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Abstract

Found in recent research, tumor cell invasion, proliferation, or other biological processes

are controlled by circular RNA. Understanding the association between circRNAs and dis-

eases is an important way to explore the pathogenesis of complex diseases and promote

disease-targeted therapy. Most methods, such as k-mer and PSSM, based on the analysis

of high-throughput expression data have the tendency to think functionally similar nucleic

acid lack direct linear homology regardless of positional information and only quantify nonlin-

ear sequence relationships. However, in many complex diseases, the sequence nonlinear

relationship between the pathogenic nucleic acid and ordinary nucleic acid is not much dif-

ferent. Therefore, the analysis of positional information expression can help to predict the

complex associations between circRNA and disease. To fill up this gap, we propose a new

method, named iCDA-CGR, to predict the circRNA-disease associations. In particular, we

introduce circRNA sequence information and quantifies the sequence nonlinear relationship

of circRNA by Chaos Game Representation (CGR) technology based on the biological

sequence position information for the first time in the circRNA-disease prediction model. In

the cross-validation experiment, our method achieved 0.8533 AUC, which was significantly

higher than other existing methods. In the validation of independent data sets including cir-

c2Disease, circRNADisease and CRDD, the prediction accuracy of iCDA-CGR reached

95.18%, 90.64% and 95.89%. Moreover, in the case studies, 19 of the top 30 circRNA-dis-

ease associations predicted by iCDA-CGR on circRDisease dataset were confirmed by

newly published literature. These results demonstrated that iCDA-CGR has outstanding

robustness and stability, and can provide highly credible candidates for biological

experiments.
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Author summary

Understanding the association between circRNAs and diseases is an important step to

explore the pathogenesis of complex diseases and promote disease-targeted therapy.

Computational methods contribute to discovering the potential disease-related circRNAs.

Based on the analysis of the location information expression of biological sequences, the

model of iCDA-CGR is proposed to predict the circRNA-disease associations by inte-

grates multi-source information, including circRNA sequence information, gene-cir-

cRNA associations information, circRNA-disease associations information and the

disease semantic information. In particular, the location information of circRNA

sequences was first introduced into the circRNA-disease associations prediction model.

The promising results on cross-validation and independent data sets demonstrated the

effectiveness of the proposed model. We further implemented case studies, and 19 of the

top 30 predicted scores of the proposed model were confirmed by recent experimental

reports. The results show that iCDA-CGR model can effectively predict the potential cir-

cRNA-disease associations and provide highly reliable candidates for biological experi-

ments, thus helping to further understand the complex disease mechanism.

Introduction

Circular RNA (circRNA) is a type of non-coding RNA without 5’ end caps or a 3’ end poly (A)

tails [1]. Since the discovery of circular RNA (circRNA) in RNA viruses 40 years ago, more

than 100,000 circRNAs have been found in cells [2]. With the rapid development of RNA

sequencing (RNA-seq) technology and bioinformatics, more and more studies have shown

that circRNA plays an important role in many cell activities including effecting on arterioscle-

rosis, involving in the regulation of mRNA expression and regulating alternative splicing [3–

8]. In addition, some evidence suggests that some diseases may be related to abnormal expres-

sion of circRNA. Zhou et al. found miR-141 is suppressed by circRNA_010567 through target-

ing TGF-beta1 to promote myocardial fibrosis[9]. Meanwhile, Liang et al. discovered that

breast cancer proliferation and progression can be promoted by circ-ABCB10 through spong-

ing miR-1271 [10]. Many scholars believe that many circRNAs can be used as tumor markers

and therapeutic targets in clinical applications [11]. Based on the above reasons, confirming

the potential association has gradually become a research hotspot in recent years. However,

the high experimental cost and long experimental circle restrict the traditional experimental

methods from verifying the association between circRNA and diseases on a large scale. In

order to solve this problem, the calculation method rises in response to the proper time and

conditions[12–16].

In recent years, in order to unify the standards of circRNAs obtained by experiment, many

databases were established as circBase, CIRCpedia, deepBase, CircNet and circRNADb [17–

21]. These databases provided biological essential information about circRNA, such as

sequencing data and gene target. What’s more, there are many databases that choose to collect

circRNAs that have been shown to be associated with various diseases, including CircR2Di-

sease, circRNADisease, circFunBase, and Circ2Disease [22–25]. These databases provide data

support for selecting candidates of potential circRNA-disease associations by computational

methods. For example, Xiao et al. proposed a weighted dual-manifold regularized-based calcu-

lation model named MRLDC which integrates geometric information and intrinsic diversity

of circRNA and disease feature spaces [26]. Although this method has achieved good results,

there are only 331 association for training model. A small number of training samples may
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lead to insufficient robustness of the model. In addition, MRLDC only describes the behavior

information in circRNA-disease association network, and cannot directly and accurately mea-

sure circRNA similarity and disease similarity from the attributes of circRNA and disease. Fan

et al. proposed a computational model of KATZ measures for human circRNA-disease associ-

ation prediction (KATZHCDA) using a heterogeneous network [27]. Similarly, this model

also does not have enough training samples. Among them, 275 circRNAs, 36 diseases, and 312

associations were used. Although KATZHCDA uses circRNA expression profile information,

its performance is still limited. Compared with the above two models, GHICD and RWRHCD

have relatively sufficient training samples. They used 541 circRNAs, 83 diseases, and 592 asso-

ciations[28]. It is worth noting that although they have achieved some effects and used the cir-

cRNA-gene association network to describe the attribute information of circRNA, the

accuracy is still limited because the association network formed by circRNA and genes is very

sparse.

Through the above analysis, we can see that although the current computing models have

achieved good results, they also have some defects. First, it is not difficult to see that the train-

ing data used by the current model is limited, which has an impact on the robustness of the

model. At the same time, the lack of training data also brings the problem of limited coverage.

The potential associations that these models can predict are all around 10,000. Secondly, they

are mainly based on a single data description method, which does not integrate circRNA and

disease behavior information and attribute information in the network to comprehensively

define the feature of circRNA and disease, resulting in limited prediction performance. Finally,

they did not take the circRNA sequence information into account and cannot accurately mea-

sure the circRNA similarity. Therefore, in order to improve the drawbacks of the current

computational models, we propose iCDA-CGR model to identify CircRNA-Disease Associa-

tions based on Chaos Game Representation. By introducing the circFunBase database and

sequence information, the problems of limited model coverage and limited predictive perfor-

mance are solved. The iCDA-CGR integrates multi-source information, including circRNA

sequence information, gene-circRNA associations information, circRNA-disease associations

information and the disease semantic information. In particular, iCDA-CGR extracts the bio-

logical sequence position information and quantifies the biological sequence nonlinear rela-

tionship of circRNA by Chaos Game Representation (CGR) technology [29]. Specifically,

iCDA-CGR first figures the disease semantic similarity and disease Gaussian interaction pro-

file kernel (GAS) kernel similarity and combines them to construct disease fusional similarity.

Secondly, the method quantizes position and nonlinear sequence information through Chaos

Game Representation (CGR) technology to calculate the similarity and difference of circRNAs

by Pearson correlation coefficient. Thirdly, circRNA sequence-based similarity, circRNA

gene-based similarity and circRNA GAS similarity are integrated into circRNA fusional simi-

larity. Fourthly, feature descriptors are formed by circRNA fusional similarity and disease

fusional similarity. Finally, the iCDA-CGR put feature descriptors into support vector

machines to predict potential circRNA-disease association. The workflow of iCDA-CGR is

shown as Fig 1. We verify the reliability of the method with the five-fold cross-validation on

the CircR2Disease database. The average prediction area under curve (AUC) of our method is

of 85.14% and the prediction accuracy is 81.12%. Our source code and data can be downloaded

on GitHub (https://github.com/look0012/iCDA-CGR). It contains the datasets, the algorithm

code and the models. It is worth mentioning that in order to make it more convenient for

readers, we provide an easy-to-use version. The user only needs to enter the predicted cir-

cRNA and disease name in the following code to perform the prediction operation. The list of

circRNAs and diseases is also in the published document, and users can use the list to find the

associations they need. There are two models in this version, trained on circR2Disease and
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CircFunBase respectively. Among them, iCDA-CGR (circR2Disease) can predict 46,825

unconfirmed associations. iCDA-CGR (CircFunBase) can provide predictive scores for

approximately 170,000 unconfirmed associations. We hope that these improvements will bet-

ter serve circRNA researchers as a way to advance the field.

Methods

Data sets

Benchmark database of circRNA-disease associations. In the past year, a number of

benchmark databases have been proposed for collecting circRNA-disease associations, such as

circR2Disease, circRNADisease, circFunBase, and Circ2Disease, which contain the association

between experimentally validated diseases and circRNAs [22–24]. In this article, circR2Disease

and circFunBase are used as the benchmark data set. The detailed description is as follows:

circR2Disease. To evaluate the reliability of our method, the widely used benchmark set cir-

cR2Disease was selected. The dataset was preprocessed due to its repetitiveness and non-

human circRNA disease association. Specifically, we obtained 612 confirmed circRNA-disease

associations consisting of 533 circRNA and 89 diseases after removing the circRNAs in which

the gene symbol could not be found, as shown in Table 1. The base dataset circR2Disease can

Fig 1. The workflow of iCDA-CGR model to predict potential circRNA-disease associations.

https://doi.org/10.1371/journal.pcbi.1007872.g001
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be defined as:

Z1 ¼ Z1
p [ Z1

n ð1Þ

where Z1
p is a positive subset constructed by 612 confirmed circRNA-disease associations, Z1

n

is a negative subset containing 612 associations which are selected from all 47437 unconfirmed

associations between diseases and circRNAs. [ is the union of set theory. Known circRNA-dis-

ease associations and their names obtained from circR2Disease database can be seen in S1–S3

Tables.

circFunBase. CircFunBase is a database that provides high-quality functional circRNA

resources and few models are used. In order to improve the problem of small coverage pre-

dicted by the current model, we also performed experiments on this dataset. After removing

circRNAs that did not match the gene symbols, 2984 confirmed circRNA-disease associations

were obtained, including 2597 circRNAs and 67 diseases, as shown in Table 1. The Benchmark

database circFunBase can be defined as:

Z2 ¼ Z2
p [ Z2

n ð2Þ

where Z2
p is a positive subset constructed by 2984 confirmed circRNA-disease associations,

Z2
n is a negative subset containing 2984 associations which are selected from all 168031 uncon-

firmed associations between diseases and circRNAs.

CircRNAs and their sequence information. Sequence information and gene symbols

information for circRNAs are provided by many public databases such as circBase, CIRCpedia,

deepBase, CircNet and circRNADb[17–21]. To be able to construct a more complete circRNA

sequence dataset, we downloaded circRNA sequence information from a database, circBase.

The database is accessible free of charge via the web server http://www.circbase.org/.

Related work

Chaos Game Representation (CGR). It is an iterative mapping technique for processing

sequences[29]. The first advantage of this algorithms is that the original sequence information

can be completely recovered from the coordinates. It means that information is not lost in

mapping. Secondly, each sequence has a unique mapping, which means that positional infor-

mation is preserved. For these reasons, the CGR is suitable for transformation of nucleotide

sequence. The position Pi was figured by:

Pi ¼ n � ðPi� 1 � giÞ þ Pi� 1 i ¼ 1 . . . nseq ð3Þ

Where ν is the nucleotide contribution factor and we set it to be 0.5. gi is the nucleotide posi-

tion factor. A, C, G, T are corresponding to (0,0), (0,1), (1,1), (1,0) respectively. nseq is the

length of the sequence and P0 = (0.5,0.5).

Similarity between diseases

Disease semantic similarity. The Medical Subject Headings (MeSH) database categorizes

the disease rigorously, which helps to calculate the semantic similarity of the disease. It can be

download from https://www.nlm.nih.gov/ [30]. We can express a disease as a directed acyclic

Table 1. Data distribution of the benchmark set circR2Disease and circFunBase of circRNA-disease association.

benchmark set circRNA Disease Association

circR2Disease 533 89 612

circFunBase 2597 67 2984

https://doi.org/10.1371/journal.pcbi.1007872.t001
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graph (DAG) based on semantic information from the MeSH database. The nodes in DAG

represent the diseases, and the edges represent their relationships. If the disease is patholog-

ically similar, more parts of DAG will be shared. Wang et al. [31] proposed a method that has

been widely used to calculate the semantic similarity of diseases in recent years. We defined a

model for calculating disease contribution values, which is as follows:

SdðiÞ rð Þ ¼ log 1þ
nðDAGsðrÞÞ
nðdiseaseÞ

� �

ð4Þ

We define the amount of DAGs which includes disease r as n(DAGs(r)) and the quantity of all

diseases as n(disease). Therefore, the semantic similarity score SDsem of the disease d(i) and the

disease d(j) is described as follows:

SDsem d ið Þ; d jð Þð Þ ¼

P
r2NdðiÞ\NdðjÞ

ðSdðiÞðrÞ þ SdðjÞðrÞÞ
P

r2NdðiÞ
SdðiÞðrÞ þ

P
r2NdðjÞ

SdðjÞðrÞ
ð5Þ

where Nd(i) is defined as all diseases that appear in the disease d(i)’s DAG.

Disease GAS similarity. Many researches have applied Gaussian interaction profile ker-

nel (GAS) to measure the similarity between diseases, according to that pathologically similar

diseases tend to be associated with functionally similar circRNAs. In this study, the SDGAS was

used to describe the disease similarity information as follow:

SDGASðdðiÞ; dðjÞÞ ¼ expð� tdjjAcdðdðiÞÞ � AcdðdðjÞÞjj
2
Þ ð6Þ

Where

td ¼
1

1

m

Pm
i¼1
jjAcdðdðiÞÞjj

2
ð7Þ

Acd ¼

t1;1 � � � t1;m

..

. . .
. ..

.

tn;1 � � � tn;m

2

6
6
6
4

3

7
7
7
5

ð8Þ

We define the parameter as the width parameter of the function, τd. The quantity of diseases

and circRNAs are defined as m and n represently. Association adjacency matrix Acd represents

the positive subset Zp. If circRNA r(i) and disease r(j) have an association, element ti,j is set to

be 1, otherwise 0. Acd(d(i)) is association profiles of disease d(i). Here, we utilize the ith column

vector of the adjacency matrix to describe Acd(d(i)).
Disease fusional similarity. By analyzing the disease similarity measures form multiple

perspectives, we gain the similarity matrices, including SDsem and SDGAS. However, some of seman-

tic similarity are unable to be calculated if the disease does not have its own DAG. To compen-

sate for this deficiency, we will fuse SDsem and SDGAS like the previous researches [32–34]. The

disease fusional similarity SD between disease d(i) and d(j) is defined as follow, and the final

disease similarity matrix can be seen in S4 Table.

SD dðiÞ; dðjÞð Þ ¼

SDsemðdðiÞ; dðjÞÞ þ S
D
GASðdðiÞ; dðjÞÞ

2
if dðiÞand dðjÞhave DAG

SDGASðdðiÞ; dðjÞÞ otherwise
ð9Þ

8
<

:

PLOS COMPUTATIONAL BIOLOGY Prediction of circRNA-disease associations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007872 May 18, 2020 6 / 22

https://doi.org/10.1371/journal.pcbi.1007872


Similarity between circRNAs

CircRNA gene-based similarity. Circular RNA regulates the activity of RNA polymerase

and promotes parental genes’ transcription found in previous researches. Because if RNA

affects the same human disease, their functions tend to be similar [35–37]. In this work, we

downloaded gene-circRNA association information from crcR2Disease database. The cir-

cRNA gene-based similarity matrix was constructed as follow:

SCgene ¼ Acg � S
G
gas � Acg

T ð10Þ

Where the elements in SCgene is functional similarity scores between circRNAs. Association adja-

cency matrix Acg represents the association between genes and circRNA. If gene target and cir-

cRNA have an association, the element of Acg is set to be 1, otherwise 0. The gene’s GAS

similarity matrix SGgas is constructed by Association adjacency matrix Acg. T is the transpose

operator.

CircRNA GAS similarity. Many researches chose to utilize gaussian interaction profile

kernel (GAS) to measure the similarity between biomolecules [38]. Because if RNA affects the

same human disease, their functions tend to be similar [35–37]. In this study, the SCGAS was

used to describe the circRNA similarity information as follow:

SCGASðcðiÞ; cðjÞÞ ¼ expð� tcjjAcdðcðiÞÞ � AcdðcðjÞÞjj
2
Þ ð11Þ

1

tc ¼
1

n

Pn
i¼1
jjAcdðcðiÞÞjj

2
ð12Þ

Where SCGASðcðiÞ; cðjÞÞ is the GAS similarity value between circRNAs c(i) and circRNAs c(j).
The i -th row vector in the adjacency matrix Acd is defined as the association profile Acd(c(i)) of

circRNA c(i), which is a vector composed of the relationship between circRNA c(i) and all dis-

eases. τc is the width parameter.

circRNA sequence-based similarity. Existing sequence alignment algorithms only quan-

tify position information or non-linear information, and few algorithms that can combine

both are proposed. Therefore, a new CGR-based method is proposed to quantify the similarity

and difference between position and non-linear information using Pearson correlation coeffi-

cient. The specific calculation process is as follows.

Firstly, the CGR space is divided into Ng grid (Ng = 2s×2s,s = 3), as Fig 2. And, grid can be

represented as formula 13.

gridi ¼ ðXi;Yi;ZiÞ ð13Þ

Secondly, the abscissa point.x and ordinate point.y in each grid are accumulated respectively

to quantify position information.

Xi ¼
X

point:x if points in gridi ð14Þ

Yi ¼
X

point:y if points in gridi ð15Þ
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Thirdly, we calculate the z-scores of each grid Zi to quantify nonlinear information.

Zi ¼
Numi �

PNg
k¼1

Numk

Ng
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Ng

PNg
h¼1 Numh �

PNg
f¼1

Numf

Ng

� �2
s ð16Þ

Numi ¼ number of points in gridi ð17Þ

Finally, each grid can be described as three attributes, and we fused the attributes to con-

struct the descriptors descriptors(c(i)) to determine the sequence similarity SCseqðcðiÞ; cðjÞÞ by

Pearson correlation coefficient. Where c(i) represents the i -th cricRNA. The workflow is

shown as Fig 3.

SCseq cðiÞ; cðjÞð Þ ¼
CovðdescriptorsðcðiÞÞ; descriptorsðcðjÞÞÞ
DðdescriptorsðcðiÞÞÞ � DðdescriptorsðcðjÞÞÞ

ð18Þ

descriptorsðcðiÞÞ ¼ ðgrid1; grid2; . . . ; gridNg Þ ð19Þ

where Cov(descriptors(c(i))) is the covariance of descriptors(c(i)), D(descriptors(c(i))) is

the variance of descriptors(c(i)). The size of circRNA sequence similarity matrix

SCseqðcðiÞ; cðjÞÞ is n×n. All sequence information used in this article was downloaded from cir-

cBase [17].

CircRNA fusional similarity. By analyzing circRNA’s characteristics from different per-

spectives, we can obtain three similarity matrices, including SCgene (formula 8), SCGAS (formula 9),

and SCseq (formula 16). Since the two adjacency matrices Acd and Acg are sparse, the two similari-

ties SCgene and SCGAS obtained by collaborative filtering have no significant difference in value and

Fig 2. A) the CGR of hsa_circ_0005931 are plotted with the average coordinates for each 8 × 8 quadrant represented. B) A matrix of hsa_circ_0005931’s nucleotides

with probabilities for chaos game representation.

https://doi.org/10.1371/journal.pcbi.1007872.g002
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can’t effectively distinguish circRNA. In order to solve the small difference between circRNAs

due to lack of data and availability, we try to describe circRNA from a different perspective to

make it more informative. To this end, the sequence similarity is introduced. However, some

circRNAs lack sequence information corresponding to the experiment. So, the completion of

similarity information is accomplished by combining three matrices. The fusional similarity

SC is defined as follow, and the final circRNA similarity matrix can be seen in S5 Table.

SC ¼

SCgeneðcðiÞ; cðjÞÞ þ S
C
GASðcðiÞ; cðjÞÞ þ S

C
seqðcðiÞ; cðjÞÞ

3
if SCseqðcðiÞ; cðjÞÞ 6¼ 0

SCgeneðcðiÞ; cðjÞÞ þ S
C
GASðcðiÞ; cðjÞÞ

2
otherwise

ð20Þ

8
>>><

>>>:

Prediction of association between circRNA and disease by SVM

Support Vector Machines (SVM) was introduced in 1963 by Vanpik et al., which demon-

strated many unique advantages in solving small sample, nonlinear and high dimensional

Fig 3. The workflow of circRNA sequence-based similarity.

https://doi.org/10.1371/journal.pcbi.1007872.g003
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pattern recognition problems. Due to the training samples used in iCDA-CGR are small, SVM

is selected to build a model of predicting potential circRNA-disease association. Prediction is

mainly divided into three steps: 1. Construct positive and negative sample sets; 2. Form the

association descriptors based on the characteristics of the circRNA and disease; 3. Train mod-

els based on descriptors to predict potential circRNA-disease associations. Each step will be

described in detail below.

Firstly, we built positive and negative sample sets. Specifically, 612 corresponding experi-

mentally supported circRNA-disease pairs in circR2Disease were chosen as positive samples.

Meantime, we randomly selected the same number of associations that without experimentally

supported as negative samples.

Secondly, the association descriptors based on the characteristics of the circRNA and dis-

ease were formed. We calculated the semantic similarity SDsem and the GAS similarity SDGAS of the

disease separately, and integrated them into a matrix SD, and used the similarity of the disease

d(id) with all diseases including itself (the idth row of the matrix SD) as the characteristic

descriptor of the disease defined as follow:

SDðdðidÞÞ ¼ ðv1; v2; v3; . . . ; vmÞ ð21Þ

where SD(d(id)) represents the ith row of the matrix SD. v1 is the similarity value of d(id) and d
(1). The size of SD(d(id)) is 1×m. At the same time, we calculated the gene-based similarity

SCgene, the GAS similarity SCGAS and sequence-based similarity of the circRNA separately to form

circRNA fusional similarity SC. Using the similarity of the circRNA c(ic) with all circRNA

including itself (the ith row of the matrix SC) describes the characteristic descriptor of the cir-

cRNA defined as follow:

SCðcðicÞÞ ¼ ðw1;w2;w3; . . . ;wnÞ ð22Þ

where SC(c(ic)) represents the ith row of the matrix SC. The similarity value between c(ic) and c
(1) is defined as w1. The size of SC(c(ic)) is 1×n. circRNA disease samples can be defined as

622-dimensional association descriptors combined SD(d(i)) and SC(c(ic)):

F ¼ ðSDðdðidÞÞ; S
CðcðicÞÞÞ ¼ ðf1; f2; f3; . . . ; fnþmÞ ð23Þ

where (f1,f2,f3,. . .,fm) is idth row of the disease fusional similarity SD, the icth row of the cir-

cRNA fusional similarity SC is defined as (fm+1,f m+2,f m+3,. . .,fm+n).

Finally, support vector machines (SVM) is utilized to train samples to build predictive mod-

els. More specifically. Firstly, we set the label of the training set. If the samples are in Zp, the

label is defined as 1. Meanwhile, if the samples are in Zn, the label is defined as 0. Secondly, we

fed the training data into support vector machines (SVM) to get prediction model. By predict-

ing, the higher the score of the circRNA-disease association, the more likely it is the candidate

for the potential association.

Results

Performance Evaluation

The five-fold cross-validation(5-CV). In this work, the five-fold cross-validation (5-CV) is

selected to evaluate the effectiveness of iCDA-CGR in predicting disease-related circRNAs.

We separated the base dataset Z into five parts on average:

Z ¼ Z1 [ Z2 [ Z3 [ Z4 [ Z5

; ¼ Z1 \ Z2 \ Z3 \ Z4 \ Z5

ð24Þ

(
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where ; is empty set. [ and \ are the union and intersection of set theory. Subset Zi, Zp, Zn can

be defined as:

Zi ¼ Zp
i [ Zn

i

Zp ¼ Zp
1 [ Z

p
2 [ Z

p
3 [ Z

p
4 [ Z

p
5

Zn ¼ Zn
1
[ Zn

2
[ Zn

3
[ Zn

4
[ Zn

5

i ¼ 1; 2; 3; 4; 5 ð25Þ

8
><

>:

The relationship between the ith positive subset Zp
i or the ith negative Zn

i can be expressed

as:

numðZp
1Þ [ numðZ

p
2Þ [ numðZ

p
3Þ [ numðZ

p
4Þ [ numðZ

p
5Þ

numðZn
1
Þ [ numðZn

2
Þ [ numðZn

3
Þ [ numðZn

4
Þ [ numðZn

5
Þ

ð26Þ

(

where the quantity of sample in the ith positive subset Zp
i are described as numðZp

i Þ. In same

way, we described the quantity of sample in the ith negative subset Zn
i as numðZn

i Þ. In the

iCDA-CGR, we utilized four of the positive subset and negative Zn
i as the training set and the

remaining one as the test set as a cross-validation. The cross-validation is repeated 5 times, and

each test set is verified once, with an average of 5 results, and finally a final estimate is

obtained.

Evaluation criteria. Three evaluation criteria were introduced for assessing the perfor-

mance of iCDA-CGR. Accu. is the ratio of the number of samples correctly classified by the

classifier to the total number of samples.

Accu: ¼
TP þ TN

TP þ TN þ FP þ FN
ð27Þ

where TP and FP are the number of true positive and false positive samples, respectively. TN
and FN are the number of true negative and false negative samples, respectively. Sen. is the

ratio of the number of samples correctly classified by the classifier to the total positive samples.

Sen: ¼
TP

TP þ FN
ð28Þ

Prec. is the ratio of the number of samples correctly classified by the classifier to the sum of

true positive and false positive samples.

Prec: ¼
TP

TP þ FP
ð29Þ

F1 is a comprehensive evaluation index of Sen. and Prec.

F1 ¼
Sen:� Prec:
Sen:þ Prec:

ð30Þ

Assessment of prediction ability

To evaluate the capabilities of the model, we performed experiments on the circR2Disease and

circFunBase datasets, respectively. The five-fold cross-validation results on the circR2Disease

dataset are summarized in Table 2. iCDA-CGR has gained an average prediction AUC of

0.8533+/-0.0249. The AUCs of the five experiments are 0.8923 (fold 1), 0.8252 (fold 2), 0.8390

(fold 3), 0.8723 (fold 4) and 0.8385 (fold 5) respectively as Fig 4. iCDA-CGR has gained an

average prediction AUPR of 0.7584+/-0.0351. The AUPRs of the five experiments are 0.8240

(fold 1), 0.7463 (fold 2), 0.7187 (fold 3), 0.7566 (fold 4) and 0.7465 (fold 5) respectively as Fig
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5. The yielded averages of accuracy, sensitivity, precision and f1-score come to be 81.95%,

88.08%, 78.46% and 82.97% as in Table 2.

On the circFunBase dataset, the mean and standard deviation were utilized as the experi-

mental results of the five-fold cross-validation. In Table 3, the experimental results were

obtained by iCDA-CGR on the circFunBase database. iCDA-CGR has gained an average pre-

diction AUC of 0.8049+/-0.169. The AUCs of the five experiments are 0.7820 (fold 1), 0.8316

(fold 2), 0.8104 (fold 3), 0.7926 (fold 4) and 0.8080 (fold 5) respectively as Fig 6. The AUPRs of

the five experiments are 0.7276 (fold 1), 0.8037 (fold 2), 0.7816 (fold 3), 0.7437 (fold 4) and

0.7727 (fold 5) respectively as Fig 7. The yielded averages of accuracy, precision, sensitivity and

f1-score come to be 78.03%, 79.96%, 74.94% and 77.31% as in Table 3.

Comparison among different classifiers

In the above experiment, iCDA-CGR has received a reliable result. To prove the correctness of

the classifier selection, we have compared the support vector machine (SVM) with random

Table 2. The five-fold cross-validation results performed by iCDA-CGR on circR2Disease dataset.

Testing set Accuracy Precision Sensitivity F1-score

1 83.74% 80.74% 88.62% 84.50%

2 78.86% 76.30% 83.74% 79.84%

3 81.15% 76.76% 89.34% 82.58%

4 84.84% 79.72% 93.44% 86.04%

5 81.15% 78.79% 85.25% 81.89%

Average 81.95±2.11% 78.46±1.70% 88.08±3.39% 82.97±2.14%

https://doi.org/10.1371/journal.pcbi.1007872.t002

Fig 4. ROC curves performed by iCDA-CGR on circR2Disease dataset.

https://doi.org/10.1371/journal.pcbi.1007872.g004
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forest (RF), decision tree (DT), k-nearest neighbor (KNN) on benchmark database

circR2Disease.

Support vector machines (SVM) is a binary classification model. Its purpose is to find a

hyperplane to segment samples. The principle of segmentation is to maximize the spacing, and

finally it is transformed into a convex quadratic programming problem to solve. The decision

tree (DT) adopts a top-down recursive method. The basic idea is to construct a tree with the

fastest entropy decline as measured by information entropy, and the entropy value at the leaf

node is 0. The random forest (RF) is a kind of Ensemble Learning, which belongs to Bagging.

By combining multiple weak classifiers, the final results can be voted or averaged, which

makes the results of the whole model have higher accuracy and generalization performance.

The main idea of the k-nearest neighbor (KNN) algorithm is that if most of the k most adjacent

samples in the feature space belong to a certain category, then the sample also belongs to this

category and has the characteristics of samples in this category.

Fig 5. PR curves performed by iCDA-CGR on circR2Disease dataset.

https://doi.org/10.1371/journal.pcbi.1007872.g005

Table 3. The five-fold cross-validation results performed by iCDA-CGR on circFunBase dataset.

Testing set Accuracy Precision Sensitivity F1-score

1 77.22% 80.37% 72.03% 75.97%

2 80.40% 82.35% 77.39% 79.79%

3 77.22% 80.83% 71.36% 75.80%

4 76.88% 76.27% 78.06% 77.15%

5 78.44% 80.00% 758.4% 77.86%

Average 78.03±1.30% 79.96±2.01% 74.94±2.75% 77.31±1.45%

https://doi.org/10.1371/journal.pcbi.1007872.t003
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Fig 6. ROC curves performed by iCDA-CGR on circFunBase dataset.

https://doi.org/10.1371/journal.pcbi.1007872.g006

Fig 7. PR curves performed by iCDA-CGR on circFunBase dataset.

https://doi.org/10.1371/journal.pcbi.1007872.g007
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In Table 4, we compare the results of Support vector machines with the other three classifi-

ers on the circR2Diseas database. The accuracy of the four experiments are 82.44% (Support

vector machines), 76.32% (k-nearest neighbor), 70.61% (Random forest) and 73.06% (Deci-

sion Tree). Their AUC are 0.8645 (Support vector machines), 0.8479 (k-nearest neighbor),

0.7927 (Random forest) and 0.7281 (Decision Tree) shown as Fig 8.

Comparison with related models

To further evaluate the reliability of iCDA-CGR, we compared it to five related prediction models:

KATZHCDA, GHICD, RWRHCD, CD-LNLP and ICFCDA. The details of the comparison are

summarized in Table 5. From the table, we can see that KATZHCDA, GHICD, RWRHCD and

our model iCDA-CGR are all based on circR2Disease data set and use the five-fold cross-valida-

tion method, so iCDA-CGR can be directly compared with these three models. In terms of AUC

scores reflecting the overall performance of the model, KATZHCDA, GHICD and RWRHCD

achieved 0.7936, 0.7290 and 0.6660 respectively, while the proposed model iCDA-CGR achieved

0.8533. The results show that iCDA-CGR is significantly better than these methods.

Table 4. Performance comparison among four different classifiers which are k-nearest neighbor, random forest, decision tree and support vector machine.

Method Accuracy (%) Sensitivity (%) Precision (%) F1-score (%)

KNN 76.32% 86.15% 73.68% 79.43%

RF 70.61% 71.54% 72.66% 72.09%

DT 73.06% 76.39% 73.53% 75.19%

SVM 82.44% 87.69% 80.85% 84.13%

https://doi.org/10.1371/journal.pcbi.1007872.t004

Fig 8. The ROCs of four different classifiers which are support vector machines, decision tree, random forest and

k-nearest neighbor on circR2Disease dataset.

https://doi.org/10.1371/journal.pcbi.1007872.g008
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In the last two rows of Table 5, we list the performance of CD-LNLP and ICFCDA, which

are 0.9007 and 0.9460, respectively. However, because the dataset or assessment methods used

by these two models are inconsistent with the proposed model, we cannot directly compare

them, so they are used as a reference for model performance. The specific reasons that cannot

be directly compared are as follows:

For model CD-LNLP, it uses the circ2Disease database instead of the more commonly used

circR2Disease database. Due to the different data sources used, the training model evaluation

criteria will be different. Furthermore, CD-LNLP uses leave-one-out cross validation

(LOOCV) to evaluate model performance instead of the more commonly used five-fold cross

validation (5-CV). Based on previous work, using the same model and data, LOOCV assess-

ments are usually higher than 5-CV [39]. Therefore, CD-LNLP cannot be directly compared

with the proposed model.

For model ICFCDA, it uses the circR2Disease database, but this method removes more

noisy data. The training data of ICFCDA includes 212 associations consisting of 200 circRNAs

and 42 diseases. The predicted coverage of this model is 7976 associations, which is 17.25% of

the coverage of iCDA-CGR. This operation makes the model performance stronger, but sacri-

fices the model’s coverage. In addition, ICFCDA also uses LOOCV. Therefore, ICFCDA can-

not be directly compared with the proposed model.

In summary, the proposed model has superior performance and coverage, which indicates

that CGR-based sequence extraction technology and characterization of intrinsic structure

and circRNA-disease association information could effectively improve the reliability of

prediction.

Case study

To verify the performance of the model in predicting potential associations based on con-

firmed associations, we carried out a case study. To be specific, we define the training samples

and test samples as follows:

Z1

train ¼ Z1

Z1

test ¼ CUZ1

ð31Þ

(

In the validation, confirmed associations Z1 between circRNA and disease provided by the

circR2Disease database were selected as training set Z1
train. Meanwhile, all the possible associa-

tion are selected as test sets Z1
test. The size of Z1

train and Z1
test are 1224 and 46213 respectively.

Here, we verified the top 30 associations with the highest score. Among them, 19 pairs were

Table 5. Performance comparison (AUC scores) among four different prediction model which are iCDA-CGR, KATZHCDA, GHICD, RWRHCD and CD-LNLP,

ICFCDA.

Method AUC Dataset Association Assessment method

GHICD 0.7290 circR2Disease 592 5-CVa

KATZHCDA 0.7936 circR2Disease 312 5-CVa

RWRHCD 0.6660 circR2Disease 592 5-CVa

iCDA-CGR 0.8533 circR2Disease 612 5-CVa

CD-LNLP 0.9007 circ2Disease 273 LOOCVb

ICFCDA 0.9460 circR2Disease 212 LOOCVb

a 5-CV is short for five-fold cross-validation
b LOOCV is short for leave-one-out cross-validation

https://doi.org/10.1371/journal.pcbi.1007872.t005
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verified in different literatures shown as Table 6.

Z2

train ¼ Z2

Z2

test ¼ CUZ2

ð32Þ

(

Similar to the definition above, the confirmed associations provided by the circFunBase

database were selected as the training set Z2
train. At the same time, all possible associations are

selected as test set Z2
test. The size of Z2

train and Z2
test are 5968 and 168031 respectively. Here,

we verified the top 30 correlations with the highest score. And, 17 pairs were verified in differ-

ent literatures shown as Table 7.

Performance on independent data set

The results indicate that this method is reliable for circRNA-disease association prediction. In

order to further support this conclusion, we verified the method in other databases (CRDD,

circRNADisease, and Circ2Disease). It is not possible to identify all potential circRNA disease

Table 6. Prediction of the top 30 predicted circRNAs associated based on known associations on circR2Disease.

Rank circRNA Disease Evidence (PMID)

1 Circ_MED12L Hepatoblastoma unconfirmed

2 hsa_circ_0070933 Oral squamous cell carcinoma unconfirmed

3 hsa_circ_0070934 Diabetic myocardial fibrosis unconfirmed

4 hsa_circ_0002113 Breast cancer 28803498

5 hsa_circ_0070934 Hypertension unconfirmed

6 hsa_circ_0067934 Hepatocellular carcinoma 29458020

7 hsa_circ_0001445 Pancreatic cancer unconfirmed

8 hsa_circ_0014717 Gastric cancer 28544609

9 hsa_circ_0001649 Gastric cancer 28167847

10 hsa_circ_0001649 Glioma 29343848

11 hsa_circ_0067934 Esophageal squamous cell carcinoma 27752108

12 hsa_circ_0003838 Breast cancer 28803498

13 circETFA Breast cancer 29221160

14 mmu_circ_0001052 Immunosenescence unconfirmed

15 circMED13 Breast cancer 29221160

16 hsa_circ_0068087 Rheumatoid arthritis unconfirmed

17 hsa_circ_0007031 Colorectal cancer 28656150

18 hsa_circ_0068033 Breast cancer 29045858

19 Circ_SMARCA5 Glioma 26873924

20 hsa_circ_0000504 Colorectal cancer 28656150

21 circ-Foxo3 Acute ischemic stroke unconfirmed

22 hsa_circ_0072359 Hepatoblastoma 29414822

23 Circ_ZNF148 Glioma 26873924

24 hsa_circ_0081342 Papillary thyroid carcinoma 28288173

25 mmu_circ_0000290 Primary great saphenous vein varicosities unconfirmed

26 circ-FBXW7 Glioblastoma 28903484

27 hsa_circ_0085495 Breast cancer 28803498

28 hsa_circ_0001824 Breast cancer unconfirmed

29 Circ_ADCY1 Glioma 26873924

30 circDLGAP4 Cardiovascular disease unconfirmed

https://doi.org/10.1371/journal.pcbi.1007872.t006
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associations because each database is incomplete. So, we assume that the associations in the

database are the only known associations that have been experimentally verified, and the rest

are set to unknown associations. The training samples and test samples are described as fol-

lows:

Z1

train
circR2Disease ¼ Z1

Z1

test
circR2Disease ¼ CUZ1 \ Zdatabase

ð33Þ

(

where Z1

train
database and Z1

test
database are the training set and test set of the independent data sets respec-

tively. Zdatabase represents the independent data sets, such as CRDD, circRNADisease, and Cir-

c2Disease. In this experiment, the iCDA-CGR was utilized to construct the prediction model

using the base dataset Z1. Since the disease and circRNA are different for each data source, the

intersection of all possible association sets CUZ1 with independent data set Zdatabase is used as

the test set Z1

test
circR2Disease. It can be seen from Table 8 that the proposed method obtained pre-

dicted values of 95.18% (Circ2Disease), 90.64% (circRNADisease) and 95.89% (CRDD) in

three databases, respectively. In addition, we did the same on circFunBase. The training

Table 7. Prediction of the top 30 predicted circRNAs associated based on known associations on circFunBase.

Rank circRNA Disease Evidence (PMID)

1 hsa_circ_0078768 Facet joint osteoarthritis unconfirmed

2 hsa_circ_0000893 Breast cancer 28744405

3 hsa_circ_0046264 Coronary artery disease unconfirmed

4 hsa_circ_0039353 Bladder cancer unconfirmed

5 hsa_circ_0071896 Facet joint osteoarthritis 29470979

6 hsa_circ_0001112 Colorectal cancer unconfirmed

7 hsa_circ_0087537 Facet joint osteoarthritis 29470979

8 circVRK1 Breast cancer 29221160

9 hsa_circ_0003570 basal cell cancer unconfirmed

10 hsa_circ_0020397 Colorectal cancer 28707774

11 hsa_circ_0011316 Colorectal cancer unconfirmed

12 hsa_circ_0098964 Coronary artery disease 28045102

13 hsa_circ_0051172 Coronary artery disease 28947970

14 hsa_circ_0000069 Colorectal cancer 28003761

15 hsa_circ_0078768 Active pulmonary tuberculosis 28846924

16 hsa_circ_0003838 Breast cancer 28803498

17 hsa_circ_0007006 Colorectal cancer 28656150

18 circRPAP2 Cutaneous squamous cell cancer unconfirmed

19 hsa_circ_0058792 Coronary artery disease unconfirmed

20 hsa_circ_0001667 Breast cancer 28803498

21 hsa_circ_0088452 Active pulmonary tuberculosis 28846924

22 hsa_circ_0001087 breast cancer unconfirmed

23 hsa_circ_0002874 Breast cancer 28803498

24 circUGP2_2 Cervical cancer unconfirmed

25 circC3 Facet joint osteoarthritis unconfirmed

26 hsa_circ_0089378 Coronary artery disease unconfirmed

27 hsa_circRNA_104333 Basal cell cancer unconfirmed

28 hsa_circ_0002495 Bladder cancer 29558461

29 hsa_circ_0001721 Breast cancer 28744405

30 hsa_circ_0000745 Gastric cancer 28974900

https://doi.org/10.1371/journal.pcbi.1007872.t007
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samples and test samples are described as follows:

Z2

train
circR2Disease ¼ Z2

Z2

test
circR2Disease ¼ CUZ2 \ Zdatabase

ð34Þ

(

It can be seen from Table 8 that the proposed method obtained predicted values of 63.26%

(Circ2Disease), 73.43% (circRNADisease) and 72.72% (CRDD) in three databases, respec-

tively. The experiment shows that the iCDA-CGR has strong generalization ability.

Discussion

In this study, we proposed the calculation model iCDA-CGR based on quantify location and

non-linear information to identify the circRNA-disease associations. This model integrates cir-

cRNA sequence information, gene-circRNA associations information, circRNA-disease asso-

ciations information and the disease semantic information, and predicts the final results by

SVM classifier. In particular, we introduce circRNA sequence information and extract the bio-

logical sequence position information and quantifies the biological sequence nonlinear rela-

tionship of circRNA by Chaos Game Representation for the first time in the circRNA-disease

prediction model. The model achieved outstanding results in the experiments of five cross-val-

idation, comparisons with other methods, and independent data sets. Furthermore, 19 of the

top 30 circRNA-disease associations predicted in case studies experiments were confirmed by

the latest published literature. Due to the addition of sequence information, iCDA-CGR exhib-

ited strong reliability and stability in predicting potential circRNA-disease associations. These

experimental results indicate that the sequence information has sufficient coverage relative to

nucleic acids, and iCDA-CGR has great potential for nucleic acid function analysis.
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