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Summary

Research on structural health monitoring (SHM) is nowadays evolving from

SHM-based diagnosis towards SHM-based prognosis. The structural strain

response, as a localized response, has gained growing attention for application

to structural condition assessment and prognosis in that continuous strain

measurement can offer information about the stress experienced by an in-

service structure and is better suited to characterize local deficiency and dam-

age of the structure than global responses. As such, accurate forecasting of the

structural strain response in real time is essential for both structural condition

diagnosis and prognosis. In this paper, a Bayesian modeling approach embed-

ding model class selection is proposed for dynamic forecasting purpose, which

enables the probabilistic forecasting of structural strain response and bears a

strong capability of modeling the underlying non-stationary dynamic process.

As opposed to the classical time series models, the proposed Bayesian dynamic

linear model (BDLM) accommodates both stationary and non-stationary time

series data and delineates the time-dependent structural strain response

through invoking different hidden components, such as overall trend, seasonal

(cyclical), and regressive components. It in turn paves an effective way for

incorporating the newly observed time-variant data into the model framework

for structural response prediction. By embedding a novel model class selection

paradigm into the BDLM, the proposed algorithm enables simultaneous model

class selection and probabilistic forecasting of strain responses in a real-time

manner. The utility of the proposed approach and its forecasting accuracy are

examined by using the real-world monitoring data successively collected from

a three-tower cable-stayed bridge.
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1 | INTRODUCTION

Critical civil infrastructures such as large dams, long-span bridges, supertall buildings, and high-speed railways, among
many others, are significant pillars of modern civilization. These structures will gradually deteriorate or disintegrate as
they are constantly subjected to operational loadings and environmental attacks and sometimes to extreme events such
as earthquakes, tornadoes, and typhoons. Deficiency in these vital infrastructures could pose major threats to public
safety and even devastate the society and economy. Structural health monitoring (SHM) is well recognized as a viable
technology helping to secure the structural and operational safety of infrastructure systems and issue an early warning
of damage in time to prevent costly repairs or even catastrophic failure. The SHM systems provide an insight into the
“fitness for purpose” of structures undergoing gradual or sudden changes in condition and also of the loadings actually
acting on the structures and the response mechanisms.1 The past two decades have witnessed a rapid increase in multi-
disciplinary research on SHM and its applications to a wide variety of infrastructures.2–5 Over the past decades, many
scholars have been engaged in developing vibration-based structural damage detection/diagnosis methods in either
deterministic or probabilistic context.6–17

Although the vibration-based methods using acceleration data have been successfully applied for structural health
diagnosis and damage detection, a methodological framework suitable for interpreting strain data in time series is more
favorable for structural health prognosis. The real-time monitoring data of structural strain response during in-service
operation are particularly meaningful in that (i) continuous strain measurement can offer information about the stress
experienced by the structure under in-service conditions, and (ii) strains are better suited to characterize the local defi-
ciency and damage of a structure than globalresponses.18 A rational prediction of time-varying structural strain behav-
ior using SHM-based strain data poses certain challenges.19 Its practical application in forecasting strain response is
inevitably hindered by the non-stationary feature and uncertainty inherent in the monitoring data.

In the SHM community, forecasting techniques have been widely investigated and reported in the literature, such
as statistical models,20 time series models,21,22 support vector machine,23 and singular spectrum analysis (SSA) tech-
nique.24,25 As a kind of process-specific Bayesian prediction model, the Bayesian dynamic linear model (BDLM) has
been increasingly viewed as a highly promising modeling technique in the fields of statistics and economics,26,27 espe-
cially after the advent of Markov chain Monte Carlo (MCMC) algorithms. However, Bayesian time series analysis using
BDLM has not been much explored in the field of civil engineering. Solhjell28 made the first attempt to deploy BDLM
in connection with SHM. Recently, Goulet and his coworker29,30 addressed SHM-relevant issues in the context of
BDLM, where they modeled the time-dependent response of a structure by decomposing it into subcomponents, with
the model parameters estimated utilizing an expectation maximization (EM) algorithm. The increasing applications of
BDLM indifferent fields can be attributed to three admirable merits. First, in contrast to classical autoregressive and
moving average (ARMA) models that rest on stationarity, the BDLM accommodates both stationary and non-stationary
time series data with time-varying model coefficients. Second, the BDLM can incorporate newly acquired observations
to update the model and provide ahead forecasts without the need of reconstructing the BDLM. Third, the BDLM pro-
vides a perfect tool for characterizing the uncertainty in time series and quantifying the uncertainty of forecasts. These
three noteworthy features render the BDLM approach favorably suitable for forecasting the strain response of an in-
service structure using SHM data. The first feature guarantees the ability to characterize non-stationary strain response,
the second makes for convenient and efficient forecasts, and the third allows for an assessment of the degree of uncer-
tainty in structural strain forecasts. In addition to the above features, the ability of BDLM enabling the prediction of
conditional probabilities can be utilized for real-time damage detection. Once the BDLM is available, one-step
(or multistep) forecasting probability density function (PDF) can be obtained before proceeding to the next observation.
This prediction model and its alternative model (which is usually formulated by shifting the mean value by a prescribed
offset) can be statistically compared to determine which better fits the actual observation. If the comparison results are
in favor of the alternative model, it is claimed that a potential change has occurred. Then the Bayes factor and cumula-
tive Bayes factor in line with Bayesian hypothesis testing can be elicited to accomplish outlier identification and damage
detection.31

Although the structural response prediction with a prescribed BDLM using SHM data is achievable without much
difficulty, the problem of model class selection in a real-time manner remains a challenge and has seldom been studied.
With a set of model class candidates (e.g., assorted candidate BDLMs representing the different combinations of trend,
seasonal [cyclical] and regression effects), it is obvious that a more complicated model, with more adjustable parame-
ters, often better fits the observations than a simple model with fewer parameters. The sole consideration of data fitting
quality, however, leads to unnecessarily complicated model class that gives poor predictions and most likely, overfitting.
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In view of this, the selected model class should strike a balance between the forecast performance and parameter com-
plexity. The majority of the studies on Bayesian model class selection (BMCS) were conducted in an offline
manner,9,32–34 except for a recent work on real-time system identification.16

In this article, a novel Bayesian real-time algorithm embedding model class selection is proposed for probabilistic
forecasting of time-dependent structural strain response given SHM data. The innovative contributions of this paper are
that, in order to appropriately determine the response components (trend, seasonal/cyclical, and regression compo-
nents) and their combinations, BMCS is embedded into the modeling process of BDLM by which the optimal model
with most appropriate components and their order is elicited to characterize the time series of strain response, thus
enabling concurrently model class selection and probabilistic forecasts in a real-time manner. To achieve this, a Gibbs
sampling algorithm is utilized to simultaneously infer the latent states, the parameters of state dynamics, and the mar-
ginal likelihood for model selection. The rest of the paper is organized as follows. Section 2 presents the general formu-
lation of BDLM and the model components. In Section 3, a general procedure is elaborated for applying the Gibbs
sampler technique to model parameters estimation and structural response forecasting. A real-time model class selec-
tion method in line with BDLM is described in Section 4. In Section 5, the proposed method for non-stationary time-
dependent structural strain response forecasting is validated using the real-world monitoring data collected from the
cable-stayed Ting Kau Bridge (TKB). Conclusions are drawn in Section 6.

2 | REAL-TIME FORECAST WITH BDLM

2.1 | Bayesian dynamic linear model

The physical parameters descriptive of a dynamic system, in general, vary continuously over time and are observed
(monitored) at discrete time instants, t = 1,…,T. In this study, a DLM is used to underpin the methodological framework
for estimation and prognosis of structural condition/health with the direct use of strain monitoring data in time
domain. The DLM is much simpler than the general state-space model yet provides flexibility. In general, the DLM can
be expressed to comprise an observation (measurement) equation and a system (transition) equation as follows26:

Observation equation : yt =F 0
tθt + vt vt ~N 0,Vt½ �, ð1Þ

System equation : θt =Gtθt−1 +ωt ωt ~N 0,Wt½ �, ð2Þ

where yt is the observation (measurement) vector of (m × 1) at time t; θt is an unknown state parameter vector of
(p × 1); Ft and Gt are known regression matrix of (p × m) and evolution matrix of (p × p), respectively; vt and ωt are two
independent Gaussian random vectors with zero mean and unknown covariance matrices Vt and Wt, respectively. The
DLM defined above amounts to treating θt as a Markov chain and yt being independent conditionally on θt; that is,
θt j θt − 1�N(Gtθt − 1, Wt) and yt j θt ~N F 0

tθt,Vt
� �

.
In a Bayesian setting, the DLM provides a probabilistic linkage to update the posterior distribution of state param-

eters based on a prior distribution and newly available observation over time. The details of using DLM for recursive
one-step ahead forecasting under Bayesian framework were given in Solhjell.28 Assume that the posterior distribution
of state parameters P(θt| Dt) is known at time t and conforms to a normal distribution P(θt| Dt)�N(mt, Ct), given the
observed time series data {y1, y2, …, yt} and other related information. The prior distribution of the state parameters P
(θt+1| Dt)�N(at+1, Rt+1) at next time t+1 can be obtained from the system equation (Equation 2) as

at+1 =E θt+1jDt½ �=Gt+1mt;Rt+1 =Var θt+1jDt½ �=Gt+1CtG
0
t+1 +Wt, ð3Þ

where Dt = {Dt − 1, yt} denotes the information at time t, which is determined recursively given the initial prior informa-
tion D0 at t = 0; Wt+1 represents the extrauncertainty added by predicting the state parameters one-step ahead.

The one-step forecasting distribution of observation P(yt+1| Dt)�N(ft+1, Qt+1) can be obtained from the observation
equation (Equation 1) as

f t+1 =E yt+1jDt½ �= F 0
t+1at+1;Qt+1 =Var yt+1jDt½ �= F 0

t+1Rt+1Ft+1 +Vt+1, ð4Þ
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where Vt+1 represents the extra uncertainty added by predicting the observation one-step ahead.
As time moves forward, once the new observation yt+1 is available at time t+1, the posterior distribution of the state

parameters can be updated to P(θt+1| Dt+1)�N(mt+1, Ct+1) in which the mean and variance are given by

mt+1 = at+1 +At+1et+1;Ct+1 =Rt+1−At+1A
T
t+1Qt+1, ð5Þ

et+1 = yt+1− f t+1;At+1 =
Rt+1Ft+1

Qt+1
, ð6Þ

where Dt+1 = {Dt, yt+1}. Note that At+1 is the adaptive coefficient, which can be viewed as the information tuner
and et+1 is the one-step forward forecast error, which is the difference between the observed value yt+1 and its
expectation ft+1.

Figure 1 illustrates the flowchart of BDLM inference and forecasting.28 After obtaining the posterior distribution
P(θt+1| Dt+1), the observation at t+2 can be predicted, and so on. Analytical solution in terms of Equation 5 for this
process is usually impossible or intractable. Rather, MCMC simulation procedures provide a more rational route to
gain an approximate solution. The Gibbs sampler, one of the MCMC methods, detailed in Section 3, will be exe-
cuted to obtain such an approximate solution in view of the availability of a full set of conditional distribution for
sampling.

It is apparent that the covariance matrices of the process noise Wt and the measurement noise Vt should be pre-
scribed. Improper assignment of these two covariance matrices might lead to unreliable estimation and misleading
uncertainty estimation on the state parameters. In order to resolve this problem, efforts have been devoted to the devel-
opment of methods to estimate the noise parameters. The methods can be classified into three categories: covariance
matching, correlation, and Bayesian techniques.35,36 In this study, the Bayesian technique will be employed to formu-
late the posterior distribution of the noise parameters with which the uncertainty of noise parameters can further be
quantified. The detailed solution procedures will be presented in Section 3.

2.2 | Model components for forecasting

Long-term SHM data, especially long-term strain monitoring data, are in general influenced by trend, seasonal (cycli-
cal), and regression effects. In this study, DLMs that enable the modeling of trend, seasonal (cyclical), and regression
effects are formulated in the Bayesian context. When taking into account the trend, seasonal (cyclical), and regression
effects, the observation yt can be expressed as

yt = yTt + ySt + yRt + vt, ð7Þ

where yTt, ySt, yRt, and vt stand for the trend component, seasonal (cyclical) component, regression component (includ-
ing the autoregression component), and measurement error (refer to vt in Equation 1), respectively. An extended DLM
accounting for these effects can be obtained by defining the following parameters in Equations 1 and 2.

FIGURE 1 Flowchart of BDLM inference

and forecasting
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θt =

θTt

θSt

θRt

0
B@

1
CA;Ft =

FTt

FSt

FRt

0
B@

1
CA;Gt =

GTt

GSt

GRt

0
B@

1
CA;Wt =

WTt

WSt

WRt

0
B@

1
CA;Vt = σ2obs: ð8Þ

2.2.1 | Trend component

Trends in the monitoring data time series, viewed as a smooth evolution over time, can be modeled by a polynomial
function.

The simplest trend model is the first-order polynomial trend, which can be expressed as

yt = θt,1 + vt, vt ~N 0,σ2obs
� �

, ð9Þ

θt,1 = θt−1,1 +ωt,1,ωt,1 ~N 0,σ21
� �

: ð10Þ

A second-order polynomial trend provides a linear growth model, which has the form

yt = θt,1 + vt,vt ~N 0,σ2obs
� �

, ð11Þ

θt,1 = θt−1,1 + θt−1,2 +ωt,1,ωt,1 ~N 0,σ21
� �

, ð12Þ

θt,2 = θt−1,2 +ωt,2, ωt,2 ~N 0,σ22
� �

: ð13Þ

Similarly, general higher-order polynomial models take the form28

yt = θt,1 + vt, vt ~N 0,σ2obs
� �

, ð14Þ

θt,j = θt−1,j + θt−1,j+1 +ωt,j,ωt,j ~N 0,σ2j
� �

, j=1,…,n−1ð Þ, ð15Þ

θt,n = θt−1,n +ωt,n,ωt,n ~N 0,σ2n
� �

, j=nð Þ, ð16Þ

in which θt,1 is the level at time t that between times t − 1 and t changes by addition of θt−1,2 plus the noise ωt,1; θt−1,2
represents a systematic change in level that itself changes by the addition of θt−1,3 plus noise. Proceeding through the
state parameters for j = 1,…,n − 1, each θt,j changes systematically via the increment θt−1,j+1 and the additional noise
term ωt,j. The nth component θt,n changes stochastically.

In terms of the state-space form, the higher-order polynomial models can be written as

θTt = θt,1,…,θt,nð Þ0;FTt = 1,0,0,…,0ð Þ0, ð17Þ

GTt =

1 1 0

0 1 1

0 0 1

� � � 0

� � � 0

� � � 0

..

. ..
. ..

.

0 0 0

. .
. ..

.

� � � 1

0
BBBBBBBB@

1
CCCCCCCCA
;WTt = diag σ21, � � �σ2n

� �
;Vt = σ2obs: ð18Þ
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In practice, low-order (e.g., first- or second-order) polynomial models are often employed to express the trend in
time series response data, yet higher-order models are rarely used.

2.2.2 | Seasonal (cyclical) component

Seasonal (cyclical) behavior, such as daily variation and seasonal variation, is evident in various time series data associ-
ated with structural systems. For example, the displacement of bridge expansion joints changes periodically every day.
It is important to perceive and reflect seasonal (cyclical) patterns in forecasting models. The seasonal (cyclical) behavior
of time series can be satisfactorily modeled using harmonic functions, such as sines and cosines.37

Consider the time series yt represented by n harmonics as

yt =
Xn
k=1

akcos kωtð Þ+ bksin kωtð Þð Þ+ vt, ð19Þ

where ω = 2π/s, s is the period of the cyclical pattern; ak and bk correspond to the amplitude of periodic component; vt
is the observation error.

The simplest seasonal (cyclical) model is involving only one harmonic function, which can be expressed in state-
space form as28

θSt = ut,1,u�t,1
� �0

;FSt = 1,0ð Þ0;GSt =
cosω sinω

−sinω cosω

� �
;WSt =

σ2s,1 0

0 σ2s,1

 !
, ð20Þ

with

ut,1 = a1cos ωtð Þ+ b1sin ωtð Þ;u�t,1 = −a1sin ωtð Þ+ b1cos ωtð Þ: ð21Þ

Increasing the number of harmonics amounts to increasing the complexity of seasonal component. A DLM with
n harmonics can be expressed as

θSt = ut,1,u�t,1,ut,2,u
�
t,2,…,ut,n,u

�
t,n

� �0
;FSt = 1,0,1,0,…,0ð Þ0, ð22Þ

GSt = diag GSt,1, � � �,GSt,nð Þ;WSt = diag WSt,1, � � �,WSt,nð Þ, ð23Þ

with

ut,k = akcos kωtð Þ+ bksin kωtð Þ;u�t,k = −aksin kωtð Þ+ bkcos kωtð Þ, ð24Þ

GSt,k =
coskω sinkω

−sinkω coskω

� �
;WSt,k =

σ2s,k 0

0 σ2s,k

 !
: ð25Þ

2.2.3 | Regression component

The regression effect can be modeled only when the regressor(s) are observed (measured) together with the response
variable(s). When the time series response data are in regression with q independent variables {x1, x2, � � �, xq}, we have

yt = βt,1xt,1 + � � �+ βt,qxt,q + vt, ð26Þ
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βt,i = βt−1,i +ωt,i,ωt,i ~N 0,σ2i
� �

i=1, � � �,qð Þ, ð27Þ

which correspond to the DLM with the following parameters:

θRt = βt,i, � � �,βt,q
� �0

;FRt = xt,1, � � �,xt,q
� �0

;Gt = Iq;WRt = diag σ21, � � �σ2q
� �

: ð28Þ

3 | SIMULATION-BASED BAYESIAN INFERENCE: GIBBS SAMPLER

For a given BDLM, the main task is to estimate the unobserved state parameters and hyperparameters and make pre-
dictions on future structural responses based on the acquired structural response time series. From a Bayesian perspec-
tive, estimation and forecasting are achieved by computing the posterior distributions of interest. Conditional on prior
information and available structural responses through time T, beliefs about the future can be expressed by the joint
posterior distribution as

p yT +1:T +H ,θT +1:T +H ,θ1:T ,ψ jy1:T� �
, ð29Þ

where yT+1:T+H and θT+1:T+H represent the future structural responses and state parameters from time T onward
to (T+H), respectively; y1:T and θ1:T represent the history of observed structural responses and state parameters up
to time T; and ψ = σ2y ,σ

2
θ,1,σ

2
θ,2, � � �,σ2θ,p

� �
are hyperparameters, where σ2y is the unknown observation variance (refer to

Vt in Equation 1), and σ2θ,1,σ
2
θ,2, � � �,σ2θ,p are the evolution variances (refer to Wtin Equation 2). Despite complicated in

manipulation, the above expression ( Equation 29) can be decomposed into tractable components as

p yT+1:T+H ,θT+1:T+H ,θ1:T ,ψ jy1:T� �
= p θ1:T ,ψ jy1:T� �

× p yT+1:T +H ,θT+1:T+H jθ1:T ,ψ� �
: ð30Þ

This expression decomposes the joint distribution into two parts: The first part, p(θ1:T,ψ | y1:T), is the joint posterior
density for the history of the state parameters and hyperparameters; and the second part, p(yT+1:T+H,θT+1:T+H| θ1:T,ψ),
is the joint distribution for future structural responses and state parameters based on the current state parameters and
hyperparameters. An analytical solution for each part is impossible, even for simple cases. Therefore, the Gibbs sam-
pler, one of the MCMC methods, is employed to explore the posterior distribution. According to the components shown
in Equation 30, the algorithm is split into two steps: (i) Draw a pair of (θ1:T, ψ) from p(θ1:T,ψ | y1:T)(see Section 3.1), and
(ii) plug the draw into p(yT+1:T+H,θT+1:T+H| θ1:T,ψ) to generate the future state parameters θT+1:T+H and structural
responses yT+1:T+H (see Section 3.2).

3.1 | Estimation of BDLM parameters

The posterior distribution for the state parameters θ1:T and hyperparameters ψ can be decomposed into

p θ1:T ,ψ jy1:T� �
= p θ1:T jψ ,y1:T� �

p ψ jy1:T� �
: ð31Þ

The Gibbs sampler for posterior evaluation iterates the following two steps: (i) Draw state parameters from
p(θ1:T| ψ , y1:T) conditional on the observed structural responses and hyperparameters; and (ii) draw hyper-
parameters from p(ψ | θ1:T, y1:T) conditional on the observed structural responses and state parameters. Subject to
regularity conditions,38 the sequence of draws, θ1:Ti ,ψ i (i = 1,2,…N), converge to a draw from the joint distribution p
(θ1:T,ψ | y1:T).

In a Bayesian setting, we need to specify a prior distribution for the state parameters and hyperparameters. One
popular choice of the prior distribution is conjugate normal inverse gamma, that is, normal distribution for the state
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parameters and inverse gamma distribution for the hyperparameters.39,40 As the hyperparameters (including the
unknown observation variance Vt and evolution variance Wt) are non-negative, the inverse gamma distribution describ-
ing the continuous probability distributions on the positive real line is perfectly suited for the hyperparameters.41

P θ0jψ0ð Þ/N �θ,�Pð Þ;P ψ0ð Þ/ IG T0, �ψ
−1

� �
, ð32Þ

where �θ and �P are the mean and variance of the normal distribution; T0 and �ψ −1 are the shape and scale parameters of
the inverse gamma distribution.

3.1.1 | Gibbs step 1: Drawing state parameters given hyperparameters

A key task is the generation of samples from the distribution p(θ1:T| ψ , y1:T). The forward filtering backward sampling
(FFBS) algorithm42 provides an easy way of generating independent samples. Forward filtering (Kalman filtering) can
update the BDLM based on the observed data, and backward sampling (Kalman smoothing) can retrospectively recon-
struct the behavior of the system concerning its underlying information. Note that FFBS is formalized as a building
block of a Gibbs sampler.

The conditional density p(θ1:T| ψ , y1:T) in the first part of Equation 31 can be factored as43

pðθ1:T ψ ,y1:T
�� �

= p θT jψ ,y1:T
� �YT−1

t=1
p θtjθt+1,ψ ,y

1:T
� �

: ð33Þ

The first term p(θT| ψ ,y
1:T) is the marginal posterior distribution for the terminal state, and the other terms are con-

ditional distributions for the preceding time instants. Because the distributions on the right-hand side of the expression
conform to Gaussian, the samples can be separately drawn from Equation 34.

p θT jψ ,y1:T
� �

~N θTjT ,PTjT
� �

;p θtjθt+1,ψ ,y1:T
� �

~N θtjt+1,Ptjt+1

� �
: ð34Þ

1. Mean and variance of p(θT| ψ ,y
1:T)

The mean θTjT and variance PTjT can be obtained via the forward filtering (Kalman filtering), which is a recursive
algorithm by estimating the state parameters given information up to the current time. The algorithm includes the fol-
lowing equations that are evaluated recursively over time. Starting from initial values θ0j0 and P0j0, the conditional
means and variances can be obtained by iteration43

θtjt−1 =Gtθt−1jt−1;Ptjt−1 =Pt−1jt−1 +W ;ηtjt−1 = yt−F 0
tθtjt−1, ð35Þ

f tjt−1 =F 0
tPtjt−1Ft +V ;θtjt = θtjt−1 +Ktηtjt−1;Ptjt =Ptjt−1−KtF

0
tPtjt−1, ð36Þ

where Kt = Ptjt−1Ft f
−1
tjt−1 . The first part of Equation 35 predicts state parameters one-step ahead using the transition

equation, and the ) second part of Equation 35 estimates the variance of state parameters at time t given the informa-
tion at time t − 1. The third part of Equation 35 and first part of Equation 36 calculate the mean and variance of the
prediction error, respectively. The final two 35) parts of Equation 36 are applied to update state parameters using the
new observation yt at time t. Executing these equations for instants t = 1,2…,T, the final recursion yields θTjT and PTjT
for the terminal state.

2. Mean and variance of p(θt| θt+1,ψ ,y
1:T)

After the terminal state θT has been drawn from p(θT| ψ ,y
1:T), the next task is to recursively draw θt(for t = T − 1,

T − 2,…,0) from p(θt| θt+1,ψ ,y
1:T) by the backing sampling (Kalman smoothing). Assuming that (θT, …, θt+1) have
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already been obtained, the next step is to draw θt from N(θtjt+1, Ptjt+1), where θtjt+1 and Ptjt+1 can be computed by
iteration

θtjt+1 = θtjt +PtjtP−1
t+1jt θt+1−θtjt

� �
;Ptjt+1 =Ptjt−PtjtP−1

t+1jtPtjt: ð37Þ

Note that θtjt+1 explicitly depends on the value of θt+1 already generated. The implementation procedure of the
FFBS algorithm is summarized in Algorithm 1.

Algorithm 1. Forward filtering backward sampling (FFBS)

1. Run Kalman filter; 2. Draw θT�N(θTjT, PTjT); 3. For t = T − 1,T − 2,…,0, draw θt�N(θtjt+1, Ptjt+1)

In summary, the Gibbs sampler for drawing state parameters involves three steps. First, draw θT from the first part
of Equation 34, in conjunction with using Equations 35 and 36 to compute the mean and variance. Next draw θT−1 from
the second part of Equation 34 in conjunction with using Equation 37 to compute the mean and variance conditional
on θT. Then draw θT−2 conditional on the realization of θT−1 until arrival at the beginning of the sample.

3.1.2 | Gibbs step 2: Drawing hyperparameters given state parameters

Conditional on θ1:T and Y1:T, the hyperparameters are observable. Because the prior of ψ is an inverse Gamma distribu-
tion and the conditional likelihood is Gaussian, the posterior is also an inverse Gamma distribution

p ψ jθ1:T ,y1:T� �
= IG T1,ψ −1

1

� �
, ð38Þ

where

T1 =T0 +
T
2
;ψ1 = �ψ +

1
2
�VT ; �VT = diag SSy,SSθ,1, � � �,SSθ,p

� �
, ð39Þ

SSy =
XT

t=1
yt−F 0

tθt
� �2

;SSθ,i =
XT

t=1
θt,i− Gtθt−1ð Þi
� �2

, i=1, � � �,p, ð40Þ

3.2 | Forecast about the future

Having processed the known data, the next task is to simulate the future state parameters and observations. Conditional
on the current state parameters and hyperparameters, the joint posterior density for future observations and state
parameters is quite traceable by factoring it into

p yT +1:T +H ,θT +1:T +H jθT ,ψ ,y1:T
� �

= p θT +1:T +H jθT ,ψ ,y1:T
� �

× p yT +1:T +H jθT +1:T +H ,θT ,ψ ,y1:T
� �

, ð41Þ

in which the first term on the right-hand side is a marginal distribution of future state parameters, and the second term
is a conditional distribution of future observations. Because the state parameters are Markov, the first term is further
factored into

p θT +1:T +H jθT ,ψ ,y1:T
� �

=
YH

i=1
p θT + ijθT + i−1,ψ ,y1:T
� �

, ð42Þ

where p(θT+i|θT+i−1, ψ , y
1:T)�N(θT+i−1,W). Therefore, to sample future state parameters from 41 Equation 42, H ran-

dom draws of ωi are taken from N(0,W) and iterate on the system equation
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θT + i = θT + i−1 +ωi: ð43Þ

Having obtained the future state parameters, all that remains is to forecast future observations. The second term in
40 Equation 41 can be factored as

p yT +1:T +H jθT +1:T +H ,θT ,ψ ,y1:T
� �

=
YH

i=1
p yT + ijyT:T + i−1,θT +1:T +H ,θT ,ψ ,y1:T
� �

, ð44Þ

where p yT + ijyT +1:T + i−1,θT +1:T +H ,θT ,ψ ,y1:T
� �

~N F 0
T + iθT + i,V

� �
: To sample future observation from Equation 44, H ran-

dom draws of vi are taken from N(0,V) and then the future observation site rate on the measurement equation

yT + i = F 0
T + iθT + i + vi: ð45Þ

4 | BMCS FOR BDLM

One commonly encountered problem in regression modeling lies in finding the best/optimal model class suitable for
exploring the relationships between the response variables (e.g., structural strain response) and explanatory variables
(e.g., the trend, seasonal, and temperature effect) and amenable to forecasting. Although a more complicated model
class can fit the data more accurately than one less complicated, it is likely to lead to overfitting. When an overfitted
model class is used for future prediction, it would yield poor results because the identified model class depends heavily
on the training data and also the measurement noise inherent in the data. Thus, the formulated model class should bal-
ance accuracy against complexity. In the Bayesian framework, the concept of model class selection has been addressed
by Yuen.39 More details on BMCS and its practical implementations can be found in the literature.9,16

The goal of BMCS is to use the information in the observed data y1:T, to select the most plausible model class, which
represents the observed physical phenomenon among a set of model class candidates Cj ( j = 1,2,…,Nc). For the sake of
brevity, the term y1:T is denoted as y in this section. The model with maximum posterior probability p(y) is selected as
the one most plausible. For each candidate model Cj, the posterior distribution of model parameters (ϑ) is defined via
Bayes' theorem

p ϑjyð Þ= p yjϑð Þp ϑð Þ
p yð Þ , ð46Þ

where p(y|ϑ) and p(ϑ) are the likelihood function and joint prior distribution, respectively; p(y) is the marginal likeli-
hood that we desire to compute. The marginal likelihood in log format is

ln p yð Þ= ln p yjϑð Þ+ ln p ϑð Þ− ln p ϑjyð Þ: ð47Þ

When the three terms on the right hand-side of Equation 47 are analytically available, the marginal likelihood,
lnp(y), can be computed readily. However, the third term p(ϑ|y) is often difficult to calculate because of the unknown
exact form of the posterior distribution. In this connection, Chib44 proposed to divide the parameter vector ϑ into
several blocks so that the full conditional distribution for each block is available in closed form. To illustrate this
idea, the case of two blocks is considered here as an example, that is, ϑ = (θ,ψ), where p(θ|ψ ,y) and p(ψ |y) are
available in closed form. The joint posterior distribution of ϑ can be estimated as

p ϑjyð Þ= p θ,ψ jyð Þ= p θjψ ,yð Þp ψ jyð Þ, ð48Þ

where an appropriate Monte Carlo estimate for p(ψ |y) is

p̂ ψ jyð Þ≈ 1
L1

XL1
k=1

f ψ jy,θ kð Þ
� �

, ð49Þ
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in which {θ(k); k = 1, � � �, L1} is a set of posterior samples derived using the Gibbs sampler. The term p̂ ψ jyð Þ tends to p
(ψ | y) as L1 becomes large. Thus, the marginal likelihood can be estimated as

lnp yð Þ≈ lnp yjθ?,ψ?ð Þ + ln p θ?,ψ?ð Þ − lnp θ?jψ?,yð Þ − ln p̂ ψ?jyð Þ, ð50Þ

where the first three terms on the right-hand side are available in closed form. The value of θ?,ψ? might be chosen as
the posterior mean, posterior mode, posterior median, or other pointsall of which maximize the accuracy of this approx-
imation. The maximum of ln p(y) (denoted as LLH) is favored.

Figure 2 illustrates the flowchart of the proposed method integrating the parameter estimation, model class selec-
tion, and forecasting. First, the parameters of each candidate DLM (Cj) with different components are estimated by
Gibbs sampler. Then the maximum LLH of each model class is calculated by BMCS to determine the optimal one in
representing the observations. Finally, one- or multistep ahead predictions are pursued in terms of the optimal model
class.

5 | FORECAST OF STRAIN RESPONSE OF TING KAU BRIDGE

5.1 | TKB and SHM system

The Ting Kau Bridge (TKB) in Hong Kong is a three-tower cable-stayed bridge with two main spans of 448 and 475 m
and two side spans of 127 m each. The bridge deck is separated into two carriage ways, each of width 18.8 m. Between
them are three slender single-leg towers with heights of 170, 194, and 158 m, respectively. The deck is supported by
384 stay cables in four cable planes.

To ensure the operation safety of the bridge, a sophisticated long-term SHM system, named WASHMS, had been
devised and implemented by the Hong Kong SAR Highway Department to monitor the structural health and conditions
of TKB.2,45,46 As the focus of this study is on the forecast of structural strain responses, we concern only the deployment
of strain gauges and the relevant sensors. As part of the long-term SHM system installed on TKB, a total of 88 strain
gauges (66 single strain gauges and 22 rosette strain gauges) were deployed to monitor strain response at four bridge

FIGURE 2 Schematic framework of the

proposed method
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deck cross sections denoted CH113782.0, CH12082.5, CH12217.5, and CH12555.0 (see Figure 3). Likewise, 83 tempera-
ture sensors were installed at one bridge deck cross section and two bridge tower cross sections to measure the tempera-
ture in steel, concrete, asphalt, and environmental air. Figures 4 and 5 show the layout of strain gauges and
temperature sensors on the bridge deck cross section CH12217.5.The sampling rates of the strain gauges and tempera-
ture sensors are 25.6 and 0.07 Hz, respectively.

Without loss of generality, the strain gauge SS-GLW-06 located at the cross section CH12217.5 shown in Figure 3 is
chosen to illustrate the proposed Bayesian real-time forecast approach. In the present study, the real-time monitoring
data (including strain and temperature) collected during a period of 27d are of concern. To decrease the uncertainties
arising from the measurement facilities, the average hourly strain responses and temperature are used as the target
quantities. As a result, a total of 648 observations are formed from 24 values per day. Figure 6a shows the time history
of the averaged strain responses. It is seen that the strain responses exhibit a daily cyclical feature, implying that a sea-
sonal (cyclical) component should be incorporated in modeling. Figure 6b shows the averaged temperatures of struc-
tural steel (P1-GLE-02A, P1-GLE-02B, and P1-GLE-02C), atmosphere (P3-GLE-02A), and asphalt (P4-GLE-02) for the
same time period. Similar to the strain responses, the temperatures are also periodical, which would be the reason caus-
ing the daily cyclical strain responses.

FIGURE 3 Location of strain

gauges and temperature sensors along

bridge deck

FIGURE 4 Layout of strain gauges on

deck cross section CH12217.5

FIGURE 5 Layout of temperature sensors on deck cross section CH12217.5
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5.2 | Comparison of forecast accuracy

In the present work, we will address monitoring-based modeling, inference, and forecasting of the strain responses by
evaluating and comparing the following cases: (i) the DLM taking account of trend and seasonal (cyclical) effect only;
(ii) the DLM taking account of trend and regression effect only; and (iii) the DLM taking account of trend, seasonal
(cyclical), and regression effects concurrently. To comprehensively assess the forecasting performance, both one-step
and multistep ahead predictions are explored.

The forecasting performance of each model class is evaluated by comparing the predicted strain responses with the
measured counterparts and quantifying the forecasting uncertainty. As visual discrimination is more or less subjective,
performance metrics that allow for evaluating the forecasting capabilities quantitatively are desired. Apart from the
LLH (i.e., ln p(y)) estimated by BMCS in Section 4, other two common statistics indicators, root mean squared error
(RMSE) and mean absolute percentage error (MAPE), are also adopted to validate the accuracy of prediction, defined
as

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t=1 ŷt−ytð Þ2

T

s
, ð51Þ

MAPE=
1
T

XT
t=1

ŷt−yt
yt

����
����, ð52Þ

where ŷt and y represent the predicted and observed values, respectively, at time t, and T is the number of observations.

5.2.1 | Model 1: Trend and seasonal (cyclical)

In the first model class, only the trend and seasonal (cyclical) effects are considered in the DLM for structural strain
response,

yt = yTt + ySt + vt: ð53Þ

A crucial issue associated with this model class is the choice of the proper polynomial order for the trend compo-
nent and harmonics for the seasonal (cyclical) component. The polynomial order affects the sensitivity of trend effect;
that is, the higher the order, the more dramatic the trend variation. In practice, a second-order polynomial model (lin-
ear trend) is generally suitable for simulating the trend effect.47 In this regard, the DLMs by considering a second-order

FIGURE 6 Time histories of strain and temperature

monitoring data: (a) strain; (b) temperature
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polynomial function for the trend component and different harmonics for the seasonal (cyclical) component are
explored. That is,

Model 1a: Linear trend + one harmonic;

Model 1b: Linear trend + two harmonics;

Model 1c: Linear trend + three harmonics;

Model 1d: Linear trend + four harmonics.

With the obtained LLH values listed in Table 1, Model 1c with three harmonics is identified to be the one most plau-
sible. The RMSE and MAPE scores also prove that Model 1c gives the best forecast.

The results from Model 1c are demonstrated in Figure 7. Figure 7a shows the real observed data together with
1-step ahead prediction and the corresponding 90% prediction interval. Generally, most of the observations lie within
the predictive interval except for some extrema. The forecast performance is satisfactory. In Figure 7b, the results of
trend analysis with 90% probability envelope are plotted. The level remains relatively stable and, to an extent, reflects
the trend of change. Figure 7c shows the seasonal (cyclical) component with 90% credibility interval. Apparently, it var-
ies with time but very slowly. To have a clear picture of the prediction performance, the prediction residuals are shown
in Figure 7d–f. Figure 7d shows the scaled prediction errors with 90% probability interval (red dashed line). Obviously,
the majority of the prediction errors are within the probability region. In Figure 7e, the autocorrelation function of the
prediction errors is plotted. It is seen that the residuals are not completely uncorrelated, as relative autocorrelations
exist at some lags. Figure 7f gives the Quantile–Quantile (Q–Q) plot of the prediction errors, which compares the empir-
ical quantiles of the prediction errors with those obtained from the theoretical distribution. The results show that the
points (normalized error values) approximately lie on the line of expectation.

5.2.2 | Model 2: Trend and regression

In the second model class, only the trend and regression effects are considered in the DLM for structural strain
response,

yt = yTt + yRt + vt, ð54Þ

where a two-order polynomial model (linear trend) is used to simulate the trend effect, and temperature as an explana-
tory variable is applied to model the regression effect.

Temperature in a bridge deck cross section can be decomposed into two portions: differential temperature and effec-
tive temperature. The differential temperature is the difference in temperature between the upper and lower surfaces of
the bridge deck cross section, which causes internal stresses and bending moments; whereas the effective temperature
is the average temperature distributed along the section, which results in longitudinal movements of the bridge deck.48

Hence, it is necessary to try two different model versions according to the temperature category. For Model 2a, the

TABLE 1 Summary of forecast performance for different models

Model no. RMSE MAPE (%) LLH

Model 1a 1.69 10.77 −666.74

Model 1b 1.69 10.78 −665.73

Model 1c 1.42 9.05 −419.17

Model 1d 1.72 10.93 −652.63

Model 2a 2.12 13.71 −948.60

Model 2b 2.25 14.81 −1154.01

Model 3 1.40 8.71 −400.01

Abbreviations: MAPE, mean absolute percentage error; RMSE, root mean squared error.
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differential temperature is regarded as an explanatory variable, whereas Model 2b makes use only of the data obtained
from the temperature sensor (P1-GLE-02C) close to the strain gauge (SS-GLW-06).

The values of the three criteria listed in Table 1 show that Model 2a achieves slightly better predictions than
Model 2b. The results of Model 2a are presented in Figure 8. Apparently, the one-step ahead predictions of Model
2a in Figure 8a are not better than those of Model 1c in Figure 7a, especially the prediction of extreme observations,
which are also reflected by the values of LLH, RMSE, and MAPE. Compared with Model 1c, the trend component
of Model 2a shown in Figure 8b fluctuates more and does not match well the underlying trend of structural strain
response. Figure 8c shows the regression component with differential temperature as an explanatory variable. It is
evident that the regression component also bears the seasonal (cyclical) properties. The standardized prediction
errors of Model 2a (Figure 8d) are visibly larger than thoseof Model 1c, and there are more errors beyond the 90%
probability interval. Again, it can be found from Figure 8e that the autocorrelation function of prediction errors has
the cyclical characteristics with 24 points per cycle, which means that the periodic term has not been well removed.
The results of the Q–Q plot for prediction errors (Figure 8f) demonstrate that the residuals are not very consistent
with a normal distribution.

FIGURE 7 Model 1c: linear trend + 3

harmonics: (a) one-step ahead prediction;

(b) trend component; (c) seasonal (cyclical)

component; (d) scaled forecast residuals;

(e) autocorrelation of forecast residuals; (f) Q–Q

plot of forecast residuals
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5.2.3 | Model 3: Trend, seasonal (cyclical), and regression

In Model 3, all three components (trend, seasonal [cyclical], and regression) are considered in the DLM for structural
strain response,

FIGURE 8 Model 2a: linear

trend + regression: (a) one-step ahead

prediction; (b) trend component; (c) regression

component; (d) scaled forecast residuals;

(e) autocorrelation of forecast residuals; (f) Q–Q

plot of forecast residuals

FIGURE 9 Comparison of forecast performance of model 1c, model 2a and model 3: (a) RMSE; (b) MAPE; (c) LLH
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yt = yTt + ySt + yRt + vt, ð55Þ

where yTt is a linear trend, ySt consists of three harmonics, and yRt is a regression component with differential tempera-
ture as an explanatory variable.

To obtain a clear picture of the forecast performance, the RMSE, MAPE, and LLH obtained from different models
are compared in Figure 9. Obviously, Model 3 with the largest LLH and minimum RMSE and MAPE performs the best,
followed by Model 1c and then Model 2a.

The results from Model 3 are plotted in Figure 10. It is seen from Figure 10a that the one-step ahead prediction of
strain response is satisfactory on the whole, except for several extreme observations, which lie outside the prediction
interval. By comparing the trend component of the three models, it can be found that the trends of Model 3 (Figure 10b)
and Model 1c are quite similar and match the underlying trend more closely than that of Model 2a. However, the

FIGURE 10 Model 3: linear

trend + season + regression: (a) one-step ahead

prediction; (b) trend component; (c) seasonal

(cyclical) component; (d) regression component;

(e) scaled forecast residuals; (f) autocorrelation

of forecast residuals; (g) Q–Q plot of forecast

residuals
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seasonal (cyclical) effect in Model 3 (Figure 10c) is smaller than that of Model 1c. This phenomenon is due to the fact
that the differential temperature effect (Figure 10d) also has seasonal (cyclical) properties and interferes with the sea-
sonal (cyclical) effect. The scaled prediction errors of Model 3 (Figure 10e) are smaller than those of Model 2a and
Model 1c, which is further confirmed by the resulting magnitudes of RMSE and MAPE. Similarly, the autocorrelation
of forecast errors in Figure 10f is smaller than the preceding models, while the test result of the error normality in
Figure 10g is better thanthe preceding models.

5.3 | k-step ahead forecasts

In the previous subsection, a thorough investigation on the one-step ahead forecast performance of different models
has been made. In this section, also explored is k-step ahead forecasting situations in terms of Models 1c, 2a, and
3. Two scenarios are considered: The first scenario is on k-step ahead forecasts with starting time at the 240th hour
(Hour 240), and the second one is on k-step ahead forecasts with starting time at the 500th hour (Hour 500). To

FIGURE 11 k-step ahead prediction

starting at the 240th hour: (a) model 1c;

(b) model 2a; (c) model 3

FIGURE 12 Prediction interval of three

models
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FIGURE 13 Comparison of forecast

performance for different models: (a) RMSE;

(b) MAPE; (c) LLH/k

FIGURE 14 k-steps ahead prediction

starting at the 500th hour: (a) model 1c;

(b) model 2a; (c) model 3
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compare short- and long-term forecasting performances, a range of different k values, 6, 12, 24, 36, and 48, is tested. As
there are 24 observations per day, the above values of k correspond to 6h, 0.5, 1, 1.5, and 2d, respectively.

Figure 11 shows the k-step ahead predictions when the starting time is at Hour 240 for Models 1c, 2a, and 3. Visual
inspection makes it evident that the forecast performance of Model 3 is the best, followed by Model 1c and then Model
2a. This is because Model 1c only contains the trend and seasonal (cyclical) components, which changes slowly and can-
not make timely adjustments for larger k values, whereas Model 3 with the additional regression component can make
adjustments quickly via the differential temperature. The poor prediction performance of Model 2a is due to the lack of
the seasonal (cyclical) component, which is vital for characterizing the periodic feature, albeit the regression component
also reflects periodicity. For all the three models, most of the observations lie within the 90% prediction interval.
Figure 12 shows the comparison of prediction interval (the uncertainty of prediction) for the three models at different
prediction steps. It is clear that the prediction interval becomes larger as the number of forecast steps increases. This
trend is easy to understand. The ahead forecasts are out-of-sample predictions, hence the further ahead the forecast, the

FIGURE 15 Prediction interval of three

models

FIGURE 16 Comparison of forecast

performance related to different models:

(a) RMSE; (b) MAPE; (c) LLH/k
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larger the error because of the increasing lack of information. A comparison of the RMSE, MAPE, and LLH/kmetrics for
different numbers of step ahead forecasts is also illustrated in Figure 13. For convenience, in comparing LLH for
datasets of different sizes, the average log likelihood per step LLH/k is used. Again, it can be concluded that Model 3 out-
performs Model 1c and Model 2a.

The results of k-step ahead predictions, with staring time at Hour 500 for Models 1c, 2a, and 3, are provided in
Figures 14–16. Similar to the previous case, Model 3 is superior to Model 1c and Model 2a, not only in terms of 1 step
ahead but also in multistep ahead forecasting performance.

6 | CONCLUSIONS

The present study on the proposed Bayesian modeling approach embedding model class selection for forecasting real-
time structural strain response reveals that (i) the proposed method accommodates both stationary and non-stationary
time series strain data from SHM system; (ii) it is applicable for simultaneous model class selection and probabilistic
forecasts of strain response in a real-time manner; and (iii) it enables quantification of the uncertainty in strain
response prediction through obtaining the distribution of predictions.

Application to the strain monitoring data acquired from the TKB demonstrates the feasibility of the proposed
method. In terms of the three model performance metrics, that is, LLH, RMSE, and MAPE, the following observations
are drawn: (i) the DLM taking account of all three components of trend, seasonal (cyclical), and regression concurrently
achieves more accurate strain response predictions than the models with fewer components; (ii) the errors and uncer-
tainty of forecast strain response become larger as the prediction horizon (step) increases. Although the proposed
method is powerful for structural response forecasting, a crucial issue should be noticed that if the regressors (such as
temperature) are not observed (measured) in parallel, the forecasting execution will inevitably be hindered. To over-
come this limitation, a DLM for temperature can be first built for future temperature forecasting, which is then fed into
the strain response DLM to enable the strain prediction. The formulated BDLM enables to develop more advanced
methods for real-time damage detection.
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