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Wavelet-Galerkin Method for Computations
of Electromagnetic Fields—Computation of

Connection Coefficients
Shiyou Yang, Guangzheng Ni, S. L. Ho, Jose Marcio Machado, M. A. Rahman, and H. C. Wong

Abstract—One of the key issues which makes the wavelet-
Galerkin method unsuitable for solving general electromagnetic
problems is a lack of exact representations of the connection
coefficients. This paper presents the mathematical formulae and
computer procedures for computing some common connection
coefficients. The characteristic of the present formulae and
procedures is that the arbitrary point values of the connection co-
efficients, rather than the dyadic point values, can be determined.
A numerical example is also given to demonstrate the feasibility
of using the wavelet-Galerkin method to solve engineering field
problems.

Index Terms—Connection coefficients, wavelet bases, wavelet-
Galerkin method.

I. INTRODUCTION

T HE wavelet-Galerkin method is a powerful alternative
for the numerical solution of both integral and differ-

ential equations by pure mathematicians and engineers alike
[1]–[4]. As similar to the Galerkin discretization approach, the
wavelet-Galerkin scheme involves the evaluation of connection
coefficients. These connection coefficients are quadratures
with integrands being products of wavelet bases and their
derivatives. As the derivatives of compactly supported wavelets
are highly oscillatory and also due to the implicit representation
of wavelet bases, it is difficult to compute these connection
coefficients by numerical methods. Thanks to the development
in algorithms for computing these coefficients [5]–[7], the
wavelet- Galerkin method has now been applied successfully
to solve some typical benchmark problems in mathematics and
in almost all branches of engineering. Since most algorithms
developed are essentially based on unbounded domains, the
general wavelet bases have to be periodized, and the applica-
tions of wavelet-Galerkin methods are limited to cases where
the problem domain is unbounded or the boundary condition
is periodic. To use the wavelet-Galerkin method to solve finite
domain problems, Chenet al. have developed algorithms for
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computing some finite integrals of wavelets on a bounded
interval [8]. However, the algorithms of Chenet al. are still
restricted to the computation of dyadic point values. On the
other hand, the authors believe that these algorithms can be
improved by a more generalized definition of normalization
conditions.

For practical engineering field problems, especially those in
electromagnetics, one should note that:

1) The solution domains are normally bounded to some spe-
cific regions. For those wavelet bases whose supports lie
partly on the domains, the computations of the connec-
tion coefficients depends on the integrals between some
limits;

2) Many, possibly most, engineering field problems involve
distributed sources and multiple physical media, the
so called inhomogeneous sources and materials, which
means that even for wavelets whose supports are en-
tirely within the solution domain, the computation of
connection coefficients must also be carried out region
by region, i.e., the connection coefficients are the sums
of different bounded integrals, because of the differences
in the media parameters and sources.

In the application of general wavelet bases in the wavelet-
Galerkin method for solving engineering field problems, it is
necessary to have an exact determination of the arbitrary point
values of the connection coefficients. In short, this paper is a
continuation of the previous work of the authors to develop an
improved wavelet-Galerkin method for the numerical computa-
tions of electromagnetic fields. The emphasis of the work being
reported is the computation of the arbitrary point values of the
connection coefficients.

II. COMPUTATION OF CONNECTION COEFFICIENTS

Since the present work is a continuation of [9], thus the math-
ematical notations used in what follows are as defined in [8] and
[9] to allow easy cross referencing.

A. Computation of

The computation of this connection coefficient at integer
points is reported by Chenet al.although there were something
wrong with the normalizing conditions [8]. In order to derive
the correct coefficients, one needs to use the following equation

(1)

0018–9464/00$10.00 © 2000 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 11, 2009 at 02:54 from IEEE Xplore.  Restrictions apply.



YANG et al.: WAVELET-GALERKIN METHOD FOR COMPUTATIONS 645

Multiplying both sides of (1) with , and taking integra-
tion from limit 0 to limit , one has

(2)

Considering the facts

or

(3)

one obtains

(4)

where , and its computation is reported in
[8].

From (3), it is clear that there were independent
members, , in
the set ( ), that
exist for some fixed . Expressing these independent
members in a vector form as

(5)

(6)

one then reads

(7)

According to the following two scale relationships

(8)

one gets

(9)

where

Similarly

(10)

where

For arbitrary , let

or (11)
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Define the shift operator as

(12)

From (8), one obtains

(13)

If , then by applying (13) repeatedly one
gets

(14)

Now the procedure for computing at an arbitrary point
can be described as

1) Compute and ;
2) For , evaluate to approximate as

;

3) Compute
.

The value of at the arbitrary point can be deter-
mined according to (5) and (6).

B. Computation of

The determination of this connection coefficient at integer
points including points is also reported in [8] with the
exception that the normalizing conditions are replaced by

(15)

Equation (15) is derived in the same way as for (4).
In the derivation of the formulae for computing

at arbitrary points, one must note that

or

(16)

or or (17)

It is very obvious that there are only independent
members
in the set ( )
for some fixed . Let the independent members be
expressed in the following compact form

(18)

(19)

then one has

(20)

According to the following two scale relationships

(21)

one obtains

(22)

where

or

Similarly

(23)
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where

or

Arbitrarily may be expressed as (11). According
to (21) one obtains

(24)

here the definition of is as given in (12).
If , then applying (24) repeatedly yields

(25)

where

Special attention should be paid to the value ofhere.
The procedure for computing the values of at an ar-

bitrary point is then summarized as

TABLE I
COMPUTEDRESULTS BYUSING DIFFERENTNORMALIZATION CONDITIONS FOR

THE DAUBECHIES SCALING FUNCTION WITH L = 6

Fig. 1. Computed� (x)for the Daubechies scaling function withL = 8

1) Compute and ;
2) For , determine to approximate as

;
3) Compute

The value of at an arbitrary point can be
determined according to (18) and (19).

III. N UMERICAL RESULTS

A. Connection Coefficients

According to the previous formulae and procedures, a soft-
ware program has been developed to calculate all the aforemen-
tioned connection coefficients. Due to the limitation of space,
only parts of the results are presented in this paper. Table I
presents the computed results of for the Daubechies
scaling function with as well as those given by [8]. Figs. 1
and 2 show some other computed results of connection coeffi-
cients. The smoothness of these curves is a good indicator of the
validity of the proposed formulae and procedure, especially the
new normalization conditions developed in this paper.

B. Numerical Example of Wavelet-Galerkin Method

One of the numerical examples of the wavelet-Galerkin
method is reported [9]. This section presents another example
on the computation of magnetic fields of a typical U-magnet
as shown in Fig. 3(a). Due to the geometrical symmetry, only
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Fig. 2. Computed� (x)for the Daubechies scaling function withL = 8

(a) (b)

Fig. 3. (a) The U-Magnet and (b) the wavelet-Galerkin method mesh

half of the actual region, i.e., the region enclosed by ABCD
in Fig. 3(a), needs to be analyzed. This fields are governed
by the vector form of Poisson equation after introducing the
magnetic vector potential A. By assuming an infinite length
in the longitudinal direction, this vector Poisson equation
degenerates to its scalar counterpart, and the boundary value
problem is formulated as

(26)

The solutions of this U-Magnet problem using both the
wavelet-Galerkin method with the mesh of Fig. 3(b) and ,
and that by FEM are given in Fig. 4. The orders of the linear
equation sets for the proposed method and that of FEM are,
respectively, 1000 and 1106. The CPU time required by both
methods are almost the same, i.e., about 20 seconds on an
Acer 586 computer. Please note that a very simple “mesh”
is needed for the present method. These computed results
reveal again that: 1) the Wavelet-Galerkin method is virtually a
meshless method, and this is very promising for 3D problems
and 2) wavelet-Galerkin method is a strong contender to

(a) (b)

Fig. 4. Solution of U-Magnet. The equipotentials ofA corresponding to
magnetic flux lines, (a) by wavelet-Galerkin method, (b) by FEM

conventional FEM for case where boundaries are oblique at the
present stage.

IV. CONCLUSION

This paper details the mathematical formulae and the corre-
sponding computer procedures for the exact determination of
arbitrary point values of some typical connection coefficients
encountered in wavelet-Galerkin method. These results play an
essential role in extending the wavelet-Galerkin method to solve
general field problems in electromagnetics. One should note
that the computation of these coefficients is done once and for
all. The numerical example given in this paper has also demon-
strated the potential of the wavelet-Galerkin method in solving
electromagnetic field problems.
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