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Highlights 38 

• A safety hazard identification approach based on gait disruption patterns is 39 

proposed.  40 

• Gait variability parameters were measured from a wearable insole pressure system. 41 

• A strong correlation between gait abnormalities and a safety hazard location is 42 

found. 43 

• The proposed approach could help to mitigate non-fatal fall injuries in construction. 44 
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1. Introduction 45 
The construction industry is highly regarded as a labour-intensive and hazardous occupation. Compared to 46 

other industries, the construction industry has achieved the highest number of occupational fatal and non-47 

fatal injuries (International Labor Organization, 2016). In the United States, more than 700 fatal and 200,000 48 

non-fatal injuries are reported every year (Bureau of Labor Statistics (BLS), 2017). In Australia, there were 49 

35 out of 182 fatalities in the construction industry in 2016, which accounted for 3.3 fatality rate (fatalities 50 

per 100,000 workers) across all industries (Safe Work Australia, 2017). These occupational injuries can lead 51 

to substantial disorders, project delays, increased project costs, workers absenteeism, medical burden and 52 

permanent disabilities (Antwi-Afari et al., 2017b; Umer et al., 2017a; Antwi-Afari et al., 2018a; Kong et al., 53 

2018). To tackle the menace of occupational injuries in construction, researchers and practitioners have to 54 

focus on identifying safety hazards and suggesting proactive injury-prevention measures.  55 

 56 

Safety hazard identification is a fundamental approach for improving construction safety management, 57 

especially when assessing non-fatal fall injuries. Slips, trips, and unexpected step-down hazards are 58 

recognized as the primary initiating hazards that may lead to non-fatal fall injuries among construction 59 

workers (Yoon and Lockhart, 2006; Antwi-Afari et al., 2018e). To prevent the occurrence of these safety 60 

hazards, the construction industry has adopted a number of traditional safety hazards identification methods 61 

such as job-hazard analyses, pre-task safety meetings, safety checklists, and safety training (Rozenfeld et al., 62 

2010; Albert et al., 2014b). Despite their usefulness, there are few limitations of the aforementioned methods 63 

which had led to poor safety hazard identification performance. Examples of these limitations include (1) 64 

limited availability of resources (e.g., safety inspectors) to assess multiple areas (Albert et al., 2014b); (2) 65 

different levels of knowledge, experience, judgments or techniques (e.g., past accident cases or regulations) 66 

for identifying hazards (Albert et al., 2014a); (3) unable to continuously identify hazards due to decrease 67 

individual’s ability and a dynamic construction environment (Park et al., 2016). Given above, many safety 68 

hazards remain unidentified or not well assessed, which may expose construction workers to a high risk of 69 

developing non-fatal fall injuries (Carter and Smith, 2006; Albert et al., 2014b). To address the limitations 70 

of current methods and prevent non-fatal fall injuries, different approaches have been tested to identify safety 71 

hazards in construction.  72 

 73 
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Recently, one of the potential approaches for identifying safety hazards in construction relied on collecting 74 

workers’ bodily or gait responses by using wearable inertial measurement units (WIMUs) system. In the 75 

realm of construction, previous studies have demonstrated the feasibility of using WIMU-based systems for 76 

identifying safety hazards (Akhavian and Behzadan, 2016; Jebelli et al., 2016a; Kim et al., 2016; Yang et al., 77 

2017). The findings of these studies revealed that workers’ gait patterns contain a valuable source of 78 

information for identifying different types of safety hazards in both laboratory and construction site settings 79 

without relying on experts’ judgment. Despite its usefulness, this approach requires multiple WIMU based-80 

systems to be attached to workers’ body (e.g., ankle, waist) to mainly collect acceleration or kinematic gait 81 

responses for identifying safety hazards. As a result, attaching multiple WIMU-based systems to the skin 82 

surfaces may not only lead to workers’ discomforts and inconveniences but also may reduce construction 83 

workers’ productivity (Antwi-Afari and Li, 2018g; Antwi-Afari et al., 2019c). In addition, WIMU-based 84 

systems are difficult to acquire ground reaction force (GRF) data when workers use their feet as the main 85 

support of the whole body (Antwi-Afari et al., 2018f). Moreover, they are intrusive and normally require 86 

indirect forms of attachments such as straps, belts, or other accessories to prevent detachment of sensors from 87 

the body when performing a given task. Consequently, there is a critical need to propose a non-invasive 88 

approach that would enhance safety hazard identification methods to prevent non-fatal fall injuries on a 89 

construction site. 90 

 91 

Therefore, this research proposes a novel and non-invasive approach to examine the feasibility of using 92 

workers’ gait disruption patterns captured by a wearable insole pressure system to identify safety hazards 93 

among construction workers. It was hypothesized that workers’ gait disruption patterns quantified as either 94 

gait variability parameters or gait abnormality based on GRF deviation in a specific location has a strong 95 

relationship with the presence of a hazard in that location. To test this hypothesis, this study was conducted 96 

in a laboratory setting to examine and compare gait abnormality measurements during a normal gait (i.e., no 97 

hazard condition) to three different hazard conditions such as a slippery surface hazard, an obstacle hazard, 98 

and an uneven surface hazard. The main contribution of this study attempts to use a wearable sensing 99 

technique (i.e., a non-invasive wearable insole pressure system) for continuous monitoring and identification 100 

of safety hazards in a timely manner. The proposed approach could serve as a piece of personal protective 101 
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equipment to help researchers and safety managers to identify workers’ exposure to safety hazards and also 102 

extends the current wearable sensing technologies for construction safety research. 103 

 104 

2. Research background 105 

2.1. Methods for identifying safety hazards in construction 106 

To successfully mitigate non-fatal fall injuries among construction workers, researchers and safety managers 107 

need to adopt a novel method for identifying safety hazards on construction sites. There are already existing 108 

safety hazard identification methods that are applied in the construction industry. Examples of these methods 109 

include (1) predictive methods such as job-hazard analyses, pre-task safety meetings (Rozenfeld et al., 2010; 110 

Mitropoulos and Namboodiri, 2011); and (2) retrospective methods such safety checklists (Chi et al., 2005; 111 

Goh and Chua, 2009). Taken together, these existing methods require construction workers to either predict 112 

expected safety hazards or learned lessons from past safety incidents to prevent the occurrence of future 113 

safety hazards. Despite their usefulness, they perform poorly because of the following limitations: 1) 114 

individual workers do not share the same level of knowledge and experience in regard to identifying hazard 115 

conditions; 2) very time-consuming and error-prone due to the dynamic and unpredicted nature of 116 

construction environment which makes hazard recognition more challenging.  117 

 118 

In addition, previous studies on safety hazard identification have explored other existing methods such as 119 

training programs or training in virtual environments (Kaskutas et al., 2013; Albert et al., 2014a, Albert et 120 

al., 2014b). Kaskutas et al. (2013) studied the effect of training on residential foremen and showed that 121 

training can enhance workers’ exposure to safety hazards and improve safety behaviours at worksites. Despite 122 

advances in safety training, safety hazard identification is mostly performed manually by construction 123 

workers or safety managers. Consequently, construction sites still have many unidentified hazards, and the 124 

risk of non-fatal fall injuries remains high (Albert et al., 2014a).  125 

 126 

To overcome existing methods, a number of advanced sensing approaches (Antwi-Afari et al., 2019a) have 127 

been proposed for identifying safety hazards. Several studies examined the potential of applying computer 128 

vision-based techniques (e.g., depth sensors or stereo camera) to automatically detect safety hazards in 129 
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construction (Han et al., 2012; Weerasinghe et al., 2012; Han and Lee, 2013). However, the application of 130 

vision-based techniques has several challenges, including the limited sensing range of a camera, visual 131 

occlusions and misrepresentation. In addition, they require a direct line of sight is to register human 132 

movements (Valero et al., 2017). Other researchers have demonstrated different sensing approaches such as 133 

radio frequency identification (RFID) (Teizer et al., 2010, Lee et al., 2011), Bluetooth sensing technology 134 

(Park et al., 2015), building information modeling (Qi et al., 2013), case-based reasoning (Goh and Chua, 135 

2009), a global positioning system (GPS) (Wang and Razavi, 2016) and virtual reality approaches (Albert et 136 

al., 2014a). Most of these sensing approaches have verified the capabilities of mitigating the proximity of 137 

safety hazards on construction sites, especially from severe injuries resulting from workers being struck by 138 

vehicles or equipment (Teizer et al., 2010; Park et al., 2015; Wang and Razavi, 2016). Although useful, these 139 

sensing approaches have not become mainstream within the construction industry for safety hazard 140 

identification. Besides, they mostly rely on pre-defined sets of hazard information (e.g., regulations, 141 

standards, specifications) and are unable to identify undefined safety hazards (e.g., slips, trips) associated 142 

with unsafe surface conditions. Moreover, these sensing approaches enable workers or safety managers to 143 

still apply manual observation to identify hazards, which can be difficult to identify safety hazards due to the 144 

dynamic and unique construction environment. Therefore, to prevent non-fatal fall injuries, a novel method 145 

for identifying safety hazard is still necessary.  146 

 147 

With the development of wearable sensing technologies, previous studies have extensively demonstrated the 148 

use of WIMU-based systems to identify safety hazards (Jebelli et al., 2016a; Kim et al., 2016; Yang et al., 149 

2017; Kim et al., 2018). In clinical and rehabilitation settings, previous researches have widely used WIMU-150 

based systems for continuous and objective identification of safety hazards (Culhane et al., 2005; Boyle et 151 

al., 2006; Howcroft et al., 2013). In the realm of construction, Dzeng et al. (2014) investigated whether it 152 

was possible to detect fall portents—i.e., near-miss falls—using embedded WIMU sensors in a smartphone. 153 

Jebelli et al. (2016a) examined the usefulness of gait-stability metric—which are computed by using collected 154 

data from WIMUs—in differentiating high-fall-risk tasks of ironworkers. Kim et al. (2016) examined the 155 

feasibility of using WIMU-based systems to analyze how workers’ bodily responses could allow for the 156 

identification of a safety hazard on a construction job site.  Yang et al. (2017) proposed a collective sensing 157 
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approach by using WIMU-based systems to assess workers’ gait abnormalities to identify safety hazards in 158 

construction. Overall, these studies have established the feasibility of using WIMU-based systems to capture 159 

workers’ abnormal gait patterns and/or bodily responses for identifying potential safety hazards. In addition, 160 

they have shown that WIMU-based systems provide relatively objective and continuous data in construction 161 

environments conditions when compared to the traditional methods.  162 

 163 

There are some limitations for identifying safety hazards by using WIMU-based systems. First, it can capture 164 

thresholds such as the magnitude of angular velocity and acceleration signals as the main source of data to 165 

detect different types of safety hazards when observing bodily responses or gait patterns. However, such 166 

thresholds diminish the automation potential of these approaches (Yang and Ahn, 2019). Second, they require 167 

the use of multiple WIMU-based systems to be attached to the subject's lower body parts (e.g., ankle) for 168 

ambulatory gait analysis (Antwi-Afari, 2019). Despite being non-intrusive, attaching WIMU-based systems 169 

to the skin surfaces may not only lead to workers’ discomforts and inconveniences but also may reduce 170 

construction workers’ productivity (Antwi-Afari et al., 2018c; Antwi-Afari et al., 2019c). Third, the results 171 

of previous studies indicated that such approaches required a large amount of sensed data to reliably estimate 172 

hazard locations, as bodily responses do not contain direct information about the interaction between a 173 

worker’s foot and the surface conditions on a job site (Kim et al., 2016; Yang et al., 2017). Given the above 174 

limitations, a novel approach that can resolve current limitations is necessary to enhance safety hazard 175 

identification on construction sites.  176 

 177 

To address these knowledge gaps, the current study proposes a novel and non-invasive approach to examine 178 

the feasibility of using workers’ gait disruption patterns captured by a wearable insole pressure system to 179 

identify safety hazards among construction workers. Different from previous studies, the present study used 180 

spatiotemporal gait features and gait abnormality based on GRF deviation to quantify the workers’ gait 181 

disruption patterns in order to identify safety hazards on construction sites. As such, the proposed approach 182 

might not only collect foot plantar pressure patterns and GRF data between a worker’s foot and the unsafe 183 

surface conditions but also provides less constraint in workers’ bodily movements.  184 

 185 
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2.2. Gait abnormality measurements to identify safety hazards—the feasibility of using gait disruption 186 

patterns measured by a wearable insole pressure system 187 

Falls are the main contributing cause of fatal injuries and the third leading cause of non-fatal injuries in 188 

construction (CPWR, 2013). According to the BLS in the United States, falls injuries accounted for 189 

approximately 30% of all fatalities in construction (BLS, 2015). In 2017, the Development Bureau in Hong 190 

Kong reported that non-fatal fall injuries such as slip, trip, and other loss of balance hazards are the most 191 

common types of accidents, which accounted for 19.8% of the total number of accidents (Development 192 

Bureau, 2017). Consequently, many studies have provided valuable insights into the prevalent of fall injuries 193 

on construction sites (Dong et al., 2009; Wong et al., 2016). Dong et al. (2009) evaluated fall injuries among 194 

Hispanic construction workers; and found that about every two or three fatal falls in construction occurred in 195 

the establishment with 10 or fewer workers. Wong et al. (2016) investigated the root causes of falls from 196 

height, finding that workers’ loss of balance and not wearing fall protection devices account for 48% of fall 197 

injuries in Hong Kong. Chi et al. (2005) identified contributing factors to fatal fall accidents in construction 198 

and suggested prevention measures for fall accidents. Although these previous studies offer insights on the 199 

prevalence and how to mitigate the risk of fatal and non-fatal fall injuries, safety hazard identification is 200 

arguably the most fundamental element of any safety management program to prevent non-fatal fall injuries 201 

in construction.  202 

 203 

Regardless of the extensive research, safety hazard identification is the critical first step in construction safety 204 

management to mitigate safety hazards (e.g., slip, trip, unexpected step-down) that may lead workers to 205 

develop non-fatal fall injuries (Carter and Smith, 2006). Previous studies have proposed the evaluation of 206 

workers’ abnormal gait patterns (Yoon and Lockhart, 2006; Yang et al., 2017; Yang et al., 2019), losing 207 

balance events (Yang et al., 2016), the magnitude of bodily responses (Kim et al., 2016), and trajectory 208 

patterns (Yang et al., 2018) measured by WIMU-based systems to identify safety hazards. By considering 209 

the different measurement approaches, workers’ abnormal gait patterns are particularly useful for identifying 210 

safety hazards and assessing the risk of non-fatal fall injuries among construction workers. This is because 211 

factors contributing to non-fatal fall injuries are often caused by the interactions between the human feet and 212 

unsafe surface conditions such as obstacle, uneven surface, and slippery surface hazards (Decker et al., 2009). 213 
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Consequently, the changes in workers’ abnormal gait patterns might provide a new insight for identifying 214 

safety hazard in order to prevent non-fatal fall injuries in construction.  215 

 216 

The feasibility of evaluating gait variability parameters (i.e., spatiotemporal gait features and gait 217 

abnormalities) obtained by using a wearable insole pressure system for identifying the existence of safety 218 

hazards has been studied in many disciplines such as clinical (Li et al., 2018), sport science (Harle et al., 219 

2012) and rehabilitation settings (Bae et al., 2011; David et al., 2017; Solanki and Lahiri, 2018). Specifically, 220 

these applications range from evaluating the efficacy of walking patterns in cerebral palsy (Nsenga Leunkeu 221 

et al., 2014), through aiding diagnosis and assessment of neuropathies (David et al., 2017; Solanki and Lahiri, 222 

2018) to monitoring gait abnormalities, assessing fall risks and preventing falls for the elderly (Howcroft et 223 

al., 2016). Notably, most of the activities performed by patients were mainly to differentiate their daily 224 

physical activities such as standing, sitting and walking (David et al., 2017; Li et al., 2018). However, 225 

construction workers are frequently exposed to unsafe surface conditions such as obstacle, slippery surface, 226 

and uneven surface hazards, and the performance of gait variability parameters measured by using a wearable 227 

insole pressure system has not been studied in the construction environments.  228 

 229 

The results of previous studies had confirmed the feasibility of using a wearable insole pressure system to 230 

evaluate gait variability parameters (Bae et al., 2011; David et al., 2017; Solanki and Lahiri, 2018). Although 231 

these gait variability parameters have been used to evaluate the fall risks of patients, no previous study has 232 

utilized gait variability parameters measured by a wearable insole pressure system to identify safety hazards 233 

in construction environments. Antwi-Afari and Li (2018g) examined the changes in spatial foot regions and 234 

loss of balance events associated with biomechanical gait stability parameters based on foot plantar pressure 235 

patterns measured by a wearable insole pressure system. Although our previous results provided useful gait 236 

metric, the changes in gait speed and different participants’ body weight during data collection may influence 237 

the reliability of gait stability parameters. As such, biomechanical gait stability parameters may not be 238 

suitable for a dynamic and unique construction environment. Unlike our previous study, this present study 239 

computed gait variability parameters by using pressure-sensitive elements and GRF data captured by a 240 

wearable insole pressure system to identify safety hazards. However, it is not certain whether each 241 
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spatiotemporal gait feature is sensitive to a specific type of hazard. Moreover, each gait feature has a different 242 

range of values with different measurement units. Thus, in this current study, to comprehensively assess the 243 

workers’ gait abnormalities caused by safety hazards, it is necessary to represent the deviations of gait 244 

features from a normal gait in a single value by using the magnitude of the GRF. Overall, the proposed 245 

approach can help construction managers eliminate the risk of hazards without depending exclusively upon 246 

traditional safety hazard identifications such as manual observations. 247 

 248 

3. Research methods 249 

3.1. Participants 250 

A convenience sample of ten healthy male volunteers was recruited from the student population of the Hong 251 

Kong Polytechnic University. Table 1 presents the participants’ demographic characteristics. All participants 252 

were screened based on a face to face interview and physical examination of their feet or gait abnormalities. 253 

Exclusion criteria were: (1) history of significant foot injuries or lower-extremities abnormalities during the 254 

last 12 months preceding the start of the study; (2) history of neurological conditions or disabilities or other 255 

conditions that affected fall and/or balance. With the approval of the Human Subject Ethics Subcommittee 256 

of the Hong Kong Polytechnic University (reference number: HSEARS20170605001), written consent was 257 

obtained from the participants after a verbal and written explanation of the experimental procedures.  258 

 259 

Table 1. Participants’ demographic characteristics. 260 
Demographic Characteristics Mean Median Standard 

Deviation 

Minimum 

Value 

Maximum 

Value 

Age (years) 31.70 31.50 3.65 26 38 

Height (m) 1.62 1.60 0.13 1.40 1.80 

Weight (kg) 77.20 77.50 8.40 65 90 

Shoe size (European) 42.60 43 0.52 42 43 

Foot length (mm) 27.17 27.70 1.38 24.30 28.50 

Foot width (mm) 9.61 9.60 0.32 9.20 10.20 

 261 

3.2. Experimental apparatus 262 

An OpenGo system (Moticon SCIENCE Sensor Insole GmbH, Munich, Germany), which is a wearable 263 

insole pressure system was used for collecting foot plantar pressure distribution and GRF data in this study. 264 
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Each left or right sensor insole contains 16 capacitive pressure sensors and a 6-axis gyroscope (MEMS 265 

LSM6DSL, ST Microelectronics) for acceleration and angular rate data. Pressure sensors have a range, 266 

resolution and hysteresis of 0 to 50.0 N/cm2, 0.25 N/cm2 and ≤ 1%, respectively. Manufacturer’s guidelines 267 

indicate that no calibration is needed within its production lifetime. The acceleration range and angular rate 268 

range are ± 16g and ± 2000 dps, respectively. The sampling frequency ranges from 10 to 100Hz. Each sensor 269 

insole contains on-board memory storage (16 MB) and a coin cell rechargeable of 3.7 V± 0.4V power supply. 270 

It uses a Bluetooth low energy 5.0 for wireless transmission within a wireless range of ≥ 5.0m and bandwidth 271 

of 54 kB/s. The sensor insoles are available in different sizes, operation modes and provide valuable 272 

information regarding a participant’s foot plantar pressure distribution, body weight, balance and motion 273 

analysis.  274 

 275 

3.3. Experimental design and procedure 276 

The current study adopted a randomized crossover study design in a single testing session (Fig. 1). As shown 277 

in Fig. 1, the participants were randomly assigned to different randomized trials of experiments. As a result, 278 

each participant received different randomized trials during different time periods (Fig. 1). It was revealed 279 

that the first randomized experimental trial for “Participant 1” was repeated as the third randomized 280 

experimental trial for “Participant 2” and also crossed over as the second randomized experimental trial for 281 

“Participant 3” (Fig. 1). The purpose of the adopted study design was to achieve comparable groups of 282 

randomized experimental trials while preventing selection bias. Fig. 2 presents the laboratory experiments. 283 

As depicted in Fig. 2, a simulated laboratory experiment was conducted to collect participants’ gait disruption 284 

patterns when they were exposed to safety hazards. In particular, this study tested three different types of 285 

hazards, namely a slippery surface hazard (Fig. 2d), an obstacle hazard (Fig. 2e), and an uneven surface 286 

hazard (Fig. 2f). To simulate these hazards in a laboratory as though similar to real construction environment, 287 

the participants wore a pair of safety boot, safety harness, and safety helmet during the testing session. In 288 

order to prevent unforeseen injuries and reduce the adverse impacts of the experimental trials on the 289 

surrounding environment, a safety harness and a 30-cm thick layer of high-density gymnasium mattress were 290 

provided during the testing session. The experimenter conducted training sessions for the participants to 291 

practice the exposure of each hazard after watching representative videos of real-time occurrences of safety 292 
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hazards on construction sites. The participants were instructed to walk at their comfortable pace along a 293 

particular path so that they cannot avoid a hazard on the floor surface.  294 

 295 

In this study, three main safety hazards were tested at a specific location (i.e., 5m) during the laboratory 296 

experiments (Fig. 2): (1) a slippery surface hazard (i.e., a low-density polyethylene) that may cause a slip 297 

hazard (Fig. 2a); an obstacle hazard (i.e., a concrete brick measuring 20cm × 9cm × 6cm height) that may 298 

cause a trip hazard (Fig. 2b); and (3) an uneven surface hazard (i.e., a wooden platform with 20 cm height) 299 

that may cause an unexpected step-down hazard (Fig. 2c). This present study conducted four different 300 

experiments to examine the feasibility of using gait disruption patterns to identify safety hazards. They 301 

include normal gait (i.e., baseline) without any safety hazard (Experiment 1); normal gait with a slippery 302 

surface hazard positioned at 5m from starting point (Experiment 2); normal gait with an obstacle hazard 303 

positioned at 5m from the starting point (Experiment 3); and normal gait with an uneven surface hazard 304 

positioned at 5m from the starting point (Experiment 4).  305 

 306 

In all experimental trials, the participants did not have prior knowledge of the location of the safety hazards 307 

but were told that there could be an external perturbation during a normal gait. In order for the participant 308 

being unable to recognize an unsafe condition and also for them not to avoid a safety hazard on the floor 309 

surface, the lights in the laboratory were dimmed and the participants were instructed to look straight ahead 310 

during the training session and testing trials. The experimental trials were recorded using a video camcorder, 311 

and the video time was synchronized with the timestamps from the wearable insole pressure system. By using 312 

the collected video as reference data, the gait cycle under the influence of a safety hazard was manually 313 

detected. The sequence of conducting the experimental trials was randomized by means of a random number 314 

generator. However, a normal gait was always conducted as a baseline in this study. Each participant 315 

performed 10 repetitive randomized trials for each safety hazard (Fig. 1). In order to reduce fatigue, the 316 

participants were allowed to rest for 5 minutes between two successive trials (Fig. 1). During the recovery 317 

time, the wearable insole pressure sensors were zeroed according to the manufacturer’s guidelines.  318 
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 319 

Fig. 1. A randomized crossover study design in a single testing session. 320 

  321 
Fig. 2. Laboratory experiments: (a) slip hazard; (b) trip hazard; (c) unexpected step-down hazard; (d) slippery 322 

surface hazard; (e) obstacle hazard; (f) uneven surface hazard. 323 



14 
 

3.4. Data processing and analyses 324 
The raw plantar pressure patterns and GRF data were sampled using a 16-bit analogue to digital converter 325 

(ADC) at 50 samples per second for offline analysis. Initially, the raw data was stored in the flash memory 326 

of the wearable insoles and they were wirelessly transmitted to a desktop computer (2.80GHz Intel (R) Xeon 327 

(R) CPU processor with 4.00GB of RAM). The sampling frequency used in this study was 50Hz (Antwi-328 

Afari et al., 2018e). The experimenter used the live capture data acquisition mode to visually observe the 329 

real-time data collection process. In this research, all data processing and analyses were performed using the 330 

Statistical Package for the Social Science (SPSS) version 20.0 (IBM, USA). Statistical significance was set 331 

at p < 0.05. 332 

 333 

In order to compute for gait variability features, gait event detection is the first essential step to detect heel 334 

strike and toe-off events during a gait cycle. Heel strike is the moment when the foot makes initial contact 335 

with the floor surface after finishing a foot swing during a gait. Toe-off event is the moment when the foot 336 

initiates a foot swing during a gait. This study defines a gait cycle as the motion between consecutive heel 337 

strikes of the same foot (Hausdorff et al., 1998). In this research, a total of 400 data streams (4 experimental 338 

hazard conditions × 10 repeated trials × 10 participants) were collected. For each participant, the collected 339 

plantar pressure patterns of a single trial during a hazard were used for gait event detection. Consequently, 340 

only foot plantar pressure patterns were utilized to identify heel strike and toe-off events in a gait cycle. In 341 

order to detect heel strike and toe-off events during a gait cycle, the average pressure was calculated at the 342 

heel and toe anatomical foot regions. Based on the four main anatomical foot regions (Choi et al., 2015), the 343 

toe region of the foot consists of sensors 14 to 16, whilst the heel region of the foot comprises of sensors 1 344 

to 4. Since plantar pressure patterns were collected bilaterally during the experiments, the average pressure 345 

sensors from either the left or right foot were both used for detecting gait event. It is worth mentioning that 346 

the video time was synchronized with the timestamps of the foot plantar average pressure sensors to aid in 347 

detecting gait event.  348 

 349 

Fig. 3 presents the left and right average plantar pressure data at the heel and toe foot regions of a gait cycle 350 

in each type of safety hazard. Notably, the heel and toe foot regions were selected because they are the most 351 

essential parts of the participants’ foot to detect heel strike and toe-off events of a gait cycle so as to compute 352 
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gait variability parameters. As indicated in Fig. 3, the short-dashed lines represent the defined areas for 353 

identifying safety hazards in each hazard condition. Before the participants were being exposed to hazardous 354 

conditions, their gait patterns showed continuous and cyclical plantar pressure patterns over time indicating 355 

normal gait. During hazard conditions, the participants’ gait patterns exhibited exclusive abnormal pressure 356 

patterns as denoted as “A”, “B” and “C”. For example, during a slip hazard, the foot slides forward against 357 

the floor, and thus a relatively long pattern of pressure data is found at the heel region as compared to the trip 358 

hazard (Fig. 3). During a trip hazard, the participant’s foot hits an obstacle to create a very short peak pressure 359 

on toe region, and shortly thereafter, higher peak pressure values are found by the other foot which serves to 360 

support the body to recover from a trip hazard (Fig. 3). In the unexpected step-down hazard, the length of the 361 

participants’ gait cycle time decreased as compared to the normal gait (Fig. 3). Based on the analysis of 362 

average plantar pressure data, the disruption of participants’ gait patterns could enable us to identify safety 363 

hazards by quantitatively computing gait variability parameters. In addition, the existence of gait disruption 364 

patterns in each foot justifies the need to compute gait variability parameters for each foot during the hazard 365 

conditions. By virtue of data preferences, it is evident to mention that foot plantar pressure distribution data 366 

collected by wearable insole pressure system can provide a reliable source of data to identify safety hazards 367 

in construction. To this end, the current study revealed that the average pressure patterns and duration of the 368 

gait cycle of the participants are slightly different in each safety hazard, which may be attributed to the 369 

difference in unsafe surface conditions.  370 



16 
 

 371 

Fig. 3. Left and right average pressure amplitude in each hazard condition: (a) Heel pressure during a slip 372 

hazard; (b) Toe pressure during a slip hazard; (c) Heel pressure during a trip hazard (d) Toe pressure during 373 

a trip hazard (e) Heel pressure during an unexpected step-down hazard; and (f) Toe pressure during an 374 

unexpected step-down hazard. A = Slippery surface hazard; B = Obstacle hazard; and C = Uneven surface 375 

hazard. Dotted lines indicate the defined areas of identifying each hazard condition. 376 
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Fig. 4 shows the successive derivative of plantar pressure patterns from the heel and toe regions during a slip 377 

hazard. The numeric derivatives of pressure are calculated for the heel strike and toe-off events detection, 378 

which are robust against noisy signals, different offset of the insoles and different weights of participants 379 

(Lin et al., 2016). The authors only presented the successive derivative of plantar pressure patterns during 380 

the slip hazard for simplicity purposes. As shown in Fig. 4, the peak points of the successive derivative 381 

difference of heel plantar pressure patterns from consecutive samples were used to extract heel strike events. 382 

Similarly, the toe-off events were extracted from the trough points of the successive derivative difference of 383 

toe plantar pressure patterns from consecutive samples. Based on heel strike and toe-off events, the present 384 

study computed five gait variability parameters.  385 

 386 

Fig. 4. The successive derivative of plantar pressure patterns from the heel and toe regions during a slip 387 

hazard: (a) Left foot heel strike; (b) Right foot heel strike; (c) Left foot toe-off; and (d) Right foot toe-off 388 
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3.4.1. Computation of gait variability parameters 389 
This study analyzed five gait variability parameters, namely: stride time, stride length, swing time, stance 390 

time, and single support time from the plantar pressure data. As presented in Fig. 4, the stride time (ST) was 391 

calculated from the time interval between two successive heel strike events for each of the left and right foot, 392 

respectively. 393 

𝑆𝑇𝐿 = 𝑡(𝐿𝐻𝑆𝑖+1) − 𝑡(𝐿𝐻𝑆𝑖)                                                                                                                                         (1) 394 

𝑆𝑇𝑅 = 𝑡(𝑅𝐻𝑆𝑖+1) − 𝑡(𝑅𝐻𝑆𝑖)                                                                                                                                        (2) 395 
 396 
Where, 𝑆𝑇𝐿 is the stride time of the left foot; 𝑆𝑇𝑅 represents the stride time of the right foot; 𝑡(𝐿𝐻𝑆𝑖+1) and 397 

𝑡(𝑅𝐻𝑆𝑖+1) represent the time of the (𝑖 + 1)𝑡ℎ heel strike event for the left foot and right foot, respectively; 398 

𝑡(𝐿𝐻𝑆𝑖)  and 𝑡(𝑅𝐻𝑆𝑖)  represent the time of the 𝑖𝑡ℎ  heel strike event for the left foot and right foot, 399 

respectively. 400 

 401 

The stride length (SL) is the distance covered between two successive heel strike events of the same foot. In 402 

order to compute the SL, two basic information such as the ST and the walking speed are needed. To measure 403 

a participant’s walking speed, this study used the recorded video of the simulated experiments to provide 404 

information on the time taken by a participant to complete a single experimental trial. As such, a participant’s 405 

SL was computed by multiplying the ST and the walking speed (Frenkel-Toledo et al., 2005) for each foot. 406 

Consequently, the normalized SL was computed with regards to the participant’s height to nullify the effect 407 

of inter-subject height differences that can affect one’s gait parameters (Elble et al., 1991).  408 

𝑆𝐿𝐿 =
𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑 × 𝑆𝑇𝐿  

𝐻𝑒𝑖𝑔ℎ𝑡
                                                                                                                                    (3) 409 

 410 

𝑆𝐿𝑅 =
𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑 × 𝑆𝑇𝑅  

𝐻𝑒𝑖𝑔ℎ𝑡
                                                                                                                                   (4) 411 

Where, 𝑆𝐿𝐿 and  𝑆𝐿𝑅 are the normalized stride length of the left foot and right foot, respectively. 412 

 413 

Generally, a gait cycle can be divided into two phases, namely; stance and swing phases (O’Sullivan et al., 414 

2019). The stance or swing phases which are associated with a reference foot is either related to the foot 415 

being in contact or not in contact with the ground surface, respectively (O’Sullivan et al., 2019). In the present 416 

study, stance and swing phases were computed as a percentage of the gait cycle. The measurement of 417 

spatiotemporal gait parameters such as percentage of time in swing and stance phases provide important 418 
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information on the symmetry of a person’s gait patterns. Specifically, the period of the stance and swing 419 

phases was used to calculate the percentage of the gait cycle time with reference to each foot. Subsequently, 420 

the swing time was calculated as the time interval between successive toe-off and heel strike events of the 421 

same foot when the foot is not in contact with the ground surface (Fig. 4). Similarly, the stance time was 422 

calculated when the foot is in contact with the ground surface. As shown in Fig. 4, the percentage of the 423 

swing phase (% SwP) and percentage of the stance phase (% StP) were calculated using the swing time (SwT) 424 

and stance time (StT), respectively and quantified as a percentage of the total gait cycle time of the reference 425 

foot (Solanki and Lahiri, 2018).  426 

 % 𝑆𝑤𝑃𝐿 =
𝑡(𝐿𝐻𝑆𝑖+1) − 𝑡(𝐿𝑇𝑂𝑖)

𝑡(𝐿𝐻𝑆𝑖+1) − 𝑡(𝐿𝐻𝑆𝑖)
× 100%                                                                                                               (5) 427 

 428 

% 𝑆𝑤𝑃𝑅 =
𝑡(𝑅𝐻𝑆𝑖+1) − 𝑡(𝑅𝑇𝑂𝑖+1)

𝑡(𝑅𝐻𝑆𝑖+1) − 𝑡(𝑅𝐻𝑆𝑖)
× 100%                                                                                                          (6) 429 

 430 

% 𝑆𝑡𝑃𝐿 =
𝑡(𝐿𝑇𝑂𝑖) − 𝑡(𝐿𝐻𝑆𝑖)

𝑡(𝐿𝐻𝑆𝑖+1) − 𝑡(𝐿𝐻𝑆𝑖)
× 100%                                                                                                                 (7) 431 

 432 

% 𝑆𝑡𝑃𝑅 =
𝑡(𝑅𝑇𝑂𝑖+1) − 𝑡(𝑅𝐻𝑆𝑖)

𝑡(𝑅𝐻𝑆𝑖+1) − 𝑡(𝑅𝐻𝑆𝑖)
× 100%                                                                                                                (8) 433 

Where, % 𝑆𝑤𝑃𝐿  and % 𝑆𝑤𝑃𝑅  represent the percentage of the swing phase of the left foot and right foot; 434 

% 𝑆𝑡𝑃𝐿  and % 𝑆𝑡𝑃𝑅  are the percentage of the stance phase of the left foot and right foot; 𝑡(𝐿𝐻𝑆𝑖+1) and 435 

𝑡(𝑅𝐻𝑆𝑖+1) represent the time of the (𝑖 + 1)𝑡ℎ heel strike event of the left foot and the right foot; 𝑡(𝐿𝑇𝑂𝑖+1) 436 

and 𝑡(𝑅𝑇𝑂𝑖+1) represent the time of the (𝑖 + 1)𝑡ℎ toe-off event of the left foot and the right foot; 𝑡(𝐿𝐻𝑆𝑖) 437 

and 𝑡(𝑅𝐻𝑆𝑖) are the time of the 𝑖𝑡ℎ heel strike event of the left foot and the right foot; 𝑡(𝐿𝑇𝑂𝑖) and 𝑡(𝑅𝑇𝑂𝑖) 438 

are the time of the 𝑖𝑡ℎ toe-off event of the left foot and the right foot, respectively. 439 

 440 

Single support time of a gait cycle is the duration for which only one foot supports the body during a person’s 441 

gait (Debi et al., 2011). Alternatively, single support time for a specific foot (i.e., left) can be measured from 442 

the swing time of the other foot (i.e., right) (Bagley et al., 1991). In this study, an alternative approach for 443 

measuring the single support time was adopted. As such, the percentage of single support time (% SST) for 444 

each foot was calculated as a percentage of the total gait cycle time (Solanki and Lahiri, 2018). 445 
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% 𝑆𝑆𝑇𝐿 =
𝑡(𝑅𝐻𝑆𝑖+1) − 𝑡(𝑅𝑇𝑂𝑖+1)

𝑡(𝐿𝐻𝑆𝑖+1) − 𝑡(𝐿𝐻𝑆𝑖)
× 100%                                                                                                            (9) 446 

 447 

% 𝑆𝑆𝑇𝑅 =
𝑡(𝐿𝐻𝑆𝑖+1) − 𝑡(𝐿𝑇𝑂𝑖)

𝑡(𝑅𝐻𝑆𝑖+1) − 𝑡(𝑅𝐻𝑆𝑖)
× 100%                                                                                                             (10) 448 

 449 

The validity of the computed gait variability parameters was also tested using additional experiments. In 450 

particular, we compared two gait variability parameters such as ST and SL as computed from plantar pressure 451 

patterns with ground truth data that were manually collected using a tape measure and a stopwatch. In this 452 

validating process, a pair of wearable insole pressure sensor was inserted into the participant’s safety boots. 453 

The participant conducted a normal gait in a laboratory setting without any safety hazard. The experimenter 454 

collected a total of 50 samples of ST and SL data manually. Then, the ground truth data was compared with 455 

the ST and SL computed from the plantar pressure patterns using root mean square error (RMSE). The 456 

computed ST and SL were within 0.27 s RMSE and 0.07 m RMSE of the ground truth data, respectively, 457 

which equates to less than 7% of the average ST (2.647 s) and SL (1.259 m). In addition, a paired-sample t-458 

test revealed that there was no statistically significant different in normal gait from ground truth data (Mean 459 

= 0.80, SD = 0.13) to ST [Mean = 0.80, SD = 0.13, t (49) = 0.868, p = 0.390]. The eta squared statistic (0.02) 460 

indicated a moderate effect size (Cohen, 1988). Similarly, a paired-sample t-test revealed that there was no 461 

statistically significant different in normal gait from ground truth data (Mean = 1.39, SD = 0.35) to SL [Mean 462 

= 1.38, SD = 0.35, t (49) = 1.769, p = 0.083]. The eta squared statistic (0.06) indicated a moderate effect size.  463 

 464 

3.4.2. Gait abnormality measurement 465 
Several approaches have been studied to measure gait abnormality in clinical and rehabilitation settings. 466 

Examples include but not limited to the Gillette Gait Index (GGI), formerly called the Normalcy Index (Wren 467 

et al., 2007), the Gait Deviation Index (Barton et al., 2015) and Movement Deviation Profile (Barton et al., 468 

2012). Ultimately, these approaches provide a single score to quantify the disruption of multiple gait features 469 

between healthy participants and patients with disorders such as Parkinson or Cerebral Palsy. Although the 470 

existing approaches achieved accurate results based on joint motions to evaluate gait abnormality, they 471 

require the use of camera-based systems (e.g., 3D cameras, VICON) and reflective markers mounted on 472 

different body parts. As such, they may not be suitable to evaluate gait abnormality of construction workers 473 

on sites. To quantitatively measure a participant’s gait abnormality by using GRF data, one of the most widely 474 
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reported approaches is a force plate (Antwi-Afari et al., 2017a; Antwi-Afari et al., 2017c). However, a force 475 

plate requires a well-built walkway and it is usually unmovable. In addition, only one or two steps can be 476 

measured during a single trial (Schepers et al., 2007). To overcome these drawbacks, this study proposes a 477 

wearable insole pressure system to capture GRF data as a metric for evaluating participants’ gait abnormality 478 

when they are exposed to safety hazards in a laboratory setting.  479 

 480 

There are some advantages in using GRF data for evaluating gait abnormality when compared to joint motion 481 

data. First, GRF data provides cyclic gait motions in repetitive and unique patterns between the foot and the 482 

floor surface, which can serve as a useful indicator for identifying a participant’s gait abnormalities. Since 483 

the foot is the most distal part of the lower extremity, GRF data patterns contain vital sensor stream 484 

information for gait analysis (Bae et al., 2011). In other words, GRF data patterns can easily detect abnormal 485 

gait motions during a normal gait. Second, the process of measuring GRF data by using a wearable insole 486 

pressure sensor is not only less challenging but also more practical than measuring joint angles from vision-487 

based techniques. This can be explained with regards to privacy issues and data processing. Although 488 

previous studies in rehabilitation and clinical settings have utilized GRF data patterns to evaluate gait 489 

abnormalities in patients with gait disorders (Scott-Pandorf et al., 2007; Muniz and Nadal, 2009; Bae et al., 490 

2011), no study has attempted to use GRF data to evaluate gait abnormalities when participants are exposed 491 

to safety hazards. In this study, gait abnormality based on GRF data is evaluated by how far the gait disruption 492 

patterns (i.e., obtained during hazard conditions) is from a normal gait pattern (i.e., no-hazard condition). 493 

Since the root-mean-square (RMS) value of the GRF deviation can represent the amount of GRF deviation 494 

from the normal gait pattern, gait abnormality is evaluated as the RMS value of GRF deviation normalized 495 

by the body weight. Thus, the gait abnormality-based GRF is represented as:    496 

𝐺𝐴 =
1

𝐵𝑊
√

1

𝑛
∑(𝐺𝑅𝐹𝑖)

2

𝑛

𝑖=1

                                                                                                                                          (11) 497 

 498 
Where GA is the gait abnormality, BW is the participant’s body weight, n is the total number of data samples, 499 

and GRFi is the ith GRF deviation. 500 

 501 

 502 
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4. Results 503 

4.1. Results of gait variability parameters 504 

This section reports the results of identifying safety hazards based on gait variability parameters. Since our 505 

participants were healthy individuals, the results revealed a close agreement of the gait variability parameters 506 

between the left foot and right foot. For example, from the first participant, the differences between the left 507 

foot and right foot average percentage of swing time during the slip hazard as compared to the normal gait 508 

(i.e., no hazard condition) were estimated as -2.2% and -2.3%, respectively. In particular, the non-parametric 509 

Wilcoxon Signed-Rank test was conducted to find the statistically significant differences in the average 510 

percentage of swing time between the left foot and right foot in each experimental condition. From the first 511 

participant, no statistically significant differences in the average percentage of swing time were found 512 

between the left foot and right foot during normal gait (p = 0.279), slip hazard (p = 0.126), trip hazard (p = 513 

0.192), and unexpected step-down hazard (p = 0.215). Since similar results were found in other participants 514 

and gait variability parameters, we averaged each gait variability parameter from both feet of each participant 515 

to identify the existence of gait disruption in different types of safety hazards.  516 

 517 

Table 2 shows the average gait variability parameters in each hazard condition as compared to normal gait. 518 

In each participant, the results revealed that the stride time parameter increases distinctly during all hazard 519 

conditions as compared to normal gait. During the slip hazard, most of the participants experienced longer 520 

stride times, as such their stride length increased by 1.3% when they encountered a slippery surface hazard 521 

(Table 2). The percentage of swing time during the slip hazard conditions decreased by 4.7% as compared to 522 

a normal gait (Table 2). In contrast, the percentage of stance time increased by 5.8% during a slip hazard 523 

condition when compared to a normal gait (Table 2). Lastly, the single support time increased by 5.1% when 524 

participants are exposed to a slip hazard (Table 2).  525 

 526 

With the trip hazard, the participants also had a longer stride time and increased stride length when they 527 

encountered the obstacle hazard (Table 2). While the percentage of swing time decreased by 4.4%, the 528 

percentage of stance ratio increased by 4.6% when obstacle hazard as compared to a normal gait (Table 2). 529 

Lastly, the single support time increased by 4.1% when confronting the obstacle hazard (Table 2).   530 
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With regards to the unexpected step-down hazard, the participants showed longer stride time and increased 531 

stride length similar to both the slip and trip hazards (Table 2). The percentage of swing time decreased by 532 

4.6%, while the percentage of stance time increased by 5.7% when participants were exposed to the uneven 533 

surface hazard as compared to a normal gait (Table 2). Lastly, the single support time increased by 4.8% 534 

when confronting the uneven surface hazard (Table 2).   535 
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Table 2. Average gait variability parameters.  536 

 

 

 

 

 

 

 

Participa

nt 

Stride time (%)  Stride length (%)  Percentage of the swing phase (%)  Percentage of the stance phase (%)  Percentage of the single support 

time (%) 

Nor

mal 

gait 

Slip 

haza

rd 

Trip 

haza

rd 

Unexpec

ted step-

down 

hazard 

 Norm

al 

gait 

Slip 

haza

rd 

Trip 

haza

rd 

Unexpec

ted step-

down 

hazard 

 Nor

mal 

gait 

Slip 

hazar

d 

Trip 

hazar

d 

Unexpe

cted 

step-

down 

hazard 

 Nor

mal 

gait 

Slip 

hazar

d 

Trip 

haza

rd 

Unexpec

ted step-

down 

hazard 

 Norm

al 

gait 

Slip 

haza

rd 

Trip 

haza

rd 

Unexpec

ted step-

down 

hazard 

1 0.92 2.82 2.22 2.62  1.28 2.18 1.68 1.98  2.79 -0.41 -1.51 -5.81  0.22 5.52 2.62 6.72  0.12 2.42 3.62 1.42 

2 0.89 3.69 2.49 3.39 1.16 2.46 1.96 1.66 1.98 -0.22 0.08 -2.52 0.31 7.11 8.51 3.91 0.15 6.25 1.95 5.35 

3 0.9 4.8 2.4 2.5 1.10 1.80 1.70 1.90 1.47 -4.13 -2.33 -4.93 0.45 6.35 3.25 7.85 0.18 3.48 4.68 2.08 

4 0.85 2.35 1.95 2.25 0.98 1.78 1.68 1.48 2.54 -2.56 -2.36 -5.06 0.33 7.03 5.13 4.13 0.21 5.01 1.91 7.51 

5 0.87 2.17 2.77 2.67 0.94 2.34 2.54 1.74 2.37 1.17 -1.23 -2.33 0.27 2.77 3.87 7.37 0.17 8.97 4.77 3.67 

6 0.93 2.73 3.33 2.53 1.21 2.91 2.01 2.61 1.78 -5.72 -0.52 -1.72 0.42 9.32 5.12 7.32 0.16 5.26 4.46 7.96 

7 0.88 3.18 2.48 2.28 1.07 2.67 2.17 2.37 2.23 -1.97 -3.37 0.43 0.35 7.85 2.55 4.65 0.19 6.79 8.09 4.39 

8 0.91 2.11 2.71 2.21 0.99 1.79 1.29 1.59 2.49 -3.81 -5.01 -1.61 0.29 3.69 5.89 8.09 0.25 1.55 4.95 2.75 

9 0.93 4.03 2.53 2.03 1.07 2.87 1.77 2.27 1.82 -3.88 -2.78 -0.98 0.34 1.54 4.64 7.54 0.16 8.86 1.26 6.06 

10 0.78 2.18 2.58 2.08 0.95 2.65 2.15 2.55 2.27 -3.83 -2.83 0.67 0.38 10.08 7.88 2.88 0.24 4.54 7.54 8.34 

Average 

differenc

e ± SD 

 2.1 ± 

0.9 

1.7 ± 

0.4 

1.6 ± 0.4  1.3 ± 

0.4 

0.8 ± 

0.4 

0.9 ± 0.4  -4.7 

± 2.0 

-4.4 

± 1.6 

-4.6 ± 

2.4 

 5.8 ± 

2.7 

4.6 ± 

2.0 

5.7 ± 1.9  5.1 ± 

2.5 

4.1 ± 

2.3 

4.8 ± 2.5 



25 
 

Amongst the reported average gait variability parameters for identifying safety hazards as presented in Table 

2, the percentage of stance phase showed the greater differences in each hazard condition. This observation 

may be explained by the fact that the stance phase is considered to be about 60% of a participant’s gait cycle 

for healthy individuals (O’Sullivan et al., 2019). Nevertheless, the overall results confirmed that the existence 

of gait disruptions measured by gait variability parameters varied either among the participants or between 

safety hazards. For example, while the trip hazard found an increased mean difference in stride time as 

compared to the unexpected step-down hazard, the result found a higher mean difference of stride length, 

percentage of stance phase, and percentage of single support time in the unexpected step-down hazard as 

compared to the trip hazard. On the other hand, the first participant had higher mean stride time in all hazard 

conditions as compared to the fourth participant. These results indicated that the walking speed and 

participants’ characteristics (e.g., height) have an influence on gait disruption caused by safety hazards. 

Although the results are promising, the findings are however difficult to determine which gait variability 

parameter showed a significant difference in identifying safety hazards among construction workers. Overall, 

the findings of these results revealed the need to measure gait abnormality based on how far the GRF 

deviations are from the normal gait patterns. 

 

4.2. Gait abnormality measurement based on GRF deviation 

By using the GRF data, each participant’s gait abnormality was evaluated by comparing the degree of GRF 

gait disruption in hazard conditions to the GRF patterns during normal gait. Initially, the GRF data samples 

of the left and right foot were averaged before calculating the gait abnormality of each participant as presented 

in equation 11. Table 3 shows the average difference in gait abnormality based on GRF deviation in hazard 

conditions as compared to normal gait. The results of gait abnormality based on GRF deviation found a 

significant difference (paired sample t-test, p < 0.05) between hazard conditions and normal gait (Table 3). 

Generally, it was found that all hazard conditions had higher gait abnormality based on GRF deviation as 

compared to normal gait. In particular, the obstacle hazard had the highest average difference in gait 

abnormality (29.05), followed by the uneven surface hazard (22.95) and the slippery surface hazard (17.48), 

when each hazard condition was compared to normal gait (Table 3). In each participant, there were consistent 

results of gait abnormality for identifying safety hazards at a specific location (Table 3). While the trip hazard 

(i.e., obstacle hazard) achieved the highest gait disruption from normal gait in each participant, the slip hazard 
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obtained the lowest results (Table 3). Taken together, the findings of these results show that the proposed 

gait abnormality based on GRF deviation is relatively reliable to capture gait disruptions for identifying safety 

hazards as compared to gait variability parameters computed using plantar pressure patterns.  

 

Table 3. Average difference (standard deviation) in gait abnormality based on ground reaction force (GRF) 

deviation between each hazard condition (positioned at 5m) and a normal gait. 

Participant 

Gait abnormality (%) 

Slippery surface 

hazard 

p-

value 

Obstacle 

hazard 

p-

value 

Uneven surface 

hazard 

p-

value 

1 12.66 (3.17) 0.000 31.79 (5.04) 0.000 24.98 (4.85) 0.000 

2 20.78 (13.39) 0.001 42.56 (6.74) 0.000 30.12 (8.40) 0.000 

3 13.63 (6.05) 0.000 25.31 (6.22) 0.000 14.91 (5.56) 0.000 

4 16.94 (3.88) 0.000 28.69 (5.97) 0.000 19.63 (5.26) 0.000 

5 25.58 (5.47) 0.000 40.12 (5.82) 0.000 35.35 (6.78) 0.000 

6 10.36 (12.95) 0.032 15.38 (13.36) 0.005 12.65 (14.24) 0.020 

7 12.56 (7.89) 0.001 19.47 (7.28) 0.000 15.78 (8.83) 0.000 

8 17.89 (3.57) 0.000 27.29 (3.78) 0.000 22.23 (5.76) 0.000 

9 13.91 (5.23) 0.000 20.06 (5.21) 0.000 18.19 (5.56) 0.000 

10 30.45 (5.16)  0.000 39.87 (7.25) 0.000 35.64 (11.09) 0.000 

Mean ± SD 17.48 ± 6.42  29.05 ± 9.47  22.95 ± 8.34  

 

To verify the performance of safety hazard identification by using the gait abnormality based on GRF 

deviation, this study conducted the point-biserial correlation analysis between combined gait abnormality 

based on GRF deviation results of each location and the ground truth on the hazard locations. Table 4 

summarizes the point biserial correlation coefficients between the location of a hazard and the average gait 

abnormality based on GRF deviation. The average gait abnormality based on GRF deviation values showed 

strong correlations (r > 0.7) and significant differences (p < 0.05) with obstacle hazard locations, as compared 

to the uneven surface hazard and slippery surface hazard locations (Table 4). In addition, the correlation 

coefficient for the obstacle hazard increases faster than the uneven surface and slippery surface hazard 

locations (Table 4). On the other hand, the composition of the data set also affects the correlation coefficient 

values. The results showed that the correlation coefficient for the obstacle hazard needed combined data set 

from 4 participants (40 trials) to obtain a strong correlation (r > 0.7) with average gait abnormality based on 

GRF deviation, whereas the uneven surface hazards and slippery surface hazards required combined data set 

from 5 participants (50 trials) and 6 participants (60 trials), respectively. Ultimately, the strong correlation 

coefficients in the hazard conditions indicate that participants’ gait disruptions are abnormal and strongly 
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dispersed when exposed to a safety hazard. These findings indicated that with a sufficient number of data 

samples, the proposed gait abnormality based on GRF deviation could be feasible to identify safety hazards 

in construction.  

 

Table 4. Point biserial correlation coefficient between average gait abnormality based on GRF deviation and 

hazard location (positioned at 5m from starting point). 

Participants Point biserial correlation coefficient 

Slippery surface hazard Obstacle hazard Uneven surface hazard 

1 0.712* 0.945* 0.822* 

2 0.789* 0.936* 0.863* 

3 0.745* 0.978* 0.886* 

4 0.763* 0.914* 0.812* 

5 0.614 0.956* 0.638 

6 0.765* 0.941* 0.835* 

7 0.793* 0.922* 0.864* 

8 0.771* 0.973* 0.896* 

9 0.743* 0.965* 0.864* 

10 0.629 0.919* 0.844* 

*Indicates a strong correlation 

 

The present study also examined the size of the data set and the diversity of data sources by using gait 

abnormality based GRF deviation results for identifying safety hazards. In order to conduct this analysis, the 

number of experimental trials for each participant was fixed at ten, and the number of participants increased 

from 1 to 10. Fig. 5 (a) to (d) illustrate the box plots of average gait abnormality based GRF deviation values 

from all possible combinations by increasing the number of participants during normal gait (i.e., no hazard 

condition) (Fig. 5a), slippery surface hazard (Fig. 5b), obstacle hazard (Fig. 5c), and uneven surface hazard 

(Fig. 5d) conditions. To prevent sample bias in each experimental condition, the average of the possible 

sample selection was evaluated in the present study. As shown in Fig. 5, the vertical axis represents the 

average of aggregated gait abnormality based GRF deviation values whilst the horizontal axis indicates the 

number of participants. For instance, “P1” in Fig. 5 shows the distribution of aggregation gait abnormality 

based GRF deviation mean values from one participant out of all the ten participants. Similarly, “P2” and 

“P3” in Fig. 5 represents the average distribution of aggregation gait abnormality based GRF deviation values 

from all the possible selections of two participants (e.g., participant 1 and 2; participant 2 and 3) and three 

participants (e.g., participant 1, 2, and 3; participant 2, 3, and 4), respectively. Any overlaps of the boxplots 

between a normal gait condition and each hazard condition indicate a possible false detection in identifying 
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hazards by using gait abnormality based GRF deviation values. Although the results showed false detection 

by comparison (i.e., normal gait vs slippery surface hazard, normal gait vs obstacle hazard, and normal gait 

vs uneven surface hazard), it was found that increasing the number of participants is highly effective in 

reducing false detection and that the slippery surface and the uneven surface hazards require more gait 

abnormality based GRF deviation values aggregation compared to the obstacle hazard. In addition, the 

average distribution of aggregated gait abnormality based GRF deviation values increased gradually as more 

participants were added. It was revealed that the obstacle hazard had the highest average aggregation of gait 

abnormality based GRF deviation values as compared to the uneven surface hazard and the slippery surface 

hazard (i.e., the lowest). 

 

Fig. 5. Box plots of average gait abnormality based GRF deviation values from all possible combinations by 

increasing the number of participants: (a) normal gait (no hazard condition), (b) slippery surface hazard, (c) 

obstacle hazard, and (d) uneven surface hazard. 
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5. Discussion 

Amongst the various causes of occupational injuries, slips, trips, and unexpected step-down hazards have 

been recognized as a major cause of non-fatal fall injuries in construction. To mitigate these accidents in 

construction, safety hazard identification is an essential step to recognize hazards and implement proactive 

fall-preventive interventions. Therefore, the present study proposes a novel and non-intrusive approach—

such a wearable insole pressure system—to examine the changes in workers’ gait disruption patterns to 

identify safety hazards among construction workers. A simulated laboratory study was conducted to test the 

feasibility of using participants’ gait abnormalities to identify safety hazards. The results found gait 

variability parameters could serve as useful gait metrics for identifying workers’ gait disruption patterns 

caused by safety hazards. In addition, the gait abnormality based on GRF deviation values provided a 

significant difference in identifying safety hazards as compared to normal gait (i.e., no hazard condition). In 

addition, the point biserial correlation coefficients between the presence of a hazard and the average gait 

abnormality based on GRF deviation showed a strong correlation with obstacle hazard, as compared to 

correlations with the hazard locations of uneven surface hazard and slippery surface hazard. Lastly, the 

obstacle hazard had the highest average aggregation of gait abnormality based GRF deviation values as 

compared to the uneven surface hazard and the slippery surface hazard. Overall, the implications of the 

current study could greatly enhance existing approaches of safety hazard identification and may also be useful 

to safety managers to implement proactive fall-prevention strategies. 

 

This study computed five gait variability parameters to evaluate the disruption of a participant’s gait pattern 

in order to identify safety hazards. Although gait variability parameters were showed as useful gait metric 

between the existence of a gait disruption caused by a hazard and a normal gait, the percentage of stance 

phase achieved the greatest difference in gait disruption mainly between an obstacle hazard and a normal 

gait. Despite the importance of these findings, gait variability parameters could not provide enough sensitive 

to identify safety hazards. To address the aforementioned drawback, the current study proposed the gait 

abnormality based on GRF deviation for evaluating the disruption of a participant’s gait patterns to identify 

safety hazards. Our results showed that the disruptions caused by obstacle hazard achieved the highest gait 

abnormality based on GRF deviation values, followed by uneven surface hazard and slippery surface hazard 

when each hazard condition was compared to a normal gait. Furthermore, the average gait abnormality based 
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on GRF deviation values showed strong correlations (r > 0.7) with obstacle hazard locations, as compared to 

correlations with the hazard locations of the uneven surface hazard and slippery surface hazard. Moreover, 

the diversity of data source and size of data set indicated that the obstacle hazard had the highest average 

aggregation of gait abnormality based GRF deviation values as compared to the uneven surface hazard and 

the slippery surface hazard. These results confirmed the hypothesis that gait abnormality based on GRF 

deviation in a specific location has a strong relationship with the presence of a hazard in that location. Taken 

together, the proposed gait abnormality based on GRF deviation is more sensitive than the computed gait 

variability parameters for identifying the presence of hazards.  

 

It may be difficult to compare our novel approach for identifying hazards with the findings from previous 

studies. Notably, this research computed five gait variability parameters, namely stride time, stride length, 

swing time, stance time, and single support time to identify hazards. In addition, the present study proposed 

gait abnormality based on GRF deviation for measuring the disruption of a participant’s gait patterns to 

identify safety hazards. Moreover, three types of hazards were tested and compared to a normal gait to 

identify safety hazards in a simulated laboratory setting. It is very obvious that our experimental design has 

several methodological differences from previous studies with regards to the differences in the experimental 

protocol, participants’ physiological characteristics, data collection procedure, type of wearable sensing 

systems and the nature of safety hazards. For example, in the construction realm, Kim et al. (2016) and Yang 

et al. (2017) had examined the feasibility of analyzing collective patterns of workers’ bodily responses to 

identify safety hazards on a job site. These authors conducted laboratory experiments simulating an 

ironworker’s working environment to collect kinematic gait data by using WIMU-based systems. Their 

findings highlight the opportunity for using workers’ abnormal gait responses to identify safety hazards in 

diverse construction environments. In a clinical setting, Li et al. (2018) investigated the feasibility and 

comparison of gait parameters such as normalized foot peak pressure, stance ratio, walking velocity, step-

time variability using wearable shoes fused with range sensor arrays and other methods. Their results show 

a significantly less stride length and walking velocity, higher stance ratio and step-time variability in the 

abnormal gait as compared to normal gait. In rehabilitation, Bae et al. (2011) proposed a mobile gait 

monitoring system to monitor Parkinson disease patients’ gait by observing the GRF and analyzing their gait 
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abnormality. Their proposed system could help patients to correct their gait by providing them with feedback 

information. Despite these differences, the findings from the current study show similar results with previous 

studies (Bae et al., 2011; Kim et al., 2016; Yang et al., 2017; Li et al., 2018; Solanki and Lahiri, 2018). Taken 

together, the findings have demonstrated the importance of analyzing participants’ gait disruption for 

identifying safety hazards in construction and improving patients suffering from gait disorders.  

 

6. Implications and potential applications  

The current study presents the first effort to propose a non-invasive approach to examine the changes in 

workers’ gait abnormalities to identify safety hazards. The findings have theoretical and practical 

implications for construction safety. First, the results provide novel evidence suggesting that gait disruptions 

caused by safety hazards could be identified using a wearable insole pressure system. More specifically, the 

proposed gait abnormality based on GRF deviation found significant evidence suggesting that the presence 

of a hazard has a strong relationship with a participant’s gait response. Consequently, the results of this study 

would enhance safety managers’ hazard identification capabilities to implement proactive fall-prevention 

interventions in order to mitigate latent hazards on site. Second, this current research proposes a novel 

approach of using a wearable insole pressure system for analyzing workers’ gait abnormalities to identify 

hazards. Previous safety hazard identification methods (e.g., job-hazard analyses, safety checklists, safety 

training) are limited because they are unable to continuously identify hazards due to different levels of experts’ 

knowledge, experience and dynamic construction environment. Thanks to the proposed approach which is 

feasible to address the given limitations. Eventually, it could extend the existing methods of safety hazard 

identifications for preventing non-fatal fall injuries among construction workers. In summary, the proposed 

approach can serve as a great potential for developing a continuous and an automated hazard identification 

system that uses workers’ gait response as an informative source of data for recognizing hazard on 

construction sites. Third, our approach has some practical and economic benefits as compared to current 

safety hazard identification methods such as the use of WIMU-based systems. It is light-weight, cost-

effective and convenient to use since it can be easily inserted or detached to a worker’s safety boots. Also, it 

can be wirelessly connected to computers, smartphones, or other location-tracking systems for its 

applications in both indoor and outdoor environments. Moreover, it causes less constraint in body movement 

and minimizes discomfort. Collectively, it is non-intrusive and can allow safety managers to deeply 
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understand the dynamics of foot mechanisms caused by hazards on construction sites in order to implement 

proactive fall-prevention interventions. 

 

7. Limitations and future directions 

Despite the study contributions, there are some limitations that need to be addressed in future research. First, 

this study was conducted in a laboratory setting with a small sample of student participants. Future research 

is warranted to compare the findings of this study with a large sample of experienced construction workers 

from different construction trades. Moreover, future research should evaluate the reliability of the proposed 

approach in real-world settings. Second, our experiment was conducted to only include three types of hazards 

on construction sites. Other types of hazards or fall risk factors should be examined in the future. For example, 

future works should examine the effect of individual factors (e.g., work experience, age, gender) and other 

intrinsic risk factors (e.g., fatigue) on workers’ gait responses using the proposed approach. In addition, the 

conducted experiment excluded workers’ activities such as lifting, carrying, pulling, pushing. Future research 

is needed to investigate the changes in workers’ gait disruption caused by other types of hazards and activities 

using the proposed approach. Moreover, different types of gait variability parameters such as average velocity, 

maximum foot clearance, cadence need to be computed to provide more robust information for identifying 

hazards. Third, despite its great potential as a tool for automated safety hazard identification, future studies 

will need to validate the proposed approach before being ready for use in practical applications. Furthermore, 

it would be beneficial to integrate other sensing and localization technologies such as light sensors, ultra-

wideband and cameras with the proposed approach in order to provide more robust application solutions for 

construction workers’ safety. For example, workers’ gait responses based on the proposed methodology 

could be integrated with two-dimensional spatial information captured from the ultra-wideband location 

technique to provide the location of safety hazards on construction sites. Lastly, the effects of extrinsic risk 

factors such as environmental weather conditions, types of footwear, rainwater, lighting, and sweat on 

changes in foot plantar pressure patterns captured by a wearable insole pressure system during construction 

workers’ activities had not been explored. Taken together, future research studies are warranted to explore 

the aforementioned extrinsic risk factors to gain a deeper understanding of the changes in gait patterns to 

extend the practical applications of the proposed approach.  
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8. Conclusions 

The current study proposed a non-invasive approach to examine the feasibility of using workers’ gait 

disruption patterns to identify safety hazards among construction workers. It was hypothesized that workers’ 

gait disruption in a specific location has a strong relationship with the presence of a hazard in that location. 

To test the hypothesis, ten healthy participants were recruited to perform simulated experiments in a 

laboratory setting by installing three types of hazards which are common in a construction job site. 

Consequently, the participants’ gait patterns were measured using a wearable insole pressure system to 

compute five gait variability parameters and a gait abnormality based on GRF deviation to identify the 

existence of a safety hazard. The results found that gait variability parameters could serve as useful gait 

metrics for identifying workers’ gait disruptions caused by a safety hazard. Alternatively, the gait abnormality 

based on GRF deviation values provided significant differences in identifying safety hazards in each hazard 

condition as compared to a normal gait condition. Moreover, the results indicated that participants’ gait 

disruptions measured by the average gait abnormality based on GRF deviation values are highly correlated 

with the location of a hazard. Lastly, the diversity of data source and size of data set indicated that the obstacle 

hazard had the highest average aggregation of gait abnormality based GRF deviation values as compared to 

the uneven surface hazard and the slippery surface hazard. 

 

The findings of this study highlight the feasibility of identifying safety hazards based on workers’ gait 

disruption patterns and potential applications of using a wearable insole pressure system to continuously 

monitor hazards without interfering with construction workers activities. Moreover, the findings can enhance 

safety managers’ hazard identification capabilities for detecting safety hazards and could help them to 

implement proactive fall-prevention interventions to eliminate hazards on the job site. Furthermore, these 

findings provide the basis for developing a non-intrusive and automated wearable insole pressure system that 

uses workers’ gait disruption patterns as a useful data source for safety hazard identification in construction. 

Lastly, this study extends the use of wearable sensing technologies for mitigating non-fatal fall injuries and 

improve workers’ safety research in construction. Overall, the key contribution of this paper relies on the use 

of a non-invasive wearable insole pressure system as a real-time monitoring approach to analysis participants’ 

gait disruption patterns for construction safety hazard identification.  
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