (b) (o)

Figure 1. Compression garment conditions: (a) top; (b) bottom; (c) full (top + bottom).

The control conditions (control-pre and control-post) were self-selected comfortable sportswear that
were not compression garments. The experimenters measured the height, waist and chest circumference
of the participants to determine the appropriate garment [23]. The appropriate compression garment
size was pre-determined by the manufacturer’s sizing guidelines and was based on the body height
and mass of each participant. Next, we assigned participants compression garments one size smaller
than the pre-determined appropriate size in order to increase the interfacial pressure, as recommended
by the experimental protocol detailed by Williams and colleagues [12].

A motion capturing system with multiple inertial measurement units (MyoMOTION, Noraxon,
Inc., Scottsdale, AZ, USA) was used to measure full-body kinematics during the free-throw shooting
trials. The inertial measurement units (IMU) were attached and strapped to each body segment
according to the instrument guidelines. During each free-throw trial, the participants performed
shooting from the same position behind the free-throw line. The sampling frequency of the IMU was
200 Hz. The kinematic data during the free-throw motion were post-processed using Matlab software
(MathWorks, Inc., Natick, MA, USA) using a 6 Hz cutoff 4th order Butterworth low-pass filter.

2.3. Outcome Measures

Outcome measures including performance score (accuracy) and joint ROM variables were
investigated. The performance score was gauged using an ordinal six-point (0 to 5 point) scoring
system. Five, four and three points denoted a clean score, that the ball hit the rim and went in, and
that the ball hit the backboard and went in, respectively. Two, one and zero points denoted that
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the ball hit the rim and missed, hit the backboard and missed and missed complete, respectively,
as illustrated in Table 1 [19,24]. The consistency of the score was also assessed by the coefficient of
variation (i.e., the ratio of the standard deviation to the mean of the trials).

Table 1. The six-point basketball shooting performance score system.

Scored Missed
Performance Clean Rim & Backboard Rim & Backboard Complete
(Swish) In & In Out & Out Miss
Score 5 4 3 2 1 0

ROM of the head, trunk, elbow, shoulder, wrist, hip, knee and ankle joints in the sagittal, coronal
and frontal planes were calculated. Data were averaged across trials for each participant in each
condition which served as the targeted average profile for subsequent statistical analysis [25]. We did
not view the within-participant effect (trial) of ROM as an independent observation or random factor
to be analyzed.

2.4. Data Analysis

All statistical analysis was performed in SPSS 21 (IBM, New York, NY, USA). Prior to statistical
analysis, the Shapiro-Wilk test was performed to check for the normality of the kinematic data, and it
was satisfied. The Wilcoxon signed-rank test was performed to compare free-throw performance scores
between the control-pre- and control-post-control conditions to ensure that there was no learning or
fatigue effect (i.e., Control pre- and post-control were not significantly different). Furthermore, one-way
repeated measures analysis of variance (ANOVA) was performed to examine any significant difference
for joint ROM variables between the control-pre, top, bottom and full conditions, followed by the post
hoc pairwise comparison of Least Significant Difference (LSD) if a significant main effect was found.
We chose the LSD approach as our research hypothesis was more focused on planned comparisons.
As such, we regarded the ANOVA as an additional constraint [26]. Similarly, the comparison for the
performance score and the coefficient of variation was performed using a nonparametric test (Friedman
test), with the post hoc pairwise Wilcoxon signed-rank test, as the performance score was gauged in an
ordinal scale. Level of significance was set at p = 0.05. The indices of effect size for the ANOVA and
post hoc pairwise comparison were partial n> and Cohen’s d, respectively.

3. Results

3.1. Control-Pre and Control-Post Conditions

There was no significant difference in performance score between the control-pre (Median = 2.975)
and control-post (Median = 3.075) conditions (Z = —1.430, p = 0.153). Similarly, there was no significant
difference in the coefficient of variation of performance score between the control-pre and control-post
conditions (Z = —1.382, p = 0.167). We assumed that there was no pronounced carry-over or fatigue
effect that significantly affected performance over the course of the experiment.

3.2. Free-Throw Accuracy

There were no significant differences in free-throw performance score (x*(4) = 6.510, p = 0.089) or
the coefficient of variation of the performance score (x3(4) = 5.629, p = 0.131) between the conditions
(control-pre, top, bottom or full). However, post hoc pairwise comparison showed that the free-throw
performance scores of the top (Median = 3.1, Z = —2.357, p = 0.018) and full (Median = 3.15, Z = -2.112,
p = 0.035) conditions were significantly larger than that of the control-pre condition (Median = 2.975),
as shown in Tables 2 and 3.
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Table 2. Descriptive statistics of the averaged and coefficient of variation of the free-throw
performance score.

Condition Performance Score Coefficient of Variation (%)
Median Mean (Standard Deviation) =~ Mean (Standard Deviation)
Control-Pre 2975 2,975 (0.419) 38.04 (6.67)
Top 3.100 * 3.168 (0.382) 36.78 (7.05)
Bottom 3.050 3.035 (0.411) 37.06 (7.07)
Full 3.150 * 3.175 (0.385) 36.19 (7.58)
Control-Post 3.075 3.123 (0.476) 35.88 (8.61)

* significant difference (p < 0.05) compared to the control-pre condition by post hoc Wilcoxon signed-rank test.

Table 3. Probability values (p-value) of the average (upper right triangle) and coefficient of variation
(lower left triangle) of the free-throw performance score.

Performance Score

Coefficient of Variation

Control-Pre Top Bottom Full
Control-Pre 0.018 * 0.230 0.035 *
Top 0.296 0.152 0.888
Bottom 0.227 0.654 0.159
Full 0.107 0.794 0.344

* significant difference (p < 0.05) by post hoc Wilcoxon signed-rank test.

3.3. Full-Body Joint Range of Motion (RoM)

One-way ANOVA repeated measures showed that the variation in compression garments imposed
significant effects on the ROM of head flexion (p = 0.014, partial n? = 0.169), trunk lateral bending
(p = 0.024, partial 12 = 0.152), left shoulder flexion (p = 0.041, partial n? =0.152), right shoulder rotation
(p = 0.048, partial n? = 0.128) and left knee flexion (p = 0.003, partial n?> = 0.212). Post hoc pairwise
comparison showed that the top condition significantly reduced the head flexion (p = 0.037; d = 0.503;
1.346, 95% CI 0.376 to 2.315) and trunk lateral bending (p = 0.042; d = 0.487; 1.039, 95% CI 0.041 to 2.036)
ROM compared with the control-pre condition (Table 4). Similarly, the full condition significantly
reduced head flexion (p = 0.009; d = 0.650; 1.346, 95% CI 0.376 to 2.315) and trunk lateral bending
(p =0.028; d = 0.532; 1.446, 95% CI 0.173 to 2.718) ROM compared to the control-pre condition.

Table 4. Descriptive statistics and one-way ANOVA repeated measures outcome of the range of motion
of head and trunk in different compression garment conditions.

Range of Motion, Mean (Standard Deviation) ANOVA Repeated Measure

Control-Pre Top Bottom Full Effect Size p-Value

Head FL/EX 1057 (3.81) 953 (3.1)2 9.75(337) 922 (3.07)A 0.169 0.014 *
Head lateral bending 6.14 (2.83) 5.80 (2.69) 6.05 (2.99) 5.87 (2.62) 0.019 8 0.694
Head axial rotation 13.17(8.04)  17.11(12.74) 15.02(1049)  14.42 (3.63) 0.053 0.368
Trunk FL/EX 1920 (6.24)  17.15(5.96)  18.43(5.85)  18.15(6.42) 0.11 0.082
Trunk lateral bending 1021 (424)  9.17(438)2  9.88(3.63)  8.77 (4.01)2 0.152 0.024 *
Trunk axial rotation 11.05 (4.56) 11.46 (5.04) 10.99 (4.36) 11.39 (4.37) 0.0188 0.687

FL/EX: flexion/extension; * significant difference (p < 0.05) using one-way ANOVA repeated measures;
8 Greenhouse-Geisser correction to adjust the lack of sphericity; @ and # denote p < 0.05 and p < 0.0125 than the
control-pre condition.

Compared to that of the bottom condition, both the top (p = 0.01; d = 0.642; 3.422, 95% CI 0.929
t0 5.915) and full (p = 0.003; d = 0.778; 3.530, 95% CI 1.405 to 5.655) conditions significantly reduced
the ROM of the left shoulder flexion, while the top condition had significantly larger right shoulder
rotation compared with the control-pre (p = 0.013; d = 0.611; 38.316, 95% CI —8.98 to 67.65) and bottom
(p = 0.041; d = 0.491; 23.028, 95% CI 1.08 to 44.976) conditions (Table 5). The control-pre condition
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had significantly larger left knee flexion ROM than the bottom (p = 0.026; d = 0.539; 2.605, 95% CI
0.345 to 4.864) and full (p = 0.002; d = 0.804; 2.908, 95% CI 1.214 to 4.602) conditions. Similarly, the top
condition had a significantly larger left knee flexion ROM than the bottom (p = 0.044; d = 0.482; 2.047,
95% CI 0.059 to 4.035) and full (p = 0.018; d = 0.585; 2.351, 95% CI, 0.469 to 4.232) conditions (Table 6).

Table 5. Descriptive statistics and one-way ANOVA repeated measures outcome of the range of motion
of the upper limb in different compression garment conditions.

Range of Motion, Mean (Standard Deviation) ANOVA Repeated Measure

Control-Pre Top Bottom Full Effect Size p-Value
L elbow FL/EX 49.35(23.12) 51.38 (23.28) 50.95 (22.82) 51.24 (24.05) 0.048 0.417
R elbow FL/EX 93.30 (13.27) 89.43 (12.46) 89.14 (13.79) 89.82 (14.38) 0.098 0.116

L shoulder FL/EX 30.06 (12.77) 26.98 (11.58) 30.40 (12.66) B 26.87 (10.48) © 0.1528 0.041 *
R shoulder FL/EX 44.11 (18.88) 40.48 (16.96) 44.01 (19.11) 4147 (17.2) 0.148 & 0.148
L shoulder AB/AD 124.84 (113.81) 125.37 (132.49)  133.85(120.05)  132.36 (124.17) 0.0228 0.66
R shoulder AB/AD 72.93 (51) 75.01 (55.07) 76.05 (48.47) 78.02 (71.69) 0.0128 0.821
L shoulder rotation 50.50 (40.81) 58.41 (51.4) 67.74 (83.18) 59.95 (61.04) 0.089 & 0.176

R shoulder rotation 90.38 (45.46) 128.70 (81.71)@  105.67 (67.28)®  118.07 (73.94) 0.128 0.048 *
L wrist RA/UL 35.80 (26.08) 34.93 (27) 35.12 (28.48) 38.26 (32.93) 0.036 0.552
R wrist RA/UL 70.79 (27.55) 79.36 (29.02) 71.34 (33.37) 77.37 (31.8) 0.0718 0.249
L wrist FL/EX 39.21 (33.56) 39.37 (41.11) 42.20 (43.93) 42.90 (45.34) 0.0118 0.885
R wrist FL/EX 105.39 (34.39) 109.35 (36.59) 110.83 (35.36) 106.85 (35.66) 0.026 0.675
L palm rotation 49.54 (47.21) 51.35 (48.84) 60.70 (72.13) 52.23 (55.49) 0.067 & 0.269
R palm rotation 93.97 (46) 126.74 (77.75) 113.01 (81.54) 110.93 (66.53) 0.117 0.066

FL/EX: flexion/extension; AB/AD: abduction/adduction; RA/UL: Radial/Ulnar deviation; * significant difference
(p <0.05) using one-way ANOVA repeated measures; &8 Greenhouse-Geisser correction to adjust the lack of sphericity;
2 denotes p < 0.05 than the control-pre condition; ® and B denote p < 0.05 and p < 0.0125 than the top condition;
€ denotes p < 0.0125 than the bottom condition.

Table 6. Descriptive statistics and one-way ANOVA repeated measures outcome of the range of motion
of the lower limb in different compression garment conditions.

Range of Motion, Mean (Standard Deviation) ANOVA Repeated Measure
Control-Pre Top Bottom Full Effect Size p-Value
L hip FL/EX 23.56 (6.8) 22.58 (6.65) 22.34 (7.8) 21.81 (7.19) 0.076 & 0.22
R hip FL/EX 26.47 (4.49) 25.14 (6.02) 26.19 (6.26) 25.93 (5.85) 0.065 0.274
L hip AB/AD 5.69 (1.73) 6.46 (2.38) 5.57 (1.64) 6.28 (2.36) 0.069 0.251
R hip AB/AD 6.95 (2.6) 7.22 (2.72) 6.31 (2.42) 6.97 (2.62) 0.069 0.248
L hip rotation 9.99 (3.57) 10.03 (3.52) 9.31 (3.04) 9.45 (2.53) 0.043 & 0.445
R hip rotation 12.62 (3.89) 12.83 (4.19) 12.43 (4.17) 12.30 (4.61) 0.013 0.861
L knee FL/EX 51.86 (8.63) 51.30(8.15)  49.25(10.08) P  48.95(9.37) AP 0.212 0.003 *
R knee FL/EX 53.77 (7.33) 52.90 (7.88) 53.61 (6.61) 52.94 (6.67) 0.036 0.549
L knee rotation 10.64 (4.39) 11.35 (5.59) 10.26 (3.99) 10.35 (4.21) 0.0518 0.37
R knee rotation 14.96 (4.52) 14.72 (6.12) 15.68 (5.86) 15.43 (5.01) 0.031 0.61
L knee AB/AD 7.15 (4.52) 7.92 (4.46) 6.81 (2.89) 7.00 (3.28) 0.029 & 0.587
R knee AB/AD 8.32(3.72) 7.67 (3.84) 9.10 (4.32) 8.48 (3.58) 0.048 0.418
L ankle PL/DO 61.22(16.82)  64.36 (8.64) 61.71 (8.01) 61.83 (9.08) 0.049 & 0.362
R ankle PL/DO 60.93 (11.16) 61.97 (6.1) 60.76 (7.49) 61.82 (8.21) 0.019 8 0.682
L ankle EV/IV 25.31 (14.66)  22.84 (13.08) 24.29 (11.37) 23.38 (12.54) 0.041 0.49
R ankle EV/IV 26.49 (13.19)  23.04 (11.28) 22.95 (8.38) 21.27 (10.34) 0.123 0.056
L ankle AB/AD 15.28 (4.08) 15.47 (4.5) 15.52 (4.76) 16.12 (5.18) 0.016 & 0.732
R ankle AB/AD 13.98 (3.73) 14.69 (4.46) 15.17 (4.9) 14.43 (4.14) 0.077 0.204

FL/EX: flexion/extension; AB/AD: abduction/adduction; EV/IV: eversion/inversion; PL/DO: plantarflexion/
dorsiflexion; * significant difference (p < 0.05) using one-way ANOVA repeated measures; 8 Greenhouse-Geisser
correction to adjust the lack of sphericity;  and  denote p < 0.05 and p < 0.0125 than the control-pre condition;
b denotes p < 0.05 than the top condition.

4. Discussion

This study examined the effect of upper and lower-body compression garments on the body
kinematics and shooting accuracy of basketball free-throws. Our study found that upper-body (top) or
full-body (top + bottom) compression garments significantly improved the performance of basketball
free-throws; however, there was no significant improvement in the consistency of performance. Overall,
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mechanically, compression garments had a significant influence on the ROM of the head flexion,
trunk lateral bending, left (non-dominant side) shoulder flexion, right (dominant side) shoulder
rotation and left knee flexion as indicated by the ANOVA findings. Post hoc comparisons showed that
wearing either upper- or full-body garments constrained the ROM of head flexion and trunk lateral
bending which could be associated with improved trunk stability and thus, improved performance [27].
The relationship between the condition of the head movement and stability and free-throw accuracy
was advocated previously, but not well understood [28]. On the other hand, garment coverage of the
lower body (bottom or full-body gear) significantly reduced the ROM of the left (non-dominant) side
knee joint in the sagittal plane, but not the right (dominant) side, because experienced players tended
to adjust the knee joint of the dominant side to greater extent for better performance [29]. Theoretically,
compression of the knee joint enhanced proprioception and thus performance [30,31] notwithstanding
that our study did not demonstrate an improved shooting score for lower-body (bottom) garments.
In addition, the reduced head flexion and trunk lateral bending ROM could implicate successful
shooting performance.

Elbow and wrist movements are determinants of free-throw performance and player skill
levels [20]. Skilled players coordinate the shooting arm by constantly compromising between elbow
and wrist movements to adapt to subtle changes in release parameters of the ball (e.g., release height,
angle of ball projection, velocity at ball release) [20]. In addition, more highly skilled players tend to
maximize the ROM of the wrist joint [20]. top compression garments help to constrain the ROM of the
elbow, and thus players can focus on optimizing distal joint (wrist) motion only [20]. In our study,
although there were no significant main effects on the ROM of the elbow and wrist joints, pairwise
comparisons showed that upper-body (top) garments significantly reduced the ROM of the right
(dominant) side elbow, but increased that of the wrist radial/ulnar deviation and palmar rotation
compared to that of the control-pre condition. This was likely due to the fact that the uncovered
wrist joint compensated the reduced motion of the elbow [20]. In fact, some statisticians argued that
conducting and interpreting post hoc analyses could still be valid even though the main effect was not
significant [32,33].

The enhanced proprioception by compression garments may also facilitate the organization of
compensatory behavior between joints for better performance. This was supported by existing studies
that the proprioception (joint position sense) of the elbow and wrist joints was correlated with the
success rate of the free-throw tasks [34]. More highly skilled players managed to optimize their
performance based on the perceptual consequence of their actions [35].

A previous study suggested that the shoulder joint plays an important role in the action of
basketball free-throws. Kaya et al. [36] found that free-throw performance was significantly correlated
with the peak torque of the shoulder joint muscles and the shoulder joint position sense at 160° in the
dominant side. While we anticipated that compression garments would amplify the proprioception [30],
enhance stability and reduce the ROM of the shooting limb (right side), our study found that the
ROM of the upper-body was significantly smaller when wearing top compression garments than when
wearing bottom garments. Although there were no significant differences compared to that of the
control-pre condition, we believe that the increased trend of the joint ROM may indicate that wearing
lower-body (bottom) garments alone had a negative effect on the shoulder joint. From the kinetic chain
perspective, intervention at the lower limb level may alter energy generation which can be transferred
to the upper limbs and thus considerably influences upper limb movement tasks (e.g., racket and ball
speed in racket sports) [19,37]. The influence of lower limb garments on the upper limbs may also be
the reason that the full-body garments did not have an effect on the elbow and wrist joints, despite
upper-body garments having an effect.

There were some limitations in this study. First, although we demonstrated no carry-over effect
as revealed by the fact that there was no significant difference between the performance score of the
control-pre and control-post conditions, there was an improvement trend on both the performance
score and consistency. We believed that the randomized order assigned on the garment condition
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could minimize the carry-over effect. Second, our short adaptation time for each compression garment
condition may not be adequate enough, despite that there is no consensus on the duration of adaptation
in the past studies. Future studies may consider tests with longer adaptation in different days or
weeks or considering the variation of kinematic variables [38]. Third, we presented only joint ROM in
this study. More comprehensive analysis with discrete variables (peak angle, angular velocity), joint
power, muscle force, proprioception as well as stability should be considered to evaluate their influence
and underlying mechanism on the free-throw shooting performance. Asymmetry sport activity
(e.g., single-handed shooting) may produce unique sequential coordination of the upper and lower
limb with coherent patterns of muscle activation [39]. Forth, our study confined to non-professional
basketball players. Playing level and sex effects may contribute to variations in movement strategy,
skeletal alignment and muscle strength and could also be investigated. Lastly, the compression
garments may impose different levels of pressure on the participants depending on their body built.
Future study shall consider measuring the compression level in each condition.

5. Conclusions

Players wearing upper-body or full-body compression garment significantly improved basketball
free-throw accuracy by 4.2% and 5.9%, respectively, but not on the intertrial consistency. full body
kinematics data suggested that the improved performance could be attributed to the reduced ROM
of head flexion and lateral bending of the trunk. Future studies investigating the relationship
between shooting performance in basketball, reduced ROM and enhanced proprioception or stability
are required.
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