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Abstract 30 
Overexertion-related construction activities are identified as a leading cause of work-related musculoskeletal 31 

disorders (WMSDs) among construction workers. However, few studies have focused on automated 32 

recognition of overexertion-related construction workers’ activities as well as assessing ergonomic risk levels 33 

which may help to minimize WMSDs. Therefore, this study examined the feasibility of using acceleration 34 

and foot plantar pressure distribution data captured by a wearable insole pressure system for automated 35 

recognition of overexertion-related construction workers’ activities and for assessing ergonomic risk levels. 36 

The proposed approach was tested by simulating overexertion-related construction activities in a laboratory 37 

setting. The classification accuracy of five types of supervised machine learning classifiers was evaluated 38 

with different window sizes to investigate classification performance and further estimate physical intensity, 39 

activity duration and frequency information. Cross-validation results showed that the Random Forest 40 

classifier with a 2.56s window size achieved the best classification accuracy of 98.3% and a sensitivity of 41 

more than 95.8% for each category of activities using the best features of combined data set. Furthermore, 42 

the estimation of corresponding ergonomic risk levels was within the same level of risk. The findings may 43 

help to develop a non-invasive wearable insole pressure system for continuous monitoring and automated 44 

activity recognition—which could assist researchers and safety managers in identifying and assessing 45 

overexertion-related construction activities for minimizing the development of WMSDs’ risks among 46 

construction workers. 47 

Keywords: Activity recognition; Construction workers; Overexertion risk; Supervised machine learning 48 

classifiers; Wearable insole pressure system; Work-related musculoskeletal disorders.   49 
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Introduction 50 

The construction industry is regarded as one of the most hazardous occupations and labor-intensive industries 51 

(Wang et al. 2015a). Although significant efforts have been demonstrated to reduce occupational injuries and 52 

fatalities in the construction industry (Valero et al. 2016; Antwi-Afari and Li 2018g; Kong et al. 2018), 53 

statistics show that it is still regarded as one of the most dangerous occupations (Center to Protect Workers’ 54 

Right (CPWR) 2018). These health and safety issues in the construction industry are mostly attributed to 55 

ergonomic risk factors such as awkward working postures, repetitive lifting, and excessive force or 56 

overexertions (Wang et al. 2015a; Umer et al. 2017b; Antwi-Afari et al. 2017a). Ergonomic risk factors 57 

associated with workplace activities may lead to construction workers developing work-related 58 

musculoskeletal disorders (WMSDs).  59 

Compared to different industry sectors, construction workers are faced with the highest risk of developing 60 

WMSDs (OSHA 2017). Examples of WMSDs include low back pain, shoulder pain, tendonitis, and carpal 61 

tunnel syndrome (Umer et al. 2017a; Antwi-Afari et al. 2018a). According to the Bureau of Labor Statistics 62 

(BLS) in the United States, WMSDs accounted for a median of 12 days of work absenteeism in 2015 (BLS 63 

2016). In Germany, WMSDs constitute a major cause of occupational disabilities among construction 64 

workers (Arndt et al. 2005). The high prevalence rate of WMSDs among construction workers not only 65 

causes work absenteeism, schedule delays and increased the cost of insurance premium but also lead to loss 66 

of productivity and early retirement (Umer et al. 2017a). Given above, there is a critical need to assess 67 

ergonomic risks which may lead to WMSDs among construction workers. 68 

To minimize WMSDs among construction workers, there is a crucial need to identify potential risk factors 69 

associated with workers’ activities. Overexertion has been identified as the leading risk factor for developing 70 

WMSDs among construction workers (BLS 2016). Notably, existing methods or approaches for identifying 71 

potential risk factors of developing WMSDs include self-reports (e.g., questionnaires), observational-based 72 

methods (e.g., strain index), vision-based methods (e.g., KinectTM), and direct measurement methods (e.g., 73 

inertial measurement units (IMUs)). Despite their advantages, these approaches are characterized as time-74 

consuming, relatively imprecise, require expert’s subjective judgment, intrusive and a direct line of sight is 75 

required to register workers’ movement (David 2005). Consequently, it is difficult to identify and evaluate 76 
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the potential ergonomic risks using the existing approaches. Despite the high prevalence rate of WMSDs 77 

among construction workers and the possible approaches to mitigate WMSDs, less attention has been given 78 

to the use of a wearable sensing system—which can serve as a non-invasive tool for recognizing workers’ 79 

activities and mitigating the risk of developing WMSDs.  80 

To address these issues, the authors proposed a non-invasive wearable insole pressure system for recognizing 81 

overexertion-related workers’ activities and to assess ergonomic risk levels. To this end, it was hypothesized 82 

that each overexertion-related workers’ activity creates unique patterns of acceleration and foot plantar 83 

pressure distribution data, which can enable the detection and classification of different categories of 84 

activities. Overall, the proposed approach could provide a relatively accurate and objective assessment of 85 

ergonomic risk level—which could help other researchers and safety managers to understand the level of 86 

exposure of workers’ risk and provide effective interventions to mitigate WMSDs’ risks in construction. 87 

 88 

Research Background 89 

Ergonomic Risk Assessment Methods for Identifying Potential Risk Factors of WMSDs 90 

There are four ergonomic risk assessment methods for identifying potential risk factors for developing 91 

WMSDs. These methods are 1) self-reported methods; 2) observational-based methods; 3) vision-based 92 

methods; and 4) direct measurement methods. 93 

In the self-reported methods, data is collected on both physical and psychosocial factors through interviews 94 

or questionnaires (Li and Yu, 2011; Reme et al. 2012). These methods have the advantages of being 95 

straightforward to use, applicable to a wide range of working situations and require low initial cost (David 96 

2005). However, a major problem with these methods is the inter-rater difference in workers’ perception of 97 

exposure levels (Wang et al. 2015a). Many observational-based methods have been developed to evaluate 98 

workers’ exposure factors on the job site (McAtamney and Corlett, 1993; Buchholz et al. 1996). Despite 99 

being inexpensive and practical for a wide range of work situations, these methods are time-consuming, 100 

disruptive in nature, and are subjected to intra- and inter-observer variability (David 2005). Vision-based 101 

methods use either depth sensors or stereo camera systems to capture human motion data to extract a three-102 

dimensional (3D) skeleton models (Han et al. 2013; Han and Lee 2013). These methods provide accurate, 103 
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non-invasive and automated human motion data for analyzing unsafe actions in construction (Han et al. 2013). 104 

However, they are limited because they: (1) are occasionally ineffective with moving backgrounds; and (2) 105 

require a direct line of sight to register the movements in a construction environment (Han and Lee 2013). 106 

Direct measurement methods use wearable sensor-based systems which are attached to workers’ bodies to 107 

collect human motion-related output data (Akhavian and Behzadan 2016; Valero et al. 2016; Antwi-Afari et 108 

al. 2017b; Nath et al. 2017). Previous studies have reported that direct measurement methods provide accurate 109 

and reliable data for identifying WMSDs risk factors as compared to other methods (David 2005; Umer et al. 110 

2017b). However, these methods: (1) require sensors to be attached to the workers’ skin which may cause 111 

discomfort; (2) cannot acquire the ground reaction force data; and (3) require additional attachments such as 112 

straps, belts to prevent detachment of sensors from the body when performing tasks. 113 

To overcome these limitations, the current study proposed a wearable insole pressure system for identifying 114 

a potential risk factor of developing WMSDs among construction workers. In the realm of construction, 115 

recent studies have demonstrated the feasibility of using the proposed approach for automated detection and 116 

classification of workers’ loss of balance events (Antwi-Afari et al. 2018e) and awkward working postures 117 

(Antwi-Afari et al. 2018f). While these previous studies mainly focused on awkward working postures and 118 

loss of balance events, no research study has been conducted by using a wearable insole pressure system for 119 

recognizing overexertion-related construction workers’ activities and assessing ergonomic risk levels. 120 

 121 

Wearable Sensing Technologies for Automated Activity Recognition in Construction—the Feasibility of 122 

Using a Wearable Insole Pressure System 123 

Wearable IMU-based systems are the commonest wearable sensing technologies used for activity recognition 124 

and fall risk assessment in construction (Kim et al. 2016; Valero et al. 2016; Yang et al. 2016; Yang et al. 125 

2017; Jahanbanifar and Akhavian 2018; Antwi-Afari et al. 2019). For example, Valero et al. (2016) 126 

developed a system to detect unsafe postures of construction workers (e.g., stooping and squatting with back 127 

bending). To expand the applications of wearable IMU-based systems, smartphones are now embedded with 128 

sensors to collect human motion-related data in the construction field for activity recognition (Akhavian and 129 

Behzadan 2016; Nath et al. 2018; Ryu et al. 2018). Akhavian and Behzadan (2016) used a smartphone with 130 
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embedded accelerometer and gyroscope sensors to capture body movement data to classify different 131 

categories of construction activities. Nath et al. (2018) collected time-stamped motion data from body-132 

mounted smartphones with embedded accelerometer and gyroscope sensors to recognize workers’ activities. 133 

They also estimated activity duration and frequency information through a classification framework to 134 

evaluate the ergonomic risk levels of the activities caused by overexertion. Ryu et al. (2018) examined the 135 

feasibility of the wrist-worn accelerometer-embedded activity tracker for automated action recognition of 136 

four different subtasks of masonry works. Albeit wearable IMU-based systems have demonstrated reliable 137 

and accurate classification of various construction activities, wearing these sensors at different body parts 138 

make workers’ feel uncomfortable, and they also have high hardware costs—limiting their applications on 139 

construction sites (Zhang et al. 2018). In addition, they can only monitor body motions based on velocity, 140 

acceleration, and orientation output data without considering ground reaction force data.  141 

To address the above limitations, a wearable insole pressure system offers the following advantages as 142 

compared to wearable IMUs-based systems. First, it can measure the vertical force component of the ground 143 

reaction force data to estimate the physical intensity and subsequently assess corresponding ergonomic risk 144 

levels. Second, it can be easily inserted or detached from workers’ safety boots, which minimizes restrain in 145 

body movement and discomfort (Antwi-Afari and Li 2018g). Third, multiple footsteps of workers can be 146 

continuously monitored on construction sites. Ultimately, it offers higher portability, ease of use, and great 147 

potentials in complex and dynamic applications without being invasive. Wearable insole pressure system has 148 

been demonstrated as a useful and reliable tool in several areas of applications such as gait, posture and 149 

activity recognition (Sazonov et al. 2011; Tang and Sazonov 2014), sport biomechanics (Queen et al. 2007), 150 

and improving balance in the elderly (Mickle et al. 2011). In particular, these previous studies used a wearable 151 

insole pressure system to recognize activities of daily living such as sitting, standing, walking, running, stair 152 

ascent or descent and cycling (Sazonov et al. 2011; Tang and Sazonov 2014). In the realm of construction, 153 

workers’ activities are more physically demanding and dynamic. The feasibility of using a wearable insole 154 

pressure system for recognizing overexertion-related construction workers’ activities has not been explored. 155 

In addition, no study has been conducted by using the proposed approach for estimating the physical intensity, 156 

activity duration and frequency information for assessing corresponding ergonomic risk levels.  157 
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Research Objective and Contributions 158 

The objective of this research was to automatically recognize overexertion-related construction workers’ 159 

activities and assess the corresponding ergonomic risk levels by using acceleration and foot plantar pressure 160 

distribution data measured by a wearable insole pressure system. The main contributions of this research 161 

were to: (1) propose a non-invasive wearable insole pressure system for continuous monitoring and 162 

automated recognition of overexertion-related construction workers’ activities based on acceleration and foot 163 

plantar pressure distribution data; and (2) estimate the physical intensity, activity duration, and frequency 164 

information for assessing the ergonomic risk levels of overexertion-related construction workers’ activities.  165 

 166 

Research Methods 167 

Fig. 1 shows the framework for overexertion-related ergonomic risk assessment. The first step involves 168 

recruiting participants to participate in the proposed approach. Next, acceleration and foot plantar pressure 169 

distribution data were collected in a laboratory setting using a wearable insole pressure system. The two 170 

streams of sensor data were collected to examine which extracted features contribute more to the 171 

classification performance. Following data collection, the sliding window technique was adopted to divide 172 

sensor streams into smaller window size segments. This data segmentation technique has been widely used 173 

due to its simplicity and classification performance in handling both acceleration and foot plantar pressure 174 

distribution data (Akhavian and Behzadan 2016; Antwi-Afari et al. 2018b; Nath et al. 2018; Ryu et al. 2018). 175 

In this study, four window size segments were evaluated to select the optimum window size segment. Three 176 

groups of features (i.e., time-domain, frequency-domain, and spatiotemporal) were extracted as input 177 

variables for supervised machine learning classifiers to test the classifier models. Also, the hybrid feature 178 

selection method was adopted in this research to identify the most distinctive or best features. Reference data 179 

in activity recognition provides the ground truth to evaluate the classification performance. Afterwards, a 180 

classifier model is built and the performance of the model was assessed in terms of the sensitivity and 181 

accuracy metrics. This study examined five types of supervised machine learning classifiers to select the best 182 

classifier with the highest classification performance. Based on the trained models and classification 183 

performance, the various categories of activities are detected and classified. Overall, the goal to find the 184 



8 
 

 

 

optimum window size segment, select the best features, and use different types of classifiers was to identify 185 

and built a classifier model that provides the highest classification performance for activity recognition. 186 

Finally, the physical intensity, activity duration and frequency information are estimated from the activity 187 

recognition and then used to determine the ergonomic risk levels associated with each category of activities 188 

performed by the participants.  In the following sections, the detailed procedure of each method is discussed.   189 

 190 

 191 

Fig. 1. Framework for overexertion-related ergonomic risk assessment 192 

 193 

Participants 194 

Two healthy male participants volunteered to participate in this study. Each participant was a student who 195 

had basic construction engineering knowledge and experience in working at construction sites. The 196 

participants mean age, weight, and height were 27 ± 4.24 years, 66 ± 5.66 kg, and 1.65 ± 0.21 m, respectively. 197 

Both participants had no history of mechanical pain/injury of upper extremities, back, or lower extremities. 198 
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The participants provided their informed consent forms in accordance with the procedure approved by the 199 

Human Subject Ethics Subcommittee of the Hong Kong Polytechnic University (reference number: 200 

HSEARS20170605001).  201 

 202 

Data Collection  203 

Data Acquisition Using a Wearable Insole Pressure System 204 

The current study proposed an OpenGo system (Moticon GmbH, Munich, Germany), which is a wearable 205 

insole pressure system for measuring both triaxial acceleration and spatiotemporal foot plantar pressure 206 

distribution data (Antwi-Afari and Li 2018g). It consists of two sensor insoles (containing 13 capacitive 207 

sensors each) that measure the foot plantar pressure distribution. Each wearable insole sensor electronically 208 

incorporates 3D micro-electro-mechanical systems (MEMS) accelerometer (Bosh Sensortech BMA 150), 209 

which is located at the center with respect to gravity. In the current study, foot plantar pressure patterns and 210 

acceleration signals were sampled at 50 Hz.  211 

 212 

Experimental Design and Procedure 213 

The current study adopted a cross-sectional study design in a single visit. The experimental procedure was 214 

explained to the participants. In order to simulate overexertion-related construction workers’ activities to 215 

mimic those conducted by a worker on construction sites (i.e., real-world conditions), the following criteria 216 

were set in the experimental protocol. First, each participant was asked to wear a pair of safety boots and a 217 

hard hat during the testing sessions. Second, each participant was shown representative videos of 218 

overexertion-related construction workers’ activities—which are performed by workers in real-world 219 

conditions. These activities were basically related to manual material handling tasks involving excessive 220 

force exertions. They included upright holding, carrying, lifting, lowering, pushing and pulling.  221 

In this research, each participant performed 20 cycles of each of the following overexertion-related 222 

construction workers’ activities: (1) load a wooden box—measuring 30 × 30 × 25 cm with dumbbell weights 223 

and hold it in an upright standing position to receive further instruction from the experimenter (Fig. 2a); (2) 224 

walk while carrying the weighted box along a set path to a particular destination on the floor (Fig. 2b); (3) 225 
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lift the weighted box from the floor level onto a table at waist level for inspection (Fig. 2c); (4) lower the 226 

weighted box from the table at waist level onto a four-wheeled dolly (Fig. 2d); (5) walk while pushing the 227 

dolly on a set path to another destination (Fig. 2e); (6) wait while the experimenter offload the dumbbell 228 

weights from the wooden box (Fig. 2f); and (7) walk while pulling the dolly to a specific location in the 229 

laboratory (Fig. 2g). The entire experiment was recorded using a video camcorder and both acceleration and 230 

foot plantar pressure distribution data were synchronized. After data collection, the activities were manually 231 

annotated based on inspecting the recorded video and the collected data. Consequently, these activities were 232 

grouped into four different categories of activities, namely (1) category-1-activities: grip force; (2) category-233 

2-activities: lift/lower/carry; (3) category-3-activities: push/pull; and (4) category-4-activities: any other non-234 

risk activity. The categories of activities mostly require overexertion such as forces involved in grip force, 235 

forces involved in lifting, lowering, or carrying, and forces involved in pushing or pulling (Jaffar et al. 2011).  236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 
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Fig. 2. Laboratory experimental setup (images by authors): (a) upright holding; (b) carrying; 246 

(c) lifting; (d) lowering; (e) pushing (f) upright standing (g) pulling 247 

 248 

Data Segmentation 249 

The sliding window technique was adopted to divide the raw sensor signals into smaller window size 250 

segments. This technique is well-suited for real-time applications since it does not require any pre-processing 251 

of raw sensor data (Preece et al. 2009). Also, overlapping adjacent windows reduces the error caused by 252 

transition state noise (Su et al. 2014). Similar to previous studies (Antwi-Afari et al. 2018b; Nath et al. 2018), 253 

a 50% overlap of the adjacent windows was adopted for this study. In order to find an optimum window size, 254 

four window size segments were examined in this research. These are 0.32s, 0.64s, 1.28s and 2.56s which 255 

corresponds to 16 (24), 32 (25), 64 (26), and 128 (27) data samples, respectively. They are selected because of 256 

the conversion of time-domain to frequency-domain using fast Fourier transform (FFT) in MATLAB 9.2 257 

software (Matlab, The MathWorks Inc., MA, USA) requires the window size of a power of two (Akhavian 258 

and Behzadan 2016).  259 

 260 

Feature Extraction 261 

One of the most essential procedures in activity recognition and classification studies is feature extraction. 262 

This procedure involves extracting relevant informative features from raw sensor data of each window size 263 

to be used as input variables for model development and classification. The collected data by the wearable 264 

insole pressure system was a set of discrete points of acceleration and foot plantar pressure patterns. The 265 

three-axis acceleration and 13 plantar pressure distribution data of each foot depict the human motion 266 
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acceleration and foot plantar pressure distribution when the participants conducted the overexertion-related 267 

activities. Consequently, the two forms of collected data could reflect unique patterns of different categories 268 

of activities, implying that a single data point could not be able to represent the activities. As a result, this 269 

research study extracted different groups of features from acceleration and foot plantar pressure patterns for 270 

classification performance. Three groups of common features mostly used by previous studies (Akhavian 271 

and Behzadan 2016; Antwi-Afari et al. 2018f; Nath et al. 2018; Ryu et al. 2018) for activity recognition were 272 

selected in this study and extracted from acceleration and foot plantar pressure data. They are (1) time-domain 273 

features, (2) frequency-domain features, and (3) spatiotemporal features. Table 1 presents a summary of the 274 

features. As shown in Table 1, twelve time-domain features were extracted from each window size. These 275 

features are also known as signal statistical features. They are relatively simple to calculate and, as such 276 

reduce computational time. Notably, the last three features (Table 1) were extracted from only acceleration 277 

data. Moreover, we extracted two frequency-domain features (Table 1) by converting signal streams in time-278 

domain to frequency-domain by using the FFT function (Attal et al. 2015; Akhavian and Behzadan 2016). 279 

Furthermore, three spatiotemporal features (Table 1) were extracted from only foot plantar pressure 280 

distribution data. Considering data collection in 3 axes of acceleration data and 13 axes of foot plantar 281 

pressure distribution data of each foot and 17 independent features extracted (see Table 1), a total of 436 282 

features were extracted.  283 
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Table 1. Summary of Features 284 
Item Time-domain Item Frequency-

domain 

Item Spatiotemporal 

1.  Mean 1.  Spectral 

energy 

1.  Pressure-time integral 

2.  Variance 2.  Entropy 

spectrum 

2.  Anterior/Posterior centre of pressure 

(A/P COP) 

3.  Maximum   3.  Medial/Lateral centre of pressure (M/L 

COP) 

4.  Minimum     

5.  Range     

6.  Standard deviation     

7.  Root mean square     

8.  Kurtosis     

9.  Skewness     

10.  Standard deviation 

magnitude 

    

11.  Sum vector 

magnitude 

    

12.  Signal magnitude 

area 

    

 285 

Feature Selection 286 

Fig. 3 presents a flowchart depicting the hybrid feature selection method. As presented in Fig. 3, a total of 287 

436 features were initially extracted from acceleration and foot plantar pressure distribution data for the 288 

purpose of classification performance. Since numerous extracted features may lead to overfitting of data set, 289 

choosing an appropriate dimensionality reduction is a crucial feature selection step which helps to select an 290 

optimal set of features (i.e., best features), and also limit the complexity of the classifier model (Cates et al. 291 

2018). This research adopted the hybrid feature selection method (Barkalla et al. 2017) as depicted in Fig. 3. 292 

This method comprises the successive application of both the filter and wrapper methods. To do this, the 293 

authors used two commonly filter methods, namely: (1) analyses of variance (ANOVA) and (2) Pearson 294 

correlation coefficient to evaluate the performance of each feature for discriminating between the categories 295 

of activities. Based on the average values, all the extracted features were ranked and the highest ranked 296 

features (i.e., 112 features) are selected for the wrapper method (Fig. 3). Next, the wrapper method was used 297 

to select the best features (i.e., 27 features) by using a Random Forest classifier to evaluate the performance 298 

accuracy of each feature (Fig. 3).  299 

 300 



14 
 

 

 

 301 

Fig. 3. A flowchart depicting the hybrid feature selection method 302 

 303 

Reference Data 304 

Following data preparation and feature extraction, a class label of each category of activity was assigned to 305 

each window size with the assistance of the video data. Table 2 shows the class labels and the number of 306 

collected data samples in each activity of category. This step in human activity recognition serves as the 307 

ground truth to evaluate the performance of the classifiers (Akhavian and Behzadan 2016; Antwi-Afari et al. 308 

2018f). 309 

Table 2. Class Label and Collected Data Samples in Each Category of Activity 310 
Class label/activity category  Category of activity Number of data samples 

1 Grip force 98,896 

2 Lift/Lower/Carry 487,274 

3 Pull/Push 284,528 

4 Any other non-risk activity 187,852 

 311 

Classifier Training 312 

In this research, supervised machine learning classifiers were adopted for training and classification. The 313 

goal was to generate a model by learning acceleration and foot plantar pressure distribution data by using the 314 

extracted features as input variables to match the class labels of the different categories of activities. The 315 

performance of the classifiers was assessed by evaluating the accuracy in predicting unseen class labels (i.e., 316 

output variables). These classifiers have achieved satisfactory results in the field of human activity 317 

recognition and fall risk events (Akhavian and Behzadan 2016; Antwi-Afari et al. 2018c; Ryu et al. 2018). 318 

In order to select the best classifier, five different types of supervised machine learning classifiers, namely 1) 319 
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Artificial Neural Network (ANN), 2) Decision Tree (DT), 3) Random Forest (RF), 4) K-Nearest Neighbor 320 

(KNN), and 5) Support Vector Machine (SVM) were examined. All data processing including the statistical 321 

computation of features and training, testing, and validation of the classifiers were performed using Toolbox 322 

in MATLAB 9.2 software (Matlab, The MathWorks Inc., MA, USA). 323 

ANN has advantages of not only using a trained model to recognize previously unseen dataset but also having 324 

a potentially high tolerance for noisy data (Haykin 2009). As a result, this research used an ANN-based on a 325 

multilayer perceptron feed-forward neural network (Haykin 2009). DT is a schematic, tree-like classifier 326 

constructed to divide the training dataset into partitions according to a given set of splitting rules for each 327 

node, which is repeated iteratively until a leaf node is reached (Preece et al. 2009). The classification and 328 

regression tree (CART) algorithm was used to construct the best splitting rule for each node (Akhavian and 329 

Behzadan 2016; Zhang et al. 2018). RF classifier is a supervised ensemble classification method that makes 330 

use of multiple randomized decision trees to subdivide the feature space. Each decision tree in the RF is 331 

learned from a bootstrap aggregating sample (i.e., bagging) and a random subset of features (Breiman 1984). 332 

KNN is a non-parametric method for a classification based on the k-nearest training data set and vectors in 333 

the feature space (Ke et al. 2013). In this research, the distance of the neighbors over the feature space is 334 

calculated by using the Euclidean distance (Akhavian and Behzadan 2016). SVM is a non-probabilistic binary 335 

linear classifier (i.e., distinguish between two classes) in its standard soft margin, which attempts to find the 336 

best hyperplane that separates one class of dataset from the other class (Cortes and Vapnik 1995). In this 337 

study, the kernel function used for non-linear classification is the Gaussian radial basis function (RBF) 338 

(Akhavian and Behzadan 2016).  339 

 340 

Model Assessment 341 

Model assessment is the final step in human activity recognition in which the accuracy of the classifiers was 342 

assessed. The 10-fold cross-validation was used to assess the accuracy and validity of the classifier models 343 

(Barkalla et al. 2017). The accuracy and sensitivity indicators were used to evaluate the performance of the 344 

classifiers (Attal et al. 2015).  345 

 346 
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Activity Recognition 347 

Once the model is trained, and its parameters are finalized, it can be used for recognizing activities for which 348 

it has been trained. While data is being collected to determine the activities according to a trained classifier, 349 

such data can be stored in a dataset repository and be added to the existing training data, so that the model is 350 

further trained with a richer training dataset.  351 

 352 

Estimation of Physical Intensity, Activity Duration and Frequency  353 

One of the great potentials of using a wearable insole pressure system is that it can provide the total ground 354 

reaction force data while performing a given activity. As such, it was assumed that the total ground reaction 355 

force is equal to the physical intensity (i.e., the amount of physical effort required to perform a given task) 356 

and self-weight of each participant. Consequently, the physical intensity was calculated by subtracting the 357 

participant’s self-weight from the total ground reaction force (Yu et al. 2018). Next, the activity duration was 358 

calculated from the corresponding windows. The duration of each instance was calculated by counting the 359 

number of windows in that category and multiplying the result by half of the window size (i.e., 50% overlap 360 

of adjacent windows) (Nath et al. 2018). The total duration of a category was evaluated by summing the 361 

durations of all instances of that category. Lastly, the frequency (i.e., how many times a category of activity 362 

was performed) was determined by counting all the instances of that category (Simoneau et al. 1996).  363 

 364 

Overexertion-Related Ergonomic Risk Assessment 365 

Table 3 presents the ergonomic risk levels (low, moderate, and high) that can be used to estimate the physical 366 

intensity, activity duration and frequency information of each category of activity (OSHA 2012). In order to 367 

estimate for the corresponding ergonomic risk levels, physical intensity, activity duration and frequency were 368 

expressed as weight of the object (kg), percentages of the work shift, and frequency per minute of the shift, 369 

respectively. In this study, a shift is the total duration of the experiment.  370 

 371 

 372 

 373 
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Table 3. Ergonomic Risk Levels of Categories of Activities 374 
Activity 

category 

Risk factor parameter Low risk Moderate risk High risk 

1 Grip effort Hold object 

weighing 5 kg or 

low worker effort 

Hold object 

weighing 5 kg or 

Medium worker 

effort 

Hold object 

weighing 5 kg or 

high worker effort 

Duration/shift Up to 25%  26 – 50%  51 – 100%  

Frequency  Gripping < 5 s at 

once 

Gripping 5 – 30s at 

once 

Gripping > 30 s at 

once 

2 Weight of object < 8 kg 8 – 23 kg > 23 kg 

Duration/shift Up to 25%  26 – 50%  51 – 100%  

Frequency per minute < 1 1 – 5 > 5 

3 Force required < 9 kg 9 – 23 kg > 23 kg 

Duration/shift Up to 25% 26 – 50% 51 – 100% 

Frequency per minute < 1/480 1/480 – 10 > 10 

4 N/A N/A N/A N/A 

  375 
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Results and Discussion 376 

This is the first study to automatically recognize overexertion-related workers’ activities and assess 377 

corresponding ergonomic risk levels using acceleration and foot plantar pressure distribution data measured 378 

by a wearable insole pressure system. The results of the present study evaluated the classification 379 

performance of the proposed approach in two main ways. First, the combined data set from both participants 380 

were used for activity recognition to determine the best classifier, optimal selected features and window sizes. 381 

Second, an individualized participant evaluation was conducted to evaluate the performance of the proposed 382 

approach. 383 

 384 

Classification Performance for Combined Data Set from both Participants 385 

This section presents the results and discussion of the classification performance according to the types of 386 

classifiers, selected features and optimal window size using combined data set from both participants based 387 

on 10-fold cross-validation. Before determining the data optimization, the hybrid feature selection was used 388 

to select the best features for recognizing overexertion-related workers’ activities. Table 4 shows the best 389 

features for each participant using the hybrid feature selection. As shown in Table 4, only 23 features were 390 

selected as the best features for classification performance using the combined data set. This is because these 391 

features are considered to be common optimal best features among the two participants.  392 

Table 5 presents the classification accuracy for the combined data set using all extracted features and best 393 

features. Comparing the different classifiers, it is apparent from Table 5 that the RF classifier had the best 394 

classification accuracy among the five different types of classifiers. By using all extracted features, the RF 395 

classifier achieved the highest accuracy of 97.6% with a 2.56s window size, while the lowest accuracy was 396 

36.9% from the ANN classifier with a 0.32s window size (Table 5). Similarly, the RF classifier had the best 397 

accuracy (98.3%) with a 2.56s window size followed by the SVM, KNN, DT and ANN classifiers using the 398 

best features (Table 5). It was found that all classifiers tend to increase classification accuracy with increasing 399 

window size. Compared with the findings of previous studies by using accelerometers for recognizing 400 

masonry activities, the classification performance of our results was higher, with the best result being 79.83% 401 

(Joshua and Varghese 2010), and 88.1% (Ryu et al. 2018). Although there are consistencies in adopting an 402 
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overlap size of adjacent windows (i.e., 50%), the findings that were found based on the best window size and 403 

the best classifier were different from previous studies. In the study by Joshua and Varghese (2010), the 404 

classification accuracies of 79.83% (all extracted features) and 74% (best features) were obtained by using 405 

the multilayer perceptron neural network classifier with 256 samples (i.e., 4.23s window size) in an 406 

uninstructed environment. Alternatively, Ryu et al (2018) reported a classification accuracy of 88.1% using 407 

the multiclass SVM classifier with a 4s window size while classifying all the participants. In the present study, 408 

the classifiers had their highest classification accuracies with a 2.56s window size either by using all extracted 409 

features or best features (Table 5). Notably, the best accuracy achieved by the RF classifier demonstrates that 410 

both acceleration and foot plantar pressure distribution data captured by a wearable insole pressure system 411 

show unique patterns for recognizing the categories of activities. Compared with other classifiers as reported 412 

by previous studies (Joshua and Varghese 2010; Ryu et al. 2018; Yang et al. 2019), the RF classifier 1) is 413 

less sensitive to the selection of features and window sizes, 2) can reduce the computational time during data 414 

preprocessing; and 3) can minimize over-fitting issues (Pavey et al. 2017). Consequently, the findings of this 415 

study indicate that the RF classifier could be reliably used to recognize and classify overexertion-related 416 

workers’ activities, which is one of the main causes of WMSDs among workers. 417 

In order to investigate the classification results in each category of activity, a confusion matrix of 10-fold 418 

cross-validation from the best classifier (i.e., RF) with a 2.56s window size is presented in Fig. 4. As 419 

illustrated in Fig. 4, the rows show the percentage of true classes, and the columns reveal the percentage of 420 

predicted classes of each category of activity. Also, the diagonal represents the percentage of true positives 421 

(i.e., sensitivity) (Fig. 4). As shown in Fig. 4, each category of activity had more than 95% in positive 422 

detection of the classes using the best features. This classification results obtained from the RF classifier 423 

substantiates the hypothesis that each category of activity creates unique patterns of acceleration and foot 424 

plantar pressure distribution data, which enabled the detection and classification of the different categories 425 

of activities. It was found that the most accurately classified and detected category of activity was category-426 

2-activity (99.3%) (Fig. 4). Alternatively, the most misclassified categories of activities are category-1-427 

activities and category-4-activities (2.7%) (Fig. 4). These errors might be attributed to (1) activity durations, 428 

(2) the number of data samples (3) similarities in conducting these two categories of activities. Compared to 429 
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other categories of activities, category-1-activities and category-4-activities had shorter activity durations 430 

and smaller data samples (Table 2). Sensor streams in shorter window size segments and smaller data samples 431 

are not enough to differentiate categories of activities because they could contain similar acceleration and 432 

foot plantar pressure distribution patterns. In particular, the signal patterns in shorter window size segments 433 

are difficult to obtain unique patterns for each category of activity; as a result, they led to classification errors. 434 

 435 

Table 4. Best Features for Participant I and Participant II  436 
Rank Participant I Participant II 

1 PP2Mean PP2Mean 

2 PP4Mean PP4Mean 

3 PP7Mean PP7Mean 

4 ACC28Mean ACC28Mean 

5 ACC32Mean ACC32Mean 

6* PP68Max PP70Max 

7* PP88Max PP85Max 

8* ACC93Max ACC91Max 

9* ACC94Max ACC95Max 

10 PP195RMS PP195RMS 

11 PP216RMS PP216RMS 

12 ACC220RMS ACC220RMS 

13 ACC222RMS ACC222RMS 

14 ACC224RMS ACC224RMS 

15 PP355PTI PP355PTI 

16 PP360PTI PP360PTI 

17 PP364PTI PP364PTI 

18 PP375PTI PP375PTI 

19 PP378PTI PP378PTI 

20 PP383A/P COP PP383A/P COP 

21 PP410M/L COP PP410M/L COP 

22 ACC431SDML ACC431SDML 

23 ACC432SDMR ACC432SDMR 

24 ACC433SVML ACC433SVML 

25 ACC434SVMR ACC434SVMR 

26 ACC435SMAL ACC435SMAL 

27 ACC436SMAR ACC436SMAR 

Note: Features marked in asterisk are distinct for each participant  437 
 438 
Table 5. Classification Accuracy (%) for Combined Data of Participants Using All Extracted Features and Best 439 
Features  440 

Window size All extracted features  Best features 

ANN DT KNN RF SVM ANN DT KNN RF SVM 

0.32s 36.9 69.3 81.5 91.1 90.2 40.5 72.5 82.1 93.7 91.3 

0.64s 40.2 72.4 83.3 94.3 91.4 48.7 75.4 86.9 95.6 92.9 

1.28s 50.1 75.3 86.7 95.6 92.1 55.2 77.5 88.3 96.1 94.2 

2.56s 55.6 78.2 89.8 97.6 93.9 60.3 80.6 91.9 98.3 95.6 
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 1 95.8% 1.2% 0.3% 2.7% 

 2 0.1% 99.3% 0.6% 0.0% 

True class 3 0.0% 1.9% 98.0% 0.1% 

 4 1.5% 0.7% 0.5% 97.3% 

  1 2 3 4 

   Predicted class  

Fig. 4. Confusion matrix of the RF classifier for combined data set using the best features 441 

with a 2.56s window size 442 

 443 

Classification Performance for Individualized Data Set of Each Participant  444 

In order to examine the variability of movement between participants the classification accuracies of the 445 

types of classifiers, optimal selected features and window sizes were compared when both the training and 446 

testing data sets were only attributed to a single participant. The best features of each participant are presented 447 

in Table 4. It was found that each participant had 27 best features using the hybrid feature selection.  448 

Table 6 presents the classification accuracy for individualized data set of each participant based on all 449 

extracted features and best features. By using all extracted features, the classification accuracy based on the 450 

different types of classifiers for each participant was highest in the RF classifier as compared to the other 451 

classifiers (Table 6). Within each window size, the RF classifier had the highest accuracy in each participant 452 

by using all extracted features, followed by the SVM, KNN, DT, and ANN classifiers (Table 6). The highest 453 

accuracies of participant I and participant II based on the RF classifier with a 2.56s window size by using all 454 

extracted features were 98.7% and 98.3%, respectively (Table 6). Similar results were found when using the 455 

best features of each participant. Specifically, the RF classifier had the best accuracy by using the best 456 

features of each participant, followed by the SVM, KNN, DT, and ANN classifiers (Table 6). The 457 

aforementioned results were similar in each window size. A previous study had reported an average 458 

classification accuracy of 95.45% with a 6.4s window size for individualized data set based on the DT 459 

classifier (Zhang et al. 2018). Regardless of the optimal window size, these results indicate that with large 460 

samples of data sets, the RF classifier could be reliable for recognizing and classifying overexertion-related 461 



22 
 

 

 

workers’ activities when compared to the classifiers. On the other hand, the results, therefore, suggest that 462 

the ANN classifier requires a larger data set to optimize the classifier parameters. The highest accuracies of 463 

participant I and participant II based on the RF classifier with a 2.56s window size by using the best features 464 

were 99.3% and 99.1%, respectively (Table 6). These results suggest that a larger window size segment 465 

provides better classification performance when compared to a smaller window size segment, and these 466 

findings are consistent with reported findings of previous studies by using accelerometers for recognizing 467 

workers’ activities (Joshua and Varghese 2010; Ryu et al. 2018; Zhang et al. 2018).  468 

With regards to the different types of classifiers, best features, and optimal window size, the participant I had 469 

higher accuracies compared to participant II (Table 6). These results indicate that between-subject variations 470 

exist in recognizing overexertion-related workers’ activities even though they performed similar tasks. It is 471 

therefore plausible to conclude that the participant I conducted activities with persistent working techniques 472 

similar to real-world situations as compared to participant II. Notably, the classification performances in 473 

different types of classifiers, optimal selected features and window sizes are higher for individualized data 474 

of each participant (Table 6) as compared to combined data set of participants (Table 5). Similar findings 475 

were reported in a previous study showing a decreased by 5.6% of classification accuracy for combined 476 

participants when compared to individual participants (Zhang et al. 2018). Taken together, there are two 477 

reasons to explain these findings. First, since there was a slight variation of data set between participants, the 478 

data set from one participant may be a noisy data to the other participant, thus resulting in lower accuracy 479 

when using combined data set from both participants. Second, using larger data samples may result in over-480 

fitting of training data set with high computational time, thus, resulting in lower accuracy while using 481 

combined data set from both participants.  482 

Again, confusion matrices of 10-fold cross-validation from the best classifier (i.e., RF) with a 2.56s window 483 

size of the participant I and participant II are presented in Fig. 5a and Fig. 5b, respectively. As shown in Fig. 484 

5a and Fig. 5b, the sensitivity of each category of activity was more than 92% and 90%, respectively. This 485 

result further confirms that there are between-participant variations among the two participants although they 486 

performed the same categories of activities. In addition, the most misclassified category of activities had 487 
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4.2% in participant I (Fig. 5a) and 7.5% in participant II (Fig. 5b). These misclassified categories of activities 488 

were category-1-activity and category-4-activity in both participants.  489 

Table 6. Classification Accuracy (%) for Individualized Data of Participants Based on All Extracted Features and Best 490 
Features  491 

Window 

size 

 All extracted features  Best features 

ANN DT KNN RF SVM  ANN DT KNN RF SVM 

0.32s Participant I  72.3 82.4 85.8 91.6 90.9  74.4 84.8 87.9 92.6 91.7 

Participant II  72.1 82.1 85.5 91.2 90.5  74.0 84.3 87.6 92.2 91.2 

0.64s Participant I  74.9 81.7 82.7 94.6 91.7  76.6 83.6 85.8 95.6 92.4 

Participant II  74.5 80.8 82.4 94.3 91.5  76.1 83.4 85.4 95.1 92.2 

1.28s Participant I  75.5 85.8 86.7 97.9 92.9  78.7 87.7 88.7 98.8 93.8 

Participant II  75.2 85.4 86.4 97.5 92.4  78.2 87.4 88.1 98.2 93.2 

2.56s Participant I  78.7 89.5 90.8 98.7 94.9  80.8 90.5 91.7 99.3 96.7 

Participant II  78.3 89.1 90.1 98.3 94.5  80.1 90.4 91.2 99.1 96.5 

 492 

 

 

True 

class 

1 92.2% 2.5% 1.1% 4.2%  

 

True 

class 

1 90.3% 1.4% 0.8% 7.5% 

2 0.5% 98.6% 0.7% 0.2%  2 0.9% 97.3% 1.4% 0.4% 

3 0.1% 2.8% 96.4% 0.7%  3 1.3% 3.1% 94.1% 1.5% 

4 3.4% 1.6% 0.4% 94.6%  4 4.5% 2.1% 0.7% 92.7% 

 1 2 3 4   1 2 3 4 

  Predicted class    Predicted class 

     (a) Participant I            (b) Participant II 

Fig. 5. Confusion matrix of the RF classifier for each participant using the best features 493 

with a 2.56s window size  494 

 495 

Physical Intensity, Activity Duration and Frequency Estimation 496 

Table 7 shows the actual and estimated physical intensity, activity duration and frequency of each participant 497 

in each category of activity. According to Table 7, the estimated physical intensity, activity duration and 498 

frequency results of the participant I were within ± 11.1%, ± 2%, and ≤ -15.4%, from the actual values 499 

respectively. On the other hand, the estimated physical intensity, activity duration and frequency results of 500 

participant II were within ± 25%, ± 5%, and ≤ -42.9%, from the actual values respectively. Based on these 501 

results, it could be concluded that the estimation of physical intensity, activity duration and frequency in 502 

participant I was slightly accurate as compared to participant II.  503 

 504 
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Table 7. Actual and Estimated Physical Intensity, Activity Duration and Frequency 505 
Participant Activity category Physical intensity  Activity duration  Frequency 

Actual 

(kg) 

Estimated 

(kg) 

Error  Actual 

(s) 

Estimated (s) Error  Actual Estimated Error 

PI 1 14 13 7.1%  330 325 1.5%  20 23 -15.0% 

2 18 20 -11.1%  2305 2303 0.1%  63 70 -11.1% 

3 25 24 4.0%  3600 3594 0.2%  72 76 -5.6% 

4 19 17 10.5%  550 561 -2.0%  13 15 -15.4% 

             

PII 1 15 16 -6.7%  338 355 -5.0%  22 27 -22.7% 

2 16 19 -18.8%  2315 2322 -0.3%  60 69 -15.0% 

3 26 30 -15.4%  3620 3628 -0.2%  68 72 -5.9% 

4 16 12 25.0%  570 542 4.9%  14 20 -42.9% 

 506 
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Ergonomic Risk Level Assessment 507 

Following the evaluation of actual and estimated physical intensity, activity duration and frequency 508 

information of each participant, the corresponding ergonomic risk levels are calculated. These calculated 509 

values are based on risk levels of the category of activities as presented in Table 3. Table 8 summarizes the 510 

calculation of overexertion-related ergonomic risk levels. According to Table 8, all estimated risk levels are 511 

similar to actual risk levels in each participant. It was found that the difference between actual and estimated 512 

physical intensity is negligible compared to the difference between physical intensity for two adjacent risk 513 

levels (Table 8). Similarly, there was no significant difference between actual and estimated risk levels for 514 

either duration per shift or frequency per minute (Table 8). Given above, it is plausible to conclude that the 515 

proposed approach is feasible to calculate the actual and the estimated risk levels of each category of activity, 516 

which are within the same level of risk for each participant. Nath et al. (2018) reported similar findings for 517 

the actual and the corresponding estimated risk falls into the same level of risk by collecting time-stamped 518 

motion data from body-mounted built-in smartphone IMU sensors. Different from previous studies, the 519 

novelty of this study lies in estimating the physical intensity, activity duration, and frequency information for 520 

assessing the ergonomic risk levels of overexertion-related construction workers’ activities by collecting 521 

acceleration and foot plantar pressure distribution data captured by a wearable insole pressure system. 522 
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Table 8. Calculation of Overexertion-Related Ergonomic Risk Levels 523 
Item Activity 

category 

Physical intensity Risk 

level 

 Duration/Shift Risk 

level 

 Frequency per minute Risk 

level Actual Estimated  Actual Estimated Diff.  Actual Estimated Diff. 

PI 1 > 5 kg or high 

effort 

> 5 kg or  

high effort 

H  5% 5% 0% L  0.18 0.20 0.02 L 

2 8-23 kg 8-23 kg M  34% 34% 0% M  0.56 0.62 0.06 L 

3 >23 kg >23 kg H  53% 53% 0% H  0.64 0.67 0.03 M 

               

PII 1 > 5 kg or high 

effort 

> 5 kg or  

high effort 

H  5% 5% 0% L  0.19 0.24 0.05 L 

2 8-23 kg 8-23 kg M  34% 34% 0% M  0.53 0.60 0.07 L 

3 >23 kg >23 kg H  53% 53% 0% H  0.60 0.63 0.03 M 

 524 
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Contributions, Potential Applications, and Practical Challenges 525 

This section discusses the contributions, potential applications and practical challenges of the proposed 526 

approach. First, overexertion-related workers’ activities were conducted in a controlled laboratory setting to 527 

examine the feasibility of automated activity recognition and ergonomic risk assessment using acceleration 528 

and foot plantar pressure distribution data captured by a wearable insole pressure system. Cross-validation 529 

results showed that the RF classifier had the best classification accuracy of 98.3% and a sensitivity of each 530 

category of activities was above 95% with a 2.56s window size by using a combined data set of both 531 

participants. The results show that the proposed approach is reliable to autonomously and remotely monitor 532 

participants during simulated overexertion-related workers’ activities. In other words, the results demonstrate 533 

that acceleration and foot plantar pressure distribution data captured by a wearable insole pressure system 534 

show unique patterns for recognizing different categories of activities. Since the conducted experiments are 535 

generally peculiar to several construction workers (e.g., masons, carpenters, rebar workers) and other workers 536 

in industrialized sectors (e.g., manufacturing, agriculture), the proposed approach has a great potential 537 

application not only to be used as personal protective equipment for individualized construction workers but 538 

also in similar occupational trades. Second, the current study extends the authors’ earlier works on automated 539 

detection and classification of awkward working postures (Antwi-Afari et al. 2018f) and loss of balance 540 

events (Antwi-Afari et al. 2018e). Specifically, the feasibility to automatically recognize overexertion-related 541 

workers’ activities as a potential risk factor for developing WMSDs in construction was investigated in 542 

greater details in the current study. Despite the existing ergonomic risk assessment methods such as self-543 

reported, observational-based, and vision-based methods that have some limitations, the proposed approach 544 

can allow researchers and safety managers to continuously and objectively evaluate overexertion-related 545 

activities that may lead to WMSDs among construction workers. The automated recognition of overexertion-546 

related workers’ activities may enable construction managers to accurately identify ongoing construction 547 

activities and easily share information with other project stakeholders. In addition, the novel method may 548 

help safety officers and construction managers to proactively identify potential risk factors for developing 549 

WMSDs in construction so as to implement effective interventions to minimize the occurrences of these risk 550 

factors on construction sites. Third, this is the first study to estimate the physical intensity, activity duration, 551 
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and frequency information for assessing the ergonomic risk levels of overexertion-related workers’ activities 552 

using a wearable insole pressure system. Our results found that the estimated ergonomics risk levels are 553 

similar to actual risk levels. As such, the proposed approach has a great potential application to replace 554 

subjective, time-consuming and interruptive approaches. The findings could be valuable for real-world 555 

implementations where it is possible to investigate whether the proposed approach (1) has the potential for 556 

recognizing and predicting workers’ activities of new data collected in future instances to existing data 557 

storage; (2) is reliable and robust against the variability of movements among workers (e.g., directions of 558 

movement) while performing activities; (3) could be used to automate work-sampling process for evaluating 559 

workers’ productivity. 560 

Despite the aforementioned contributions and potential applications of the proposed approach, there are 561 

several practical challenges that need to be addressed when using it in a real-world setting. They include but 562 

not limited to (1) system design and development; (2) data collection, storage and processing; and (3) ethical 563 

and privacy issues.  The effective use of a wearable insole pressure system on construction sites could be 564 

affected by design challenges from the hardware and software constraints arising from size and weight of the 565 

system, power efficiency and consumption. Due to the dynamic nature of the construction environment, the 566 

size and weight of pressure sensors must be small and lightweight to achieve a non-invasive and unobtrusive 567 

continuous monitoring of workers’ activities. Compared to wearable IMU-based systems, wearable insole 568 

pressure system must be developed in different foot sizes to fit the safety boots of workers on site. The use 569 

of pressure sensor software programmes based on a desktop computer may interrupt with ongoing 570 

construction activities. As such, software manufacturers must incorporate it on smartphone, smartwatches or 571 

wrist band that can be easily worn by workers. With regards to power efficiency and consumption, a proposed 572 

method to address such issues is either by using a Bluetooth low energy (BLE), an ultralow-power technology 573 

for devices with limited battery capacity or Bluetooth 3.0 specification, which adopts the medium access 574 

control layers to a shared wireless medium (Soh et al. 2015). Unlike laboratory settings, collecting 575 

acceleration and foot plantar pressure data using a wearable insole pressure system at the workplace are 576 

expected to be affected by signal artifacts, missing data and high computational time issues. As such, filtering 577 

methods such as low pass filter, band-pass filter and notch filter need to be applied to remove signal artifacts 578 
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from collected data from construction sites. To prevent missing data problems, data collection by using a 579 

wearable insole pressure system must be stored either on a flash memory device or in cloud software. For 580 

easy accessibility and to reduce computation time, raw sensor data need to be processed and transmitted 581 

through a short range of standardized wireless communication networks such as Wi-Fi, Bluetooth, ANT +, 582 

and ZigBee.  Lastly, ethical and privacy issues are mostly related to personal data protection and user 583 

confidentiality. To overcome the practical challenges arising from these issues, safety managers and 584 

construction institutions could provide subsidies and performance incentives as well as clear guidelines on 585 

privacy, confidentiality and proper use of a worker’s information.  586 

 587 

Limitations and Future Directions 588 

Despite the findings of this study, some limitations should be addressed in future studies. First, the number 589 

of student participants who participated in this study was relatively small either comparable to or larger than 590 

similar previous studies (Antwi-Afari et al. 2018c; Kong et al. 2018; Nath et al. 2018). As such, the limited 591 

sample size of this study may not be enough to reflect the diverse physiological characteristics of construction 592 

workers. Besides, all the experiments were conducted in a laboratory setting. Future research is warranted to 593 

validate our experimental protocol by using a larger sample of experienced construction workers at the jobsite 594 

to generate a more robust evaluation and recognition of overexertion-related workers’ activities and 595 

ergonomic risk assessment. Second, the current study was limited to the only overexertion-related workers’ 596 

activities in construction, and therefore the results may not be generalized to other construction activities 597 

(e.g., sawing, installing rebar, hammering)—future research should consider different types of construction 598 

workers’ activities. Such future studies would invariably help to further validate the proposed approach. Third, 599 

automated activity recognition by using a wearable insole pressure system can be integrated with other types 600 

of sensors such as depth sensors and physiological sensors to expand to other applications for construction 601 

workers. As such, automated overexertion-related workers’ activities based on a wearable insole pressure 602 

system can be enhanced by integrating it with either oxygen consumption or heart rate monitoring sensors 603 

for an in-depth understanding of workers’ physical conditions. 604 

 605 
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Conclusions 606 

The current study examined the feasibility of using acceleration and foot plantar pressure distribution data 607 

captured by a wearable insole pressure system for automated recognition of overexertion-related workers’ 608 

activities and assessing corresponding ergonomic risk levels. The proposed approach was tested in a 609 

laboratory setting by simulating overexertion-related workers’ activities that may lead to developing WMSDs 610 

in construction. Cross-validation results found that the RF classifier had the best classification accuracy of 611 

98.3% and a sensitivity of more than 95.8% for each category of activities using the best features of combined 612 

data set with a 2.56s window size. Moreover, the results showed that the accuracy of each participant’s data 613 

sets was higher than the combined data set using the best features. Furthermore, the actual and the 614 

corresponding estimated ergonomic risk levels fall within the same level of risk.  615 

The findings from this study make significant contributions to research and practice. First, the current study 616 

shows that using acceleration and foot plantar pressure distribution data measured by a wearable insole 617 

pressure system is feasible for automated recognition of overexertion-related workers’ activities. In particular, 618 

the proposed approach can continuously monitor and collect sensor data without interfering with ongoing 619 

activities on construction sites. In addition, it is non-intrusive and causes fewer constraints in body movement 620 

as well as minimizes discomfort. Furthermore, the outcome of using objective sensor data for recognizing 621 

overexertion-related workers’ activities could help safety managers to reduce the shortcomings of existing 622 

activity recognition approaches. Second, a novel methodology to evaluate overexertion-related workers’ 623 

activities which may lead to developing WMSDs in construction was presented. As a result, it extends the 624 

use of wearable sensing technologies for activity recognition and construction health and safety research. For 625 

example, it could be used to automate workers’ productivity and safety hazards’ detection. Third, this 626 

research study estimated the physical intensity, activity duration, and frequency information for assessing the 627 

ergonomic risk levels of different categories of activities. Consequently, the findings will enable a more 628 

comprehensive and meaningful analysis of ergonomic risks associated with overexertion. Overall, the 629 

findings would help develop a non-invasive wearable insole pressure system as a piece of personal protective 630 

equipment for continuous monitoring and activity recognition, which could assist researchers and safety 631 
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managers in understanding the causal relationship between overexertion-related ergonomic risk and WMSDs 632 

among construction workers.  633 
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