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,e disposal of agricultural straw has been a severe environmental concern in China and many other countries. In this study, the
complex modulus of using biochar converted from straw as an alternative mineral filler in asphalt mastic was investigated through
both laboratory tests and modeling.,e experimental results indicated that the biochar can provide asphalt mastic higher stiffness
than the conventional granite mineral filler. It was believed that the special porous structure of biochar providing a thicker coating
layer of mineral filler increases the stiffness modulus of asphalt mastic. To consider this factor into the micromechanical model, a
modified generalized self-consistent model (MGSCM) with a coating layer was proposed. Besides, the finite element (FE)
microstructural model with a coating layer generated by random aggregate distribution method was used to numerically evaluate
the effect of the coating layer on the complex modulus of asphalt mastics. ,e predicted results indicated that the generalized self-
consistent model (MGSCM) with a coating layer is an efficient and accurate model for predicting the complex modulus of asphalt
mastics. Moreover, the FE modeling proved that the coating layer can significantly improve the complex modulus of asphalt
mastics. ,erefore, the experiments and modeling carried out in this study provided insight for biochar applications to improve
the performance of asphalt mixtures.

1. Introduction

,e disposal of tons of straw has been a serious issue in the
agricultural industry in China [1]. Converting the biomass to
biofuel provides an outlet for this problem. However, a large
amount of biochar waste may be generated in the meantime.
,us, it becomes an increasing issue for the utilization of
carbon-based waste. One efficient treatment is to use the

biochar as the filler material in the asphalt paving industry.
,e utilization of carbonaceous materials as asphalt addi-
tives can be dated back to the 1960s [2]. By now, a great
number of carbonaceous materials have been introduced,
such as carbon black [2], coke dust [3], carbon fiber [4], and
carbon nanotubes [5]. It has been evidenced that these
carbon-based additives can positively improve the perfor-
mance of asphalt mixture. Recently, with the development of
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the biofuel industry, biochar, the by-product from the
biofuel manufacture process, has been used as the new
carbonaceous modifier. Zhao et al. [6, 7] investigated the
performances of asphalt binders and asphalt mixtures
modified by biochar from switchgrass and found that bio-
char can improve the resistances of rutting, cracking, and
moisture-induced damages. Compared to commercial car-
bon-based additives, the introduction of biochar seemed to
perform better. Çeloğlu et al. [8] used the biochar from the
walnut crust and apricot seed shell to modify the asphalt
binders and found that biochar can increase the binder
stiffness and thus have a potential to enhance the rutting
resistance as well. Kumar et al. [9] evaluated the perfor-
mance of asphalt binders with the introduction of biochar
from Mesua ferrea seed cover waste and found that biochar
can also decrease the aging susceptibility. ,ey also men-
tioned that the irregular shape of the biochar particle may
also contribute to the physicochemical interaction between
biochar particle and asphalt binder. Considering these
merits, it should be feasible to use it as the alternative of the
conventional filler materials.

To evaluate the effects of using biochar as filler material
on the asphalt pavement, characterization of the perfor-
mance of biochar-modified asphalt mastic is a good way to
characterize the effects of the biochar. As the asphalt mastic
is the composite only of asphalt binder and filler, therefore, it
makes it possible to fully evaluate the interaction between
filler and asphalt binder by excluding the effects of aggregate.
Besides, as asphalt mastic is the binding material and the
viscoelastic component of asphalt concrete, it plays a sig-
nificant role in the performance of asphalt pavement
[10, 11]. ,erefore, it is critical to evaluate the viscoelastic
property of asphalt mastic for the evaluation of the per-
formance of asphalt pavement. To do that, complex mod-
ulus, composed of both dynamic modulus and the phase
angle, is a commonly used parameter to depict the visco-
elastic performance of asphalt materials [12]. However, al-
though many studies have been conducted to investigate the
effect of biochar on asphalt concrete, most of those inves-
tigations are based on experiments. To further explore the
essence of biochar on strengthening asphalt pavement,
modeling methods are highly required.

Currently, the method to predict the complex modulus
of asphalt materials can be divided into numerical methods
and analytical methods. ,e numerical methods based on
finite element (FE) model and discrete element methods
(DEMs) to perform simulation on the developed micro-
structural models. Many studies have been conducted to
predict the complex modulus of asphalt materials based on
the DEM and FE model [13–16]. However, one of the
drawbacks of the numerical methods is the high cost for time
and computation, which greatly limited their application.
Different from numerical methods, the analysis is based on
micromechanical models. In this method, the micro-
mechanical models can predict the mechanical performance
of heterogeneous materials based on the volumes of each
composition, which provides a more efficient manner to
analyze the interaction between particles and matrix. Since
the 1920s, many micromechanical models, such as the dilute

model (DM), the Mori–Tanaka model (MTM), the self-
consistent model (SCM), and the generalized self-consistent
model (GSCM) were introduced to predict the complex
modulus of asphalt materials [17–23]. However, these
models only can predict the effective modulus but phase
angle for viscoelastic asphalt materials [24–26]. Besides,
because these models generally cannot consider the effects of
physiochemical reinforcement and particle interaction, the
predictions always underestimate the modulus of asphalt
materials [10, 26–29]. ,erefore, to accurately and efficiently
predict the complex modulus and time-dependent charac-
teristic of biochar filler asphalt mastic, a more rational
micromechanical model is keenly desired.

,erefore, this study aimed at predicting the viscoelastic
performance of biochar-modified asphalt mastic based on
computational methods. To achieve these objectives, the
following research tasks have been conducted:

(i) Measuring the complex modulus of asphalt mastics
through dynamic shear rheometer (DSR) tests

(ii) Developing a micromechanical model to charac-
terize the viscoelastic performance, especially for
dynamic modulus, of biochar asphalt mastic by
means of homogenization method

(iii) Predicting and proving the effect of biochar on
asphalt mastics based on the FE method by random
aggregate generation method

2. Experimental Program

2.1.Material Preparation. ,e biochar used in this study was
prepared from rice straw.,e process of biochar preparation
is shown in Figure 1. ,e dry rice straw was completely
burned in an oven at 500°C for an hour. ,e residue ash was
then collected and ground in a high-speed mixer for 30
seconds to obtain homogeneous biochar powder used as the
mineral filler in this study.

A scanning electron microscope (SEM), FEI Quanta 250
FE-SEM, was used to examine themicrostructure differences
between conventional mineral filler, i.e., granite filler, and
biochar filler. Figure 2 presents the SEM images of biochar
and granite filler. It can be observed that the granite particles
have a smooth fractured surface with an irregular shape,
while the biochar particles are characterized with special
porous structures with an uneven surface. Research also
showed that this special structure can improve the antiaging
properties of asphalt materials [30].

To prepare the asphalt mastics, asphalt binder with a
penetration grade of 60/70 (Pen 60/70) was designed. ,e
proportion of asphalt mastic was designed based on the
stone mastic asphalt (SMA) due to the high asphalt binder
and filler contents. In this study, SMA10, a commonly used
asphalt mixture with a maximum aggregate size of 10mm,
was selected [31]. In this mixture, the mineral filler ratio in
the gradation and the binder content in the mixture are 9%
and 6%, respectively, which corresponds to a mass ratio of
58.5 : 41.5 of mineral filler to asphalt binder.,e granite filler
in the asphalt mastic was partially substituted by biochar
filler with a volume fraction of 0%, 40%, 80%, and 100%.,e
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physical properties of asphalt binder, granite filler, and
biochar filler are presented in Table 1. ,e mixture pro-
portions designed in volume and mass compositions in each
asphalt mastic are presented in Table 2. ,e biochar and
granite filler materials were mixed with the hot asphalt
binder at 150°C for 3 minutes until the mixture was prepared
homogeneously.

2.2. Laboratory Tests. To characterize the viscoelastic
properties of asphalt mastic, frequency sweep tests were
conducted using an Anton Paar MCR 702 direct shear
rheometer (DSR).,e two standardized DSR configurations,
i.e., 8mm and 25mm diameter plates for asphalt binder and
asphalt mastic, with applied sinusoidal strain were used for
the frequency sweep test of asphalt mastic as shown in
Figure 3. Following AASHTO-T315 [32], an 8mm plate was
used for the test at a temperature lower than 25°C and a
25mm plate for temperature higher than 25°C. Tests were
performed at the frequencies from 100Hz to 0.1Hz at the
temperature from 0°C to 60°C with a 10°C interval. All the
tests were conducted at the strain level where specimens
behave linearity.

3. Master Curve Construction

,e master curves were generated to present the complex
moduli obtained from different temperatures to a given
temperature based on the time-temperature superposition

principle. ,e Williams–Landel–Ferry (WLF) formula was
applied to shift the complex moduli to the reference tem-
perature of 25°C and then the Christensen–Anderson (CA)
model [33, 34] was further used to fit the shifted data. ,e
WLF formula and the CA model are shown in the following
equations:

log aT �
−C1 T − T0( 

C2 + T − T0( 
, (1)

where aT is the shift factor,T is the test temperature,T0 is the
reference temperature, and C1 and C2 are constants.

G
∗
(ω) � Gg 1 +

ωc

ωr

 

(log 2)/R
⎡⎣ ⎤⎦

−R/(log 2)

, (2)

where G∗(ω) is complex shear modulus, Gg is glass modulus
assumed to be 1GPa, ωr is the reduced frequency at the
defining temperature (rad/s),ωc is crossover frequency at the
defining temperature (rad/s), ω is the frequency (rad/s), and
R is the rheological index.

(a) (b) (c) (d)

Figure 1: Biochar preparation progress: (a) rice straw raw material; (b) burning process; (c) grinding; (d) biochar filler.

(a) (b)

Figure 2: SEM images of (a) biochar and (b) granite filler.

Table 1: Material properties.

Asphalt
binder

Granite
filler

Biochar
filler

Density (g/cm3) 1.03 2.65 2.23
Elastic
modulus (GPa) — 60 60

Poisson ratio 0.49 0.15 0.15
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Table 3 presents the shift factors of WLF and parameters
of the CA model of fitted master curves. Figure 4 presents a
typical master curve construction of mastic (0%). It can be
observed that the CA model can fit both the dynamic
modulus and phase angle curves well with high consistency.

4. Modeling

Figure 5 illustrates the micromechanical model used in this
paper. Figure 5(a) is a commonly used GSCM.,is model is
composed of three layers including the asphalt binder, ag-
gregate, and a homogenized material layer [10]. One of the
drawbacks of this model is that it cannot take the coating
layer on the surface of the filler particle into the model.
However, this coating layer can significantly affect the
mechanical performance of asphalt mastic [30]. ,erefore,
this model generally underestimates the modulus of asphalt
mixes. To solve this problem, a four-phase micromechanical
model including the coating layer was therefore proposed to
predict the complex modulus of asphalt mastic named
modified generalized self-consistent model (MGSCM). ,is
micromechanical model was proposed by Doghri [35, 36],
which is composed of four different phases including ef-
fective homogeneity matrix, real matrix, coating layer, and
inclusion compared with the traditional GSCM model as
illustrated in Figure 5. Peng et al. [23] have developed this
method for investigating the upper limit and lower limit of
dynamic modulus of the asphalt concrete.

In this MGSCMmodel, the inclusions, mineral filler, and
biochar filler were assumed as elastic components with an
elastic modulus and Poisson’s ratio of 60GPa and 0.15,
respectively. To describe the viscoelastic properties of asphalt
binder, the complex modulus master curves of asphalt
binder were expressed as the Prony series model as pre-
sented in Table 4. ,e Prony series parameters were de-
termined by minimizing the storage modulus and loss
modulus [37]. Figure 6 displays the master curves of asphalt
binder expressed by the CA model and Prony series model.
It is worth noting that the Prony series model can fit the CA
model master curve with high accuracy within a wide fre-
quency range from 10−4 Hz to 104Hz. ,e process to de-
termine the coating layer’s properties may follow the
flowchart presented in Figure 7 due to the complexity of
physical measurement on the coating layer.,e coating layer
was assumed as an elastic component due to the relatively
high stiffness modulus compared with asphalt binder. A
Poisson’s ratio of 0.15 was assumed because of its marginal
effect on complex modulus perdition. ,e thickness of the
coating layer was then determined when the complex
modulus at low frequency reached the minimum relative
error while this thickness was then used to determine the
elastic modulus of the coating layer when the complex
modulus at high frequency reached the minimum relative
error. ,e complex modulus master curves of the asphalt
mastic (0%) and asphalt mastic (100%) were predicted. Both
models including GSCM and MGSCM were used to predict

Table 2: Material compositions of asphalt mastics.

Asphalt mastics
Mass compositions (%) Volume compositions (%)

Mineral filler Biochar Asphalt binder Mineral filler Biochar Asphalt binder
Mastic (0%) 58.5 0.0 41.5 35.4 0.0 64.6
Mastic (40%) 36.5 20.4 43.1 21.2 14.2 64.6
Mastic (80%) 12.6 42.5 44.8 7.1 28.3 64.6
Mastic (100%) 0.0 54.2 45.8 0.0 35.4 64.6

8 mm

2 mm

Applied sinusoidal strain

(a)

25 mm

1 mm

Applied sinusoidal strain

(b)

Figure 3: DSR measuring system used for (a) asphalt binder (8mm plates) and (b) asphalt mastic (25mm plates).
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Homogenized material: Cr
Asphalt binder: C0

Aggregate: C1

Cr

C0

C1

(a)

Homogenized material: Cr
Asphalt binder: C0

Aggregate: C1
Coating layer: C2

Cr

C0

C1
C2

(b)

Figure 5: Schematic diagrams of micromechanical models: (a) GSCM and (b) MGSCM.

Table 3: Parameters of the WLF formula and CA model for asphalt binder and mastics.

Parameters Unit Asphalt binder Mastic (0%) Mastic (40%) Mastic (80%) Mastic (100%)

WLF formula C1 — 13.56 15.144 15.70 15.23 16.27
C2 — 132.24 144.334 148.91 149.26 157.23

CA model
R — 1.18 1.116 1.16 1.04 1.10

Gg Pa 3.50E+ 08 5.20E+ 08 1.20E+ 09 1.00E+ 09 1.20E+ 09
ωc rad/s 977 985 7.42E+ 02 6.28E+ 02 5.38E+ 02

R2 |G∗| — 0.999 0.999 0.999 0.999 0.998
θ — 0.995 0.998 0.998 0.998 0.997

Shi�ed data
CA model
60° C

50° C
40° C
30° C
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Figure 4: Master curve construction of mastic (0%).
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the complex modulus of asphalt mastics. ,e MSC Digimat
software system was used to conduct the modeling. ,e
simulation process can be completed in seconds to obtain
the complex moduli within the whole frequency range from
10−4Hz to 104Hz.

5. Results and Discussion

5.1. Complex Moduli. Figure 8 presents the complex mod-
ulus curves representing both dynamic modulus and phase
angle of asphalt mastics with different biochar volume
fractions. It can be observed that with the increasing volume
substitution of biochar filler, the dynamic moduli of mastics
increase but the phase angle decreases regarding frequency.
,is means that the biochar can stiffen the asphalt mastics. It
is expected that the porous structure of biochar enhances the
absorption of asphalt binder and then further increases the
stiffness of asphalt mastics. To quantify the effect of biochar
on the dynamic moduli and phase angles, their relative
errors at low, high, and the whole frequency ranges are listed
in Table 5. It is worth noting that a significant increase in
dynamic modulus can be observed with the biochar sub-
stitutions from 0% to 100% and a 50% modulus increase can
be achieved with a 100% biochar substitution. Besides,
compared the differences in different frequency ranges, it
can be found that the increase of dynamic modulus is
substantially higher than the dynamic modulus at low fre-
quency, and with the increase of substitution, this tendency
becomes more noticeable, which means that the stiffening
effect of biochar is strengthened with the biochar increase.
Based on the performance of biochar mastic, it can be
concluded that biochar filler can exhibit low deformation at
long-term loading and high temperature, which indicates a
better rutting resistance of asphalt pavement constructed by
biochar filler than the conventional mineral filler.

5.2. Modeling. ,e complex moduli of asphalt mastic (0%)
and mastic (100%) were predicted by both GSCM and

MGSCM models. ,e experimental and the predicted
master curves for both mastics are displayed in Figures 9 and
10, and the corresponding errors are presented in Table 6. It
can be seen that both models can well capture the trend of
complex modulus for both mastics as indicated by high R2

values of around 1. However, the GSCM substantially un-
derestimates the dynamic modulus for both granite and
biochar filler asphalt mastics with relative errors of 32% and
56% for mastic (0%) and mastic (100%), respectively. It is
believed that the existence of the coating layer in the real
mastic increases the experimental modulus of mastics. As
mentioned before, due to the physiochemical reinforcement
between filler particles and asphalt binder, the modulus of
the coating layer will increase significantly and then further
increase the overall modulus of asphalt mastic. However,
this factor cannot be considered in the GSCM model.
,erefore, to give a correct prediction, it is required to take
the coating layer into the micromechanical model. To this
end, the coating layer was introduced into the MGSCM
model. From Figures 9 and 10, we can find that, with the
introduction of the coating layer, significant improvement is
achieved for the predicted master curves for both mastics
and only the relative errors for both dynamic modulus and
phase angle predictions on both mastics are narrowed down
to less than 5%. ,erefore, the results demonstrate that the
MGSCM considering the coating layer can give an accurate
prediction for the viscoelastic performance of asphalt
mastics.

,e properties of the coating layer are presented in
Table 7. In the model, a thicker and high modulus coating
layer was applied to mastic (100%) with biochar filler than
the conventional filler mastic (0%) with granite filler. ,is is
also consistent with the SEM test result, which indicates the
biochar particles are characterized with special porous
structures with an uneven surface. ,is porous structure
indicates the biochar filler can have a thicker coating layer
than the conventional granite filler with a smooth surface.

5.3. Dynamic Modulus Simulation based on the FE Method.
,e viscoelastic property of asphalt materials is derived from
that of asphalt binder. ,e complex modulus of the com-
posites can be directly obtained from laboratory tests [25].
Besides, from the continuum mechanics aspect, asphalt
mixtures were regarded as a representative volume element
(RVE) composed of asphalt binder, aggregate particles, and
air voids. ,us, the complex modulus is transferred to a
calculable parameter of the resultant function of their me-
chanical properties, volume contents, and space location [19].

As the aggregate particle is an elastic material, the vis-
coelastic property of asphalt mastic is determined by asphalt
matrix. For FE simulation, the linear transformation is re-
quired for the viscoelastic matrix [26]. Prony series model was
adopted for linear transformation.,e deviation is as follows:
firstly, the sinusoidal external strain load is expressed as

ε(t) � ε0 exp(iωt). (3)

By replacing ε(t) with progressive relaxation modulus,
the following stress expression can be obtained:

Table 4: Prony series model parameters of asphalt binder at 25°C.

Series no.
Pen60/70

G0 � 206.241MPa
τi (s) αi (—)

1 4.955E – 06 5.347E – 01
2 1.851E – 05 2.601E – 02
3 6.916E – 05 2.420E – 01
4 2.584E – 04 8.287E – 02
5 9.652E – 04 7.005E – 02
6 3.606E – 03 2.733E – 02
7 1.347E – 02 1.190E – 02
8 5.033E – 02 3.671E – 03
9 1.880E – 01 1.113E – 03
10 7.024E – 01 2.705E – 04
11 2.624E+ 00 6.830E – 05
12 9.804E+ 00 1.300E – 05
13 3.663E+ 01 3.720E – 06
14 1.368E+ 02 3.383E – 07
15 5.112E+ 02 2.492E – 07

6 Advances in Materials Science and Engineering



σ(t) � E∞ε(t) − 
∞

0
e(τ)

d
dτ

E∞ε0 exp(iω(t − τ))( dτ

� E∞ 1 + iω
∞

0
e(τ)exp(−iωτ)dτ ε(t),

(4)
where e(t) � (E(t)/E∞) − 1 is the relaxation formula after
regulation and τ is the relaxation time.

Based on equation (4), the relationship of stress and
strain can be redefined as follows:

σ(t) � E
∗
(ω)ε(t). (5)

Comparing equation (4) with equation (5), the expres-
sion of complex modulus can be written as
E∗(ω) � E∞(1 + iωe(ω)), where e(ω) is the transformed
term of e(t) after Fourier transform. e(ω) can be expressed
as e(ω) � Re(e(ω)) + iIm(e(ω)). ,erefore, the complex
modulus can be further expressed as follows:

E
∗
(ω) � E∞(1 − ωIm(e(ω)))

√√√√√√√√√√√√√√√√√√
Es(ω)

+i E∞ωRe(e(ω))
√√√√√√√√√√√√

El(ω)

,
(6)

where Es(ω) is storage modulus and El(ω) is loss modulus.
By rewriting equation (6), the following equation is

obtained:

Im(ωe(ω)) � 1 −
Es(ω)

E∞

Re(ωe(ω)) �
El(ω)

E∞

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (7)

,erefore, the complex modulus is expressed as the
progressive relaxationmoduli at different frequencies, which
can be used as a viscoelastic constitutive model in the FE
simulation [38].

5.4. FEResults. To prove the assumption of the coating layer
in the MGSCM, FE simulation was also conducted. ,e
simulations based on mastic (0%) and mastic (100%) were
performed. In the FE simulation, the complex moduli of
asphalt mastic within the frequency range from 10−2 Hz to
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Figure 6: Dynamic shearmodulus and phase anglemaster curves fitted by the CAmodel and the corresponding Prony series for Pen6070 at 25°C.

Determine the material properties and 
thickness of coating layer

Assume the coating layer as an elastic material

Determine three parameters: elastic modulus, Poisson’s ratio, 
and layer’s thickness

Determine the coating layer’s thickness by minimizing the 
relative errors of complex moduli at low frequencies

Determine the coating layer’s elastic modulus by minimizing 
the relative errors of complex moduli at high frequencies 

Evaluate the effect of coating layer’s Poisson’s ratio on 
complex moduli

Obtain the elastic modulus, Poisson’s 
ratio, and thickness of coating layer

Figure 7: Flowchart of coating layer characterization procedures.
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Figure 8: Complex modulus master curves of asphalt mastic.

Table 5: Relative differences in complex modulus (%).

Frequency range Complex modulus Mastic (40%) Mastic (80%) Mastic (100%)

Low frequencies (10−4Hz∼10−3 Hz) Dynamic modulus 10.99 41.00 56.53
Phase angle 1.01 0.37 0.51

High frequencies (103Hz∼104Hz) Dynamic modulus 3.50 25.02 33.98
Phase angle 10.00 9.50 12.62

Whole frequencies (10−4 Hz∼104Hz) Dynamic modulus 12.75 38.93 53.92
Phase angle 2.97 2.61 3.47
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Table 6: Error analysis for complex moduli of asphalt mastics.

Mastic Models
R squared

Relative error (%)
(10−4Hz∼104Hz)

Dynamic modulus Phase angle Dynamic modulus Phase angle

Mastic (0%) GSCM 0.999 1.000 32.9 2.3
MGSCM 0.999 0.999 3.4 1.4

Mastic (100%) GSCM 0.996 0.999 56.0 6.2
MGSCM 0.998 0.999 4.3 2.0

Table 7: Coating layer properties.

Coating layer relative thickness (%) Elastic modulus (MPa) Poisson’s ratio
Mastic (0%) 10 500 0.15
Mastic (100%) 17 800 0.15

CA model
GSCM
MGSCM_10%_500 MPa

Models R squared

Dynamic 
modulus 

Phase
angle

Dynamic 
modulus 

Phase
angle

GSCM 0.996 0.999 56.01 6.21
MGSCM 0.998 0.999 4.33 1.98
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Figure 10: Predicted complex moduli for mastic (100%).

(a) (b) (c) (d)

Figure 11: Microstructural models in the FE simulations. ,e microstructural model (a) without a coating layer for mastic (0%), (b) with a
coating layer for mastic (0%), (c) without a coating layer for mastic (100%), and (d) with a coating layer for mastic (100%).
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103Hz were predicted based on the steady-state dynamic
(SSD) method, which is an efficient and accurate method to
predict the complex modulus of asphalt materials [39, 40].
To consider the coating layer effect, the microstructural
models with a coating layer and without a coating layer were

developed based on a random aggregate distribution algo-
rithm. ,e developed models for the two mastics were
presented in Figure 11.,e coating layer thicknesses of 1 μm
and 1.35 μm were assigned to the mastic (0%) and mastic
(100%), respectively. ,e corresponding predicted complex

Experimental curve
FE_microstructure without a coating layer
FE_microstructure with a coating layer

Models
R squared

Dynamic
modulus

Phase
angle

Dynamic
modulus

Phase
angle

Microstructual model
without a coating layer
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Figure 12: Predicted complex modulus master curves based on FE simulation. (a) Mastic (0%) and (b) mastic (100%).
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modulus master curves are presented in Figure 12. It can be
observed that the FE simulation based on the microstruc-
tural model without a coating layer underestimates the
dynamic shear moduli within the whole frequency range for
both mastics, but significant improvement was achieved for
both mastics after a thin coating layer was added. ,is result
verifies the existence of the coating layer. Besides, since the
coating layer of mastic (100%) is thicker than that of mastic
(0%), it also proves the assumption that the biochar filler
particle is attributed to a thicker coating layer than the
granite filler particle in the MGSCM.

6. Summary and Conclusions

In this study, biochar converted from straw was used as an
alternative mineral filler in asphalt mastic. ,e complex
moduli of mastics with different biochar contents were
measured by laboratory tests firstly. ,en, the complex
moduli were predicted by the proposed micromechanical
model based on homogeneous theory. Further, the complex
moduli of asphalt mastics were predicted and analyzed by FE
simulations based on microstructure models. Based on the
outcome of this study, the following conclusions can be
drawn:

(i) ,e modified MGSCM by considering the coating
layer can effectively predict the complex modulus of
biochar-modified asphalt mastic
(ii),e predictions based on FE simulation by ran-
dom aggregate generation method have a good
correlation with the predictions based on MGSCM
and experimental results, which verifies the accuracy
of MGSCM in the complex modulus prediction of
asphalt mastic, and this method can be further ex-
tended to other areas
(iii)Biochar filler can improve the modulus of mastic
by developing a thick coating layer to improve the
modulus of mastics, which would contribute to the
rutting performance of asphalt pavement
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