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ABSTRACT Information content is an important criterion for many image processing algorithms such as
band selection and image fusion. Usually, information content is quantified by using information entropy
(i.e., Shannon entropy); however, this is not a suitable measure because information entropy is independent
of the spatial distribution of image pixels. Thus, improved information entropies and variants of information
entropy have been developed. Among all the entropic measures, the discrimination ratio-based variant of
information entropy (hereinafter DVIE) has recently been demonstrated to be the most effective. On the
other hand, DVIE is the most inefficient measure in terms of computation time, which severely restricts its
applications. To solve this problem, we present a three-strategy approach to efficiently compute the DVIE
of an image. The first strategy is to use a simplified equation for DVIE. The second strategy is to selectively
compute the two computationally intensive components of DVIE—intra-distance and extra-distance—based
on the computational complexity. Only one distance was computed, and the other distance was derived based
on the lookup table of average distances. The third strategy was to efficiently construct the lookup table based
on geometric symmetry. We performed both validation and evaluation experiments to demonstrate that the
proposed approach was not only valid for accurately computing DVIE, but it was also highly efficient. Our
proposed approach saved more than 99% of the time taken for the original approach, without compromising
the accuracy; therefore, DVIE was made applicable for processing images.

INDEX TERMS Band selection, discrimination ratio, image processing, information content, information
entropy, information-theoretic, Shannon entropy.

I. INTRODUCTION
Image processing is usually the first step towards apply-
ing optical remote sensing data [1]. Its primary purpose is
to improve the quality of an image and make the image
suitable for certain applications [2]. However, one major
problem faced during image processing is the objective
assessment of the image quality [3], [4]. One simple and
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efficient method for this assessment is to employ information
entropy (IE, also called Shannon entropy) [5]–[9], which is
an information-theoretic metric that quantifies the informa-
tion content of a dataset [10]. This method has been exten-
sively used because of its theoretical elegance and practical
simplicity, which helped create numerous image processing
algorithms [11]–[13].

Despite its popularity, IE is not a perfect measure of the
information content of an image. It characterizes only the
statistical information of an image; it disregards the spatial
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distribution of pixels [14]. However, this distribution is too
important to be disregarded; therefore, an image can be called
a spatial dataset. To solve this problem, efforts have been
made to improve the IE [15]; these efforts have produced
numerous improved information entropies and variants of
information entropies [e.g.,] [16], [17]. Among them, dis-
crimination ratio-based variant of IE (hereinafter DVIE) has
been shown to be the most effective measure for characteriz-
ing the spatial distribution [15], [18].

However, DVIE is the most inefficient measure in terms
of the computation time. According to Gao, et al. [15], the
computation time of DVIE is 18,257 times that of the IE.
The DVIE still takes 702 times as long as the second most
inefficient measure. On a powerful desktop computer, it takes
37 s to evaluate an image of only 150 × 215 pixels [15].
Another serious concern is that the computation time of DVIE
increases exponentially when the image size increases; this
will be demonstrated in Section II. This efficiency problem
has become a bottleneck in using DVIE to process images.

Therefore, the aim of this study is to remove this bottle-
neck by developing an efficient approach to compute DVIE.
This approach will make it practically possible for DVIE to
evaluate images on a personal computer environment.

The remainder of the article is organized as follows.
Section II provides an overview of DVIE; it is compared
with IE, and its efficiency problem is discussed. Section III
explores the key idea of the proposed approach for efficiently
computing DVIE; this section explains the three strategies
proposed to reduce the amount of computation. Sections IV
– VI further describe the three strategies, namely a simpli-
fied equation for efficiently computing DVIE, a complexity-
based method for the selective computation of the intra- and
extra-distance components, and a symmetry-based method
for efficiently constructing the lookup table. Section VII
presents the experiments for validating and evaluating the
proposed approach. Section VIII illustrates the application
of DVIE to process remote sensing image. Sections IX – X
provide discussions on the importance of the proposed
approach; we end with a few concluding remarks.

II. DVIE
A. DVIE VS. IE
IE was developed by Shannon [5], who is considered the
father of information theory. IE is a measure of information
or disorder (these two terms are often used interchangeably).
The mathematical formula of IE is as follows:

IE = −
n∑
i=1

P (X = xi) · logP (X = xi) (1)

whereX is a discrete random variable with the possible values
{x1, x2, · · · , xn}, and i is an integer variable with possible
values ranging from 1 to n. P (X = xi) is the probability of
X taking the value of xi; in other words, it is the proportion of
all the instances of X with the value xi.
Let us take the image shown in Fig. 1(a) as an example.

In this case, X is the image pixel. It has three possible

FIGURE 1. Two simple images and their information entropies (IEs) and
their discrimination ratio-based variant of information entropies (DVIEs).

values, namely x1 = 4, x2 = 5, and x3 = 6, with the
probability of P (X = x1) = 6

/
12, P (X = x2) = 4

/
12,

and P (X = x3) = 2
/
12, respectively. As a result, the IE

of this image is computed as 1.4591 using (1). Note that
the IE remains unchanged even if the spatial distribution
of pixels is altered, as shown in Fig. 1(b). This means that
according to information theory [19], [20], the two images
in Fig. 1 have exactly the same information content; in more
general terms, any two images are regarded to have the same
information content as long as they have the same pixel com-
position. However, an image is ‘‘a specific composition and
configuration of pixels’’ [21]. Therefore, a perfect measure
of the information content of an image should be capable
of characterizing both the compositional and configurational
information of an image. Clearly, IE fails to characterize the
latter.

To address this problem, Claramunt [18] developed a vari-
ant of IE based on Tobler’s first law of geography, which
stated that ‘‘everything is related to everything else, but near
things are more related than distant things’’ [22]–[24]. This
law indicates that in a general case, similar entities are close
in space. Claramunt [18] regarded such a case as an orderly
state and assumed that as similar entities come close, the pat-
terns of their entities would become more orderly. Similarly,
as different entities come close, the pattern of their entities
would becomemore disorderly. In dealing with an image, one
can interpret the entities as pixels, and the pattern of entities
as the whole image. To quantify the closeness of similar
and different pixels, Claramunt [18] proposed the concepts
of intra-distance and extra-distance, respectively. These two
distances can be computed as follows:

din (X = xi) =


1

Ni · (Ni − 1)

Ni∑
j=1,

Ni∑
k=1

∣∣AijAik ∣∣ Ni> 1

λ Ni = 1
(2)

dex (X = xi) =


1

Ni · (N − N i)

Ni∑
j=1

N−N i∑
k=1

∣∣AijBik ∣∣ Ni 6= N

λ Ni = N
(3)

where N is the total number of the pixels of an image, and
λ is a pre-set parameter that takes a small value (e.g., 0.1 or
0.2). Ni, din (X = xi), and dex (X = xi) are the number, the
intra-distance, and the extra-distance of the pixels at the ith
gray level (i.e., pixels with a value of xi), respectively. Aij is
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the jth pixel at the ith gray level, and Bik is the kth pixel that
does not belong to the ith gray level.

∣∣AijBik ∣∣ is the Euclidean
distance betweenAij andBik . From (2) and (3), we can see that
din (X = xi) is the average distance between the two pixels
at the ith gray level, and dex (X = xi) is the average distance
between a pixel at the ith gray level and a pixel at another gray
level. In a sense, din (X = xi) and dex (X = xi) are analogous
to the concepts of ‘‘within-class variance’’ and ‘‘between-
class variance’’ [25].

Based on the intra-distance and extra-distance, the variant
of IE is computed as follows:

DVIE = −
n∑
i=1

din (X = xi)
dex (X = xi)

· P (X = xi) · logP (X = xi)

(4)

In this variant, the intra-distance and extra-distance are com-
bined as a ratio [26], which Leibovici, et al. [27] called a
discriminant ratio. Therefore, this variant has been referred
to as the DVIE in this paper.

To illustrate the computation of DVIE, let us take Fig. 1(a)
again as an example. First, using (2), the intra-distances were
computed to be din (X = 4)= 1.9452, din (X = 5)= 1.6488,
and din (X = 6)= 1, according to (2). Then, using (3),
the corresponding extra-distances were computed to be
dex (X = 4) = 1.8637, dex (X = 5) = 1.8611, and
dex (X = 6) = 2.2054. Finally, using (4), the DVIE of
Fig. 1(a) was computed to be 1.1853 with the logarith-
mic base of 2. Similarly, the DVIE of Fig. 1(b) was also
computed, and the result was 1.0516. We can see that
DVIE is capable of distinguishing Fig. 1(b) from Fig. 1(a),
namely it can characterize the configurational information
of an image. Indeed, an experimental evaluation involving
100,000 images [15] reveals that DVIE is the most effective
measure for characterizing configurational information.

B. EFFICIENCY PROBLEM OF DVIE
Although it is effective, DVIE is a highly computation-
intensive measure. From (2) – (4), we can see that the basic
computation involves calculating the distance between two
pixels. The amount of such basic computation (AC ) can be
expressed as follows using an image of N pixels:

AC =
n∑
i=1

(Ni − 1) · Ni +
n∑
i=1

(N − N i) · Ni

=

n∑
i=1

(N − 1) · Ni (5)

This involves an extremely large number of basic compu-
tational steps, even with a small image. For example, let us
assume that the size of the image is 600× 600 pixels, and
these pixels are evenly distributed in five gray levels. The AC
of this image is 1.2960×1011, which is very large.

III. IMPROVING THE COMPUTATIONAL EFFICIENCY OF
DVIE
In general, there are two main ways to improve the
computational efficiency of a measure; one method uses
hardware, and the other uses software. The hardware method
employs advanced computing devices such as cloud comput-
ing platforms, graphics processing units (GPUs), and tensor
processing units (TPUs). This improves the computational
efficiency by increasing the amount of computation per unit
of time. By contrast, the software method develops new or
improved methods for computing a measure. The computa-
tional efficiency is improved by either increasing the amount
of computation per unit of time or reducing the amount of
computation involved.

In this study, we focused on the software method because
it is more cost-effective than the hardware method for most
users. Our core idea involves three strategies. The first strat-
egy was to simplify the equation for DVIE. The second
strategy was to selectively compute the intra-distance and
extra-distance based on the computational complexity. Only
one distance was computed, and the other distance was
derived based on a lookup table of average distances (LTAD).
The third strategywas to efficiently construct the lookup table
based on geometric symmetry.

IV. A SIMPLIFIED EQUATION FOR EFFICIENTLY
COMPUTING DVIE
The DVIE equation can be simplified according to the prop-
erty of distance. One basic property of the distance between
the two points A1 and A2 on a Euclidean plane is commu-
tativity, namely |A1A2| = |A2A1|. Using the commutative
property, a simplified equation can be proposed for deriving
the intra-distance for computing the DVIE:

din (X = xi) =


2

Ni · (Ni − 1)

Ni∑
j=1,

j<k≤Ni∑
k=j+1

∣∣AijAik ∣∣ Ni> 1

λ Ni = 1
(6)

By using (6), it is possible to avoid 0.5×
∑n

i=1 (Ni − 1) ·Ni
basic computations. As a result, the number of basic compu-
tations is reduced to A

′

C , as follows:

A
′

C = 0.5×
n∑
i=1

(Ni − 1) · Ni +
n∑
i=1

(N − N i) · Ni

=

n∑
i=1

(N−0.5Ni−0.5) · Ni (7)

For example, for a 600× 600 image whose pixels are evenly
distributed in five gray levels, the number of basic computa-
tions is reduced from 1.2960×1011 to 1.1664×1011; that is,
1.2960×1010 basic computations are decreased.
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V. COMPLEXITY-BASED METHOD FOR SELECTIVE
COMPUTATION OF INTRA-DISTANCE AND
EXTRA-DISTANCE
In the original method for computing DVIE, both the intra-
and the extra-distance components needed to be computed
for each gray level. In this study, we propose to selectively
compute the intra- and the extra-distance components. Only
one distance was selected for the computation, and the other
distancewas derived based on the first distance. This selective
computation was performed for each gray level of an image
in the following three steps.

A. COMPUTATIONAL COMPLEXITY-BASED SELECTION
This step selects one of the two distances having lower com-
putational complexity. The computational complexities of the
intra- and the extra-distance components were characterized
using the number of basic computations involved in comput-
ing the two distances. As shown in (7), the number of basic
computations for the intra-distance of the ith gray level is
0.5× (Ni − 1) · Ni, whereas that for the extra-distance of the
ith gray level is (N − N i)·Ni. The selection was performed as
follows. If 0.5× (Ni − 1)·Ni is greater than (N − N i)·Ni, then
the intra-distance is selected; otherwise, the extra-distance is
selected.

B. NUMERICAL COMPUTATION OF THE SELECTED
DISTANCE
In this step, the distance selected in the previous step was
determined by performing all the basic computations required
by this distance, as given by (3) and (6). For example, if the
intra-distance was selected, then it was determined according
to (6). This determination was numerical in nature; therefore,
it could be called a numerical computation.

C. ANALYTICAL COMPUTATION OF THE UNSELECTED
DISTANCE
The other distance (i.e., the unselected distance) was analyt-
ically computed according to the relationship between the
intra- and extra-distance components. This relationship was
derived as follows.

First, the following relationship holds for any pixel of an
image:

(N − 1)× davg (Ps) =
∑
r

|PsPr | +
∑
t

|PsPt | (8)

where N is the total number of pixels of an image. Ps is the
sth pixel of the image, and it belongs to the ith gray level;
davg (Ps) is the average distance between Ps and all the other
pixels of the image. Pr and Pt are the other pixels that have
and do not have the same gray value, respectively, as Ps. The
function |·| returns the distance between the two pixels.
Second, the following relationship can be derived for any

gray level based on (8):

(N − 1)×
∑
s

davg (Ps) =
∑
s

∑
r

|PsPr | +
∑
s

∑
t

|PsPt |

(9)

Third, (9) can be rewritten in terms of intra- and extra-
distance components, as follows:

(N − 1)
∑
s

davg (Ps) = Ni (Ni − 1) din (X = xi)

+Ni (N − Ni) dex (X = xi) (10)

Equation (10) implies that we can directly derive the intra-
distance based on the extra-distance and vice versa, if we
have a lookup table for davg (Ps). A lookup table is an array
or a matrix of pre-computed values for a time-consuming
function; more details on this concept can be found in [28].
In the following section, we will show how to efficiently
construct such a lookup table.

VI. SYMMETRY-BASED METHOD FOR EFFICIENTLY
CONSTRUCTING A LOOKUP TABLE
As mentioned in Section V, we need an LTAD. The LTAD is
a matrix whose size is the same as the image under consid-
eration. LTAD (r, c) stores the average distance of the pixel
on the r th row and cth column of the image from all other
pixels.

To construct the LTAD of an image, the most direct
approach is to determine the elements of LTAD one by one.
However, this approach is inefficient because it involves a
substantial amount of computation. For an image of R ×
C pixels, determining a single element of LTAD requires
R × C − 1 basic computations, and determining all the
elements of LTAD requiresR2C2

−RC (e.g., 1.2960×1011 for
a 600× 600 image) basic computations.
To reduce the amount of computation, we developed an

improved method in this study by constructing the LTAD of
an image based on geometric symmetry. Themethod involved
three steps. The first step was to determine the upper-left
quarter of the elements. Mathematically, if the image has
R × C pixels, then the range of the row numbers of these
elements and the range of the column numbers are

[
0,
⌊
R
/
2
⌋]

and
[
0,
⌊
C
/
2
⌋]
, respectively, as shown in Fig. 2. The second

step was performed based on the line symmetry to directly
obtain the upper-right and the bottom-left quarters of the
elements according to the mapping functions in (11), (12),
as shown at the bottom of the next page. The last step
was based on the point symmetry, namely to directly obtain
the bottom-right quarters of the elements by using (13).
The number of basic computations was

⌈
R
/
2
⌉
×
⌈
C
/
2
⌉
×

(R× C − 1) with this improved method (e.g., 0.3240×1011

for a 600× 600 image). Therefore, our proposed method
reduced three-quarters of computations used for the direct
method.

To further reduce the amount of computation, we devel-
oped a method for efficiently determining the upper-left quar-
ter of the elements of a LTAD. This method was implemented
on two other lookup tables, which were efficiently
constructed based on the geometric symmetry.

The first lookup table (denoted by LT1) was constructed
to store the distance between any two pixels. The size of
this lookup table was the same as that of the image under
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FIGURE 2. Upper-left quarter of elements (the gray area) of a lookup
table of average distances (LTAD).

consideration, namely R×C . An element of this lookup table,
LT1 (r, c), denotes the distance between Pixels (x1, y1) and
(x2, y2), where1x = |x1 − x2| = r and1y = |y1 − y2| = c.
The value of this element can be computed as

√
r2 + c2. Not

all the values of the elements needed to be computed. Accord-
ing to the geometric symmetry, the following computations
can be avoided to improve efficiency.

• If the image has more columns than rows (i.e., a wide
image, R ≤ C), then only the elements in the upper-right
part (Fig. 3) of LT1 needed to be determined. The
spatial extent of these elements can be mathematically
expressed as 0 ≤ r ≤ R− 1 and r ≤ c ≤ C − 1.

• If the image has fewer columns than rows, then only the
elements in the bottom-left part (Fig. 4) of LT1 needed
to be determined. Their spatial extent was c ≤r ≤ R−1
and 0 ≤ c ≤ C − 1.

The second lookup table (denoted by LT2) was constructed
to store the total distance between a pixel and a matrix of r×c
pixels that were placed at the upper-left, upper-right, bottom-
left, or bottom-right corners of the pixel (see Fig. 5). The size
of LT2 was also the same as the image under consideration,

FIGURE 3. Elements involved in constructing LT1 with a wide image.

namely R× C . The elements of LT2 were determined based
on LT1. Similar to the LT1 case, not all the elements of LT2
needed to be determined. Only a few elements needed to be
determined according to the geometric symmetry, as speci-
fied in the following cases.

• If the image had more columns than rows (i.e., a wide
image, R ≤ C), then only the upper-right part of the ele-
ments of LT2 needed to be determined; the elements in
the first row were excluded. According to the definition
of LT2, all the elements in the first row had zero value.
The spatial extent of the elements to be determined is
shown in Fig. 6; this is mathematically expressed as
1 ≤ r ≤ R−1 and r ≤ c ≤ C−1. The determination of
these elements is discussed in two subcases. The first
subcase was for the elements at the diagonal of LT2.
These elements were determined using (14) and (15), as
shown at the bottom of this page. The second subcase

LTAD (r, c) = 
LTAD (r,C − c− 1) r ∈

[
0,
⌊
R
/
2
⌋]
, c ∈ [

⌈
C
/
2
⌉
,C) (11)

LTAD (R− r−1,c) r ∈ [
⌈
R
/
2
⌉
,R),c ∈

[
0,
⌊
C
/
2
⌋]

(12)

LTAD (R− r−1,C − c− 1) r ∈
[⌈
R
/
2
⌉
,R
)
, c ∈ [

⌈
C
/
2
⌉
,C) (13)

LT2 (r, c) = 

LT1 (r, c) r = c = 1 (14)

LT2 (r−1,r − 1)+ LT1 (r, r)+ 2
i=r−1∑
i=1

LT1 (i, r) 2 ≤ r = c < R (15)

LT2 (r, c− 1)+
i=r∑
i=1

LT1 (i, c) 2 ≤ r < R, r+1 ≤c < C (16)

LT2 (r, c) =



LT1 (r, c) r = c = 1 (17)

LT2 (c−1,c− 1)+ LT1 (c, c)+ 2
i=c−1∑
i=1

LT1 (i, c) 2 ≤ c = r < C (18)

LT2 (r−1,c)+
i=c∑
i=1

LT1 (r, i) 2 ≤ c < C, c+1 ≤r < R (19)
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FIGURE 4. Elements involved in constructing LT1 with a long image.

FIGURE 5. Matrix of pixels (displayed in green) that are placed at the
(a) upper-left, (b) upper-right, (c) bottom-left, or (d) bottom-right corners
of a single pixel (displayed in red).

was for the other elements, whichwere determined using
(16), as shown at bottom of the previous page.

• If the image had fewer columns than rows, only the
bottom-left part of the element of LT2 needed to be
determined. The elements in the first column were
excluded because they had zero by the definition of LT2.
The spatial extent of the elements to be determined is
shown in Fig. 7; this is mathematically expressed as
1 ≤ c ≤ C − 1 and c ≤ r ≤ R − 1. To determine
their values, we also distinguished two subcases. The
first subcase was for the elements at the diagonal of LT2,
whose values were computed using (17) and (18), as
shown at bottom of the previous page. The other subcase
was for the remaining elements, which was determined
using (19), as shown at bottom of the previous page.

VII. EXPERIMENT
A. DATA PREPARATION
We generated five sets of experimental data using the
thermodynamics-based strategy developed by Gao, et al. [15]
for testing spatial entropy. This strategy works with a user-
supplied image (referred to as a seed image) to iteratively

FIGURE 6. Elements involved in constructing LT2 with a wide image.

FIGURE 7. Elements involved in constructing LT2 with a long image.

simulate the mixing of ideal gases in a closed container. In an
iteration, each pixel of the image is treated as a gas molecule,
and half of the pixels switched their positions with randomly
selected neighbors.

To generate the five sets of experimental data, we obtained
and used five seed images. First, we obtained five remote
sensing images from Google Earth, as shown in Fig. 8. The
first two remote sensing images are of farmlands in Egypt.
The third and fourth remote sensing images are Tsim Sha Tsui
area and Kai Tak Airport of Hong Kong, respectively. The
last remote sensing image was of the Qinghai Lake of China.
All these remote sensing images had three bands, each of
which had 300× 300 pixels. Second, we converted these five
remote sensing images to gray images. As shown in Fig. 9,
these gray images were different in the histogram. Third,
these gray images were used as seed images to simulate the
iterative mixing of the ideal gases. The maximum number of
iterations was set as 10,000. As a result, each of five sets of
experimental data included a sequence of 10,000 gray images,
which were increasingly disorderly in terms of thermody-
namics (see Figs. 10 – 14).

B. EXPERIMENTAL VALIDATION
Validation involves testing the validity of the approach
used in this study for computing DVIE; in other words,
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FIGURE 8. Remote sensing images for experiments: (a) Farmland 1 in Egypt, (b) Farmland 2 in Egypt, (c) Tsim Sha Tsui of
Hong Kong, (d) Kai Tak Airport of Hong Kong, and (e) Qinghai Lake of China.

FIGURE 9. The gray images (a) – (e) correspond to the five remote sensing images in Fig. 7 and the histograms (f) – (j) of
these gray images.

FIGURE 10. Images from the Experimental Dataset 1. These images are the outcomes of the iterations (a) 0, (b) 100, (c) 200,
(d) 300, (e) 400, (f) 500, (g) 1,000, (h) 2,000, (i) 5,000, and (j) 10,000.

it involves testing whether the computational results of the
proposed approach are the same as that of the original
approach. If validity is not guaranteed, the efficiency results
would be less meaningful. Hence, we performed validation
before testing the efficiency.

An ideal validation would compare the DVIEs of the exper-
imental images (i.e., the 50,000 images of the five experi-
mental datasets) computed using the proposed approach with
those computed using the original approach. However, such

validation is not practical because it takes months to compute
the DVIEs using the original approach. Hence, we test the
validity of the proposed approach by using the following two
experiments.

1) Comparison with five samples of experimental
images. First, we generated a sample of 500 randomly
selected images from each experimental dataset. Then,
the DVIE of each sampled image was computed using
both the proposed and original approaches. Finally,
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FIGURE 11. Images from the Experimental Dataset 2. These images are the outcomes of the iterations (a) 0, (b) 100, (c) 200,
(d) 300, (e) 400, (f) 500, (g) 1,000, (h) 2,000, (i) 5,000, and (j) 10,000.

FIGURE 12. Images from the Experimental Dataset 3. These images are the outcomes of the iterations (a) 0, (b) 100, (c) 200,
(d) 300, (e) 400, (f) 500, (g) 1,000, (h) 2,000, (i) 5,000, and (j) 10,000.

FIGURE 13. Images from the Experimental Dataset 4. These images are the outcomes of the iterations (a) 0, (b) 100, (c) 200,
(d) 300, (e) 400, (f) 500, (g) 1,000, (h) 2,000, (i) 5,000, and (j) 10,000.

we compared the two DVIEs of each image to check
whether they were the same.

2) Trend derived from all experimental images.
The DVIEs of all the 50,000 images of the five

experimental datasets were computed using the pro-
posed approach. The changes in the DVIEs for varying
iterations of mixing were graphically represented for
each experimental dataset. An increasing trend should
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FIGURE 14. Images from the Experimental Dataset 5. These images are the outcomes of the iterations (a) 0, (b) 100, (c) 200,
(d) 300, (e) 400, (f) 500, (g) 1,000, (h) 2,000, (i) 5,000, and (j) 10,000.

FIGURE 15. Changes in the DVIEs of the images of the experimental
datasets along with the iterations of mixing.

be seen unless the image pixels were fully mixed,
as demonstrated by Gao, et al. [15].

The results of the first experiment demonstrated that the
DVIEs computed using the two approaches for each sam-
pled image had the same value. The results of the second
experiment are shown in Fig. 15 (logarithms to base 10 were
used). This figure shows that the DVIEs computed using the
proposed approach for each of the five experimental datasets
increased along with the iterative mixing. In summary, the
results of the two experiments confirmed the validity of the
proposed approach for computing DVIE.

C. EXPERIMENTAL EVALUATION
The evaluation aims to experimentally explore whether and
how the proposed approach is more computationally effi-
cient than the original approach. The measure of efficiency
is the CPU time required by the proposed approach for
computing the DVIE of an image from the experimental
datasets. When the CPU time required by the proposed
approach is less, this approach is more computationally
efficient. The benchmark is the CPU time required by
the original approach. It is not practical to compute the
DVIEs of all the images using the original approach;
therefore, we randomly selected 500 images from each exper-

FIGURE 16. Experimental hyperspectral remote sensing image (left) and
its reference map (right) [43].

imental dataset. As a result, we had five subsets of the
images.

The CPU time for dealing with an image (t) was deter-
mined as follows. First, the DVIEs of all images in a subset
were computed, and the total CPU time (ts) was recorded. The
operating environment was an ordinary computer equipped
with an Intel Core i5 processor, a 16-GB random access
memory, and aWindows 10 system. Second, this computation
was performed 10 times to derive the average total CPU
time (t̄s). Third, the time t was calculated as t̄s divided by
500. Fourth, this t was calculated using both the original and
the proposed approaches for each of the five sub-datasets of
images.

The results are shown in Table 1. Clearly, more than 99%
time was saved by using the proposed approach to compute
the DVIE of an image from any of the five sub-datasets. This
fact demonstrates the outstanding efficiency of the proposed
approach for dealing with varying images. Such efficiency
makes it possible to compute the DVIEs of large datasets
using ordinary computers. For example, Table 1 shows that
it takes approximately 74 days to compute the DVIEs of the
10,000 images of the Experimental Dataset 5 using the orig-
inal approach. By contrast, the proposed approach required
only approximately 50 min.

We also evaluated the effect of the third strategy, namely
the symmetry-based method for efficiently constructing
LTAD. To this end, we reperformed the experiments in
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FIGURE 17. Change of classification accuracy with the number of bands selected based on different
similarity metrics.

TABLE 1. CPU time required by the original and the proposed approaches
to compute the DVIE of an image from sub-datasets 1 – 5.

Table 1 using the same sub-datasets but a different approach,
which is an improved approach without the third strategy.
The results for the five sub-datasets are 24.6, 24.1, 24.9, 25.1,
and 24.5 seconds, respectively. A comparison between these
results and that in Table 1 demonstrated that the third strategy
indeed improved the computational efficiency.

VIII. APPLICATION
The proposed approach makes DVIE feasible for dealing
with hyper- or ultra-spectral remote sensing images, where
a single image may contain hundreds or even thousands
of spectral bands [29]–[32]. In this section, we present an
application of DVIE to the unsupervised band selection for
hyperspectral image classification. In addition, we compare
the performance of all this DVIE-based band selection with
the band selections based on other entropies.

Band selection is one of the two methods for the dimen-
sionality reduction of remote sensing images (the other
method is feature extraction) [33]–[35]. Themain idea behind
band selection is to determine the ‘‘most distinctive and
informative bands’’ [36]. In this process, there are two major
aspects: an appropriate measurement criterion (i.e., a measure
of band similarity) and an effective search strategy [33].

In this study, we proposed a DVIE-based method for unsu-
pervised band selection for hyperspectral image classifica-
tion. Specifically, we used the difference in DVIE between
the two bands to measure similarities. The search strategy

was adopted from an existing study [21] for easy comparison
of performances among different entropies and their vari-
ants. Also, for this reason, we used the same experimental
hyperspectral remote sensing image (Fig. 16), performance
analysis method, and benchmarks as the existing study [21].
(The performance analysis method included image classi-
fication for evaluating performance and a ‘‘band number
versus classification accuracy’’ curve to present the results.)
These benchmarks are seven IE-based measures, namely
mutual information (MI), four variants of mutual information
(MI1, MI2, MI3, and MI4) [37]–[40], and two variants of
spectral information divergence (SID1 and SID2) [41], [42].
The experimental results are shown in Fig. 17. This figure

clearly shows that the DVIE-based method for band selection
significantly outperformed all the other methods based on IE.
For example, the classification accuracy for the DVIE-based
methodwas as high as 86%when only 20 bands were selected
from the 220 original bands and used for image classification.
By contrast, using the same number of bands, the highest clas-
sification accuracy using the IE-basedmethods was 75% (i.e.,
using SID1 and SID2). This fact suggests the vast potential of
DVIE for image processing.

IX. DISCUSSION ON SIGNIFICANCE
The significance of the proposed method can be summarized
as follows.

The method makes it possible to practically apply DVIE
for processing remote sensing images. The previous study
has shown that DVIE is the most effective measure for char-
acterizing the spatial distribution of image pixels among all
the IEs and their diverse variants. The proposed method can
serve as a bridge between this most effective measure and
multiple image processing applications, such as registration,
classification, and change detection.

It can be used as the basis for further improvement
of the computational efficiency of DVIE. As explained in
Section III, the proposed method is designed to make DVIE
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as universally applicable as possible. The proposed method
is sequential; therefore, it can be used on both personal and
high-performance computers. In the future, this method can
be improved to perform in parallel with advanced computing
devices such as clouds, GPUs, and TPUs.

It provides a possible way for addressing similar problems
of practically determining a computation-intensive measure.
An example of this problem is the determination of aver-
age linkage [44], which is a famous measure in geo-data
clustering [45]. Average linkage is defined as the distance
between two clusters of objects and is computed as the aver-
age distance between all the pairs of objects from the two
clusters. This computation is intensive even for small clusters.
However, the average linkage is comparable with the concept
of extra-distance in computing DVIE; therefore, the idea for
efficiently computing extra-distance can be borrowed.

X. CONCLUSIONS
In this study, we developed an efficient approach to com-
pute the DVIE for processing remote sensing images. The
approach was developed based on three strategies for reduc-
ing the amount of computation required by the original
approach. The first strategy was to improve the equation of
DVIE. The second strategy was a selective computation of
the two key components of DVIE—intra-distance and extra-
distance—based on the computational complexity. The dis-
tance with low computational complexity was computed by
the original approach, whereas the distance with high com-
putational complexity was directly derived using a proposed
equation, which involved an LTAD. The third strategy was an
efficient method to construct this lookup table. Experiments
were performed to test both the validity (i.e., accuracy) and
utility (i.e., efficiency) of the proposed approach for comput-
ing the DVIE of an image.We used five experimental datasets
and 50,000 experimental images of 300× 300 pixels. In addi-
tion, we described the applications of DVIE. The DVIE was
used to select salient bands of hyperspectral remote sensing
images. From the experimental results, we drew the following
major conclusions about the approach proposed in this paper:

1) It is not only valid (i.e., its computational results are in
line with those of the original approach), but it is also
highly efficient because it saves more than 99% time as
compared with the original approach.

2) It tends to be universally applicable because its algo-
rithm is sequential in nature. It can be performed in
either a personal or a high-performance computing
environment.

3) Its performance can be further improved by employing
a parallel computing strategy or more advanced com-
puting devices such as clouds, GPU, and TPU.

4) It makes the application of DVIE possible, and the
DVIE shows strong potential in applications for remote
sensing processing. The DVIE-based band selection
outperformed all the other band selection methods
using IE-based measures.

The limitation of the proposed approach is that when
applied for amultispectral remote sensing image, it constructs
an LTAD for every band of the image. In fact, only one LTAD
was necessary when dealing with multiple bands because all
these bands had the same size.

Future research can cover the following three areas. First,
more DVIE applications can be developed for processing
remote sensing images, such as image registration, classifi-
cation, coding, and change detection. Second, a systematic
comparison, both theoretically and experimentally, can be
made between the DVIE and the alternatives to IE for image
processing, namely thermodynamic entropy (i.e., Boltzmann
entropy) [46]–[48]. Third, we can determine whether there
is a relationship between DVIE and another important mea-
sure of complexity, namely the fractal dimension [49]–[53];
determining the extent of this relationship will help better
understand the nature of DVIE.

ACKNOWLEDGMENT
We would like to thank the high-performance computing
support from the Center for Geodata and Analysis, Faculty
of Geographical Science, Beijing Normal University.

REFERENCES
[1] J. G. Liu and P. J. Mason, Image Processing and GIS for Remote Sensing:

Techniques and Applications. Hoboken, NJ, USA: Wiley, 2016.
[2] J.-C. Pinoli,Mathematical Foundations of Image Processing and Analysis,

no. 2. Hoboken, NJ, USA: Wiley, 2014.
[3] J. Liu, J. Huang, S. Liu, H. Li, Q. Zhou, and J. Liu, ‘‘Human visual system

consistent quality assessment for remote sensing image fusion,’’ ISPRS J.
Photogramm. Remote Sens., vol. 105, pp. 79–90, Jul. 2015.

[4] X. Cao, X. Li, Z. Li, and L. Jiao, ‘‘Hyperspectral band selection with
objective image quality assessment,’’ Int. J. Remote Sens., vol. 38, no. 12,
pp. 3656–3668, Jun. 2017.

[5] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul./Oct. 1948.

[6] C. Claramunt, ‘‘Towards a spatio-temporal form of entropy,’’ in Proc. Int.
Conf. Conceptual Modeling. Florence, Italy: Springer, 2012, pp. 221–230.

[7] L. Hu, Z. He, J. Liu, and C. Zheng, ‘‘Method for measuring the information
content of terrain from digital elevation models,’’ Entropy, vol. 17, no. 12,
pp. 7021–7051, 2015.

[8] J. Nowosad and T. F. Stepinski, ‘‘Information theory as a consistent
framework for quantification and classification of landscape patterns,’’
Landscape Ecol., vol. 34, no. 9, pp. 2091–2101, Sep. 2019.

[9] W. Ji, J. Wu, M. Zhang, Z. Liu, G. Shi, and X. Xie, ‘‘Blind image
quality assessment with joint entropy degradation,’’ IEEE Access, vol. 7,
pp. 30925–30936, 2019.

[10] J. X. Zhang, P. M. Atkinson, and M. F. Goodchild, Scale in Spatial
Information and Analysis. Boca Raton, FL, USA: CRC Press, 2014.

[11] W. Sun, L. Zhang, B. Du, W. Li, and Y. Mark Lai, ‘‘Band selection using
improved sparse subspace clustering for hyperspectral imagery classifica-
tion,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6,
pp. 2784–2797, Jun. 2015.

[12] H. Jia, K. Sun, W. Song, X. Peng, C. Lang, and Y. Li, ‘‘Multi-
strategy emperor penguin optimizer for RGB histogram-based color
satellite image segmentation using Masi entropy,’’ IEEE Access, vol. 7,
pp. 134448–134474, 2019.

[13] H. S. N. Alwerfali, M. Abd Elaziz, M. A. A. Al-Qaness, A. A. Abbasi,
S. Lu, F. Liu, and L. Li, ‘‘A multilevel image thresholding based on
hybrid salp swarm algorithm and fuzzy entropy,’’ IEEE Access, vol. 7,
pp. 181405–181422, 2019.

[14] S. A. Cushman, ‘‘Thermodynamics in landscape ecology: The importance
of integrating measurement and modeling of landscape entropy,’’ Land-
scape Ecol., vol. 30, no. 1, pp. 7–10, Jan. 2015.

92562 VOLUME 8, 2020



P. Gao et al.: Efficient Approach for Computing the DVIE for Image Processing

[15] P. Gao, Z. Li, and H. Zhang, ‘‘Thermodynamics-based evaluation of vari-
ous improved Shannon entropies for configurational information of gray-
level images,’’ Entropy, vol. 20, no. 1, p. 19, 2018.

[16] S. Rakshit and A. Mishra, ‘‘Estimation of structural information content
in images,’’ in Proc. Asian Conf. Comput. Vis. Hyderabad, India: Springer,
2006, pp. 265–275.

[17] M. K. Quweider, ‘‘Spatial entropy-based cost function for gray and color
Image segmentation with dynamic optimal partitioning,’’ Int. J. Comput.
Sci. Netw. Secur., vol. 12, no. 4, pp. 64–75, 2012.

[18] C. Claramunt, ‘‘A spatial form of diversity,’’ in Spatial Information Theory,
vol. 3693, A. G. Cohn D. M. Mark, Eds. Berlin, Germany: Springer, 2005,
pp. 218–231.

[19] C. E. Shannon and W. Weaver, The Mathematical Theory of Communica-
tion. Urbana, IL, USA: Univ. Illinois Press, 1949.

[20] F. Q. Niu, D. H. Zhu, and C. X. Cheng, ‘‘Map information theories and
adaptive visualization of electronic map in feature class-based zooming,’’
Proc. SPIE, vol. 6420, Oct. 2006, Art. no. 64200L.

[21] P. Gao, J. Wang, H. Zhang, and Z. Li, ‘‘Boltzmann entropy-based unsuper-
vised band selection for hyperspectral image classification,’’ IEEE Geosci.
Remote Sens. Lett., vol. 16, no. 3, pp. 462–466, Mar. 2019.

[22] W. R. Tobler, ‘‘A computer movie simulating urban growth in the detroit
region,’’ Econ. Geography, vol. 46, pp. 234–240, Jun. 1970.

[23] D. Z. Sui, ‘‘Tobler’s first law of geography: A big idea for a small world?’’
Ann. Assoc. Amer. Geographers, vol. 94, no. 2, pp. 269–277, Jun. 2004.

[24] W. Tobler, ‘‘On the first law of geography: A reply,’’ Ann. Assoc. Amer.
Geographers, vol. 94, no. 2, pp. 304–310, Jun. 2004.

[25] T. Warner, ‘‘Spatial autocorrelation analysis of hyperspectral imagery
for feature selection,’’ Remote Sens. Environ., vol. 60, no. 1, pp. 58–70,
Apr. 1997.

[26] X. Li and C. Claramunt, ‘‘A spatial entropy-based decision tree for
classification of geographical information,’’ Trans. GIS, vol. 10, no. 3,
pp. 451–467, May 2006.

[27] D. G. Leibovici, C. Claramunt, D. Le Guyader, and D. Brosset, ‘‘Local
and global spatio-temporal entropy indices based on distance-ratios and
co-occurrences distributions,’’ Int. J. Geographical Inf. Sci., vol. 28, no. 5,
pp. 1061–1084, May 2014.

[28] M. Campbell-Kelly, M. Croarken, R. Flood, and E. Robson, The History of
Mathematical Tables: From Sumer to Spreadsheets. New York, NY, USA:
Oxford Univ. Press, 2003.

[29] W. Sun andQ.Du, ‘‘Graph-regularized fast and robust principal component
analysis for hyperspectral band selection,’’ IEEE Trans. Geosci. Remote
Sens., vol. 56, no. 6, pp. 3185–3195, Jun. 2018.

[30] Q. Wang, F. Zhang, and X. Li, ‘‘Optimal clustering framework for hyper-
spectral band selection,’’ IEEE Trans. Geosci. Remote Sens., vol. 56,
no. 10, pp. 5910–5922, Oct. 2018.

[31] R. Yang and J. Kan, ‘‘An unsupervised hyperspectral band selection
method based on shared nearest neighbor and correlation analysis,’’ IEEE
Access, vol. 7, pp. 185532–185542, 2019.

[32] Q. Chen, J. Sun, V. Palade, X. Shi, and L. Liu, ‘‘Hierarchical clustering
based band selection algorithm for hyperspectral face recognition,’’ IEEE
Access, vol. 7, pp. 24333–24342, 2019.

[33] J. Feng, L. C. Jiao, X. Zhang, and T. Sun, ‘‘Hyperspectral band selection
based on trivariate mutual information and clonal selection,’’ IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 7, pp. 4092–4105, Jul. 2014.

[34] W. Sun, M. Jiang, W. Li, and Y. Liu, ‘‘A symmetric sparse representation
based band selection method for hyperspectral imagery classification,’’
Remote Sens., vol. 8, no. 3, p. 238, 2016.

[35] Q. Wang, Q. Li, and X. Li, ‘‘Hyperspectral band selection via adaptive
subspace partition strategy,’’ IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 12, no. 12, pp. 4940–4950, Dec. 2019.

[36] Q. Du and H. Yang, ‘‘Similarity-based unsupervised band selection for
hyperspectral image analysis,’’ IEEE Geosci. Remote Sens. Lett., vol. 5,
no. 4, pp. 564–568, Oct. 2008.

[37] Y. Horibe, ‘‘Entropy and correlation,’’ IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, no. 5, pp. 641–642, Sep./Oct. 1985.

[38] T. O. Kvalseth, ‘‘Entropy and correlation: Some comments,’’ IEEE Trans.
Syst., Man, Cybern., vol. 17, no. 3, pp. 517–519, May 1987.

[39] A. Strehl and J. Ghosh, ‘‘Cluster ensembles—A knowledge reuse frame-
work for combining multiple partitions,’’ J. Mach. Learn. Res., vol. 3,
no. 12, pp. 583–617, 2002.

[40] M. Hossny, S. Nahavandi, and D. Creighton, ‘‘Comments on ‘Information
measure for performance of image fusion,’’’ Electron. Lett., vol. 44, no. 18,
pp. 1066–1067, Aug. 2008.

[41] C.-I. Chang, Q. Du, T.-L. Sun, andM. L. Althouse, ‘‘A joint band prioritiza-
tion and band-decorrelation approach to band selection for hyperspectral
image classification,’’ IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6,
pp. 2631–2641, Nov. 1999.

[42] C.-I. Chang, ‘‘An information-theoretic approach to spectral variability,
similarity, and discrimination for hyperspectral image analysis,’’ IEEE
Trans. Inf. Theory, vol. 46, no. 5, pp. 1927–1932, Aug. 2000.

[43] M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe. (2015). 220 Band
AVIRIS Hyperspectral Image Data Set: Jun. 12 1992 Indian Pine Test Site
3. [Online]. Available: https://purr.purdue.edu/publications/1947/1

[44] X. Zhu and D. Guo, ‘‘Mapping large spatial flow data with hierarchical
clustering,’’ Trans. GIS, vol. 18, no. 3, pp. 421–435, Jun. 2014.

[45] Q. Liu, Z. Li, M. Deng, J. Tang, and X. Mei, ‘‘Modeling the effect of scale
on clustering of spatial points,’’ Comput., Environ. Urban Syst., vol. 52,
pp. 81–92, Jul. 2015.

[46] P. Gao and Z. Li, ‘‘Computation of the Boltzmann entropy of a land-
scape: A review and a generalization,’’ Landscape Ecol., vol. 34, no. 9,
pp. 2183–2196, Sep. 2019.

[47] S. Cushman, ‘‘Calculation of configurational entropy in complex land-
scapes,’’ Entropy, vol. 20, no. 4, p. 298, 2018.

[48] S. A. Cushman, ‘‘Calculating the configurational entropy of a landscape
mosaic,’’ Landscape Ecol., vol. 31, no. 3, pp. 481–489, Mar. 2016.

[49] P. Gao, S. A. Cushman, G. Liu, S. Ye, S. Shen, and C. Cheng, ‘‘FracL:
A tool for characterizing the fractality of landscape gradients from a new
perspective,’’ ISPRS Int. J. Geo-Inf., vol. 8, no. 10, p. 466, 2019.

[50] T. Lan, Z. Li, and H. Zhang, ‘‘Urban allometric scaling beneath structural
fractality of road networks,’’ Ann. Amer. Assoc. Geographers, vol. 109,
no. 3, pp. 943–957, May 2019.

[51] B. Mandelbrot, ‘‘How long is the coast of britain? Statistical self-similarity
and fractional dimension,’’ Science, vol. 156, no. 3775, pp. 636–638,
May 1967.

[52] B. Jiang and J. Yin, ‘‘Ht-index for quantifying the fractal or scaling struc-
ture of geographic features,’’ Ann. Assoc. Amer. Geographers, vol. 104,
no. 3, pp. 530–540, May 2014.

[53] D. Ma and B. Jiang, ‘‘A smooth curve as a fractal under the third def-
inition,’’ Cartographica: Int. J. Geographic Inf. Geovis., vol. 53, no. 3,
pp. 203–210, Sep. 2018.

PEICHAO GAO received the B.S. degree from the
Department of Surveying Engineering, Chengdu
University of Technology, China, in 2012, theM.S.
degree from the Department of Civil Engineering,
Tsinghua University, China, in 2015, and the Ph.D.
degree from the Department of Land Surveying
and Geo-Informatics, The Hong Kong Polytechnic
University, Hong Kong, in 2018. He is currently an
Assistant Professor at the Faculty of Geographical
Science, Beijing Normal University.

HONG ZHANG received the B.S. degree in
tourism management and the M.S. degree in
human geography from Hubei University, China,
in 2004 and 2007, respectively, and the Ph.D.
degree in cartography and GIS from The
Hong Kong Polytechnic University, in 2011. She
is currently an Associate Professor at Southwest
JiaotongUniversity, Chengdu, China. Her research
interests include spatial complexity, urban geogra-
phy, and multi-scale modeling.

DUO JIA received the B.S. and M.S. degrees
from the China University of Mining and Tech-
nology. He is currently pursuing the Ph.D. degree
with the Faculty of Geographical Science, Beijing
Normal University. His research interests include
remote sensing image processing and geographical
analysis.

VOLUME 8, 2020 92563



P. Gao et al.: Efficient Approach for Computing the DVIE for Image Processing

CHANGQING SONG received the B.S. degree
in geography from Northeast Normal University,
China, in 1984, and the M.S. and Ph.D. degrees
in geography from Peking University, China,
in 1989 and 1992, respectively. He is currently a
Full Professor of geography and the Dean of the
Faculty of Geographical Science, Beijing Normal
University, China. He serves as the Director of the
Academic Working Committee of the Geograph-
ical Society of China, and an Associate Editor of

Chinese Geographical Science and Acta Geographica Sinica.

CHANGXIU CHENG received the B.S. degree
in computer science from the Beijing Institute of
Technology, China, in 1997, and the Ph.D. degree
in soil science from China Agricultural University,
in 2001. She is currently a Full Professor and the
Director of the Center for GeoData and Analy-
sis, Faculty of Geographical Science, Beijing Nor-
mal University. She is the author of more than
90 research papers, three books (or chapters), and
two national standards. She serves as a Council

Member of the Eurasian System Science Research Association. She received
the ‘‘Yisheng Mao’’ Science and Technology Award of Beijing, in 2017.

SHI SHEN received the B.S. degree in geograph-
ical information system from China Agricultural
University, in 2011, and the Ph.D. degree in cartog-
raphy and geographical information system from
Beijing Normal University, in 2019. He is cur-
rently an Assistant Professor at the Faculty of
Geographical Science, Beijing Normal University.
His research interests include spatial complexity,
land surface process analysis and modeling, and
coupling human-earth systems.

92564 VOLUME 8, 2020


