
CP2800 

Automatic Biomechanical Workload Estimation for Construction Workers by Computer Vision and 

Smart Insoles 

Yantao Yu,1 Heng Li,2 Waleed Umer,3 Chao Dong,4 Xincong Yang,5 Martin Skitmore,6 and 

Arnold Y. L. Wong7 
1 Ph.D. Student, Department of Building and Real Estate, Hong Kong Polytechnic University, 
Rm ZN1002, Hung Hom, Kowloon, Hong Kong SAR. Email: yt.yu@connect.polyu.hk 
2 Chair Professor, Department of Building and Real Estate, Hong Kong Polytechnic University, 
Rm ZS734, Hung Hom, Kowloon, Hong Kong SAR. Email: heng.li@polyu.edu.hk 
3 Research Associate, Department of Building and Real Estate, Hong Kong Polytechnic 
University, Rm ZN1002, Hung Hom, Kowloon, Hong Kong SAR. Email: 
waleed.umer@connect.polyu.hk 
4 Ph.D. Candidate, School of Civil Engineering and Mechanics, Huazhong University of Science 
and Technology, Luoyu Road 1037, Hongshan District, Wuhan, China. Email: 
daisydc@hust.edu.cn 
5 Ph.D. Candidate, Department of Building and Real Estate, Hong Kong Polytechnic University, 
Rm ZN1002, Hung Hom, Kowloon, Hong Kong SAR (corresponding author). Email: 
xincong.yang@outlook.com 
6 Professor of Construction Economics and Management, Room S711, School of Civil 
Engineering and Built Environment, Queensland Univ. of Technology, Gardens Point, Brisbane 
Q4001, Australia; Visiting Professor, Faculty of Computing, Engineering and the Built 
Environment, Birmingham City Univ., Birmingham B4 7BD, UK; Guest Professor, Research 
Institute of Complex Engineering and Management, School of Economics and Management, 
Tongji Univ., Shanghai 200092, China; International Collaborative Partner, Universiti Tunku 
Abdul Rahman Global Research Network, Kuala Lumpur, Malaysia. Email: 
rm.skitmore@qut.edu.au 
7 Assistant Professor, Department of Rehabilitation Sciences, Hong Kong Polytechnic 
University, Room No. ST512, Hung Hom, Kowloon, Hong Kong SAR. 
Email: arnold.wong@polyu.edu.hk 
 
Abstract 

Construction workers are commonly subject to ergonomic risks due to awkward working postures 

or lifting/carrying heavy objects. Accordingly, accurate ergonomic assessment is needed to help 

improve efficiency and reduce risks. However, the diverse and dynamic nature of construction 

activities makes it difficult to unobtrusively collect worker behavior data for analysis. To address 

this issue, an automatic workload approach is proposed for the first time to continuously assess 

worker body joints using image-based 3D posture capture smart insoles, and biomechanical 
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analysis to provide detailed and accurate assessments based on real data instead of simulation. This 

approach was tested in an experiment, indicating that the method was able to automatically collect 

data concerning the workers’ 3D posture, estimate external loads, and provide the estimated loads 

on key body joints with an error rate of 15%. In addition to helping prevent construction workers’ 

ergonomic risks, the method provides a new data collection approach that may benefit various 

behavior research fields related to construction safety and productivity management.  

Keywords: construction, worker, workload, occupational health and safety, ergonomic risks, 

biomechanical analysis, automated image-based 3D posture estimation, smart insoles, machine 

learning, deep learning.  

Introduction 

Workplace health and safety is an important issue worldwide. This is particularly the case with 

construction workers because of the heavy physical workload involved in their tasks (Inyang et al., 

2012; Umer et al., 2018). Construction activities often demand repetitive, awkward, postures and 

overexertion from the workers; the amount of work required and tight time schedules involved 

making them busy for prolonged durations with minimal breaks. Such a physical workload 

increases the likelihood of fatigue - the most frequent reason for accidents in the oil and gas 

industry, for instance (Chan, 2011), and an important root cause of accidents in the construction 

industry too. Workers continuing to work under fatiguing conditions face high health risks because 

of the development of work-related musculoskeletal disorders (MSDs). According to the U.S. 

Bureau of Labor Statistics (2016), 33% of all occupational injuries and illnesses on U.S. 

construction sites are related to fatigue and overexertion. Fatigue and MSD can also decrease 

construction worker productivity (Aryal et al., 2017).  



A first step towards lessening their negative influence is to precisely assess the workloads 

involved. Manual observation is frequently used for this, based on workers’ postures and external 

loads - the observation results are usually quantitatively analyzed with ergonomic scales. However, 

this method is too subjective to provide sufficiently accurate assessments. To address this 

limitation, a previous study has used biomechanical measurement devices to analyze workload 

(Umer et al., 2017b). Despite proving the concept, these approaches require the attachment of 

multiple sensors to the worker’s body, which may cause physical discomfort and irritation, as well 

as adversely affect productivity. 

Considering the limitations of these methods, we propose a blend of computer vision 

technology and smart insoles for the workload assessment and visualization of construction 

workers by providing a novel non-intrusive means to monitor whole-body workload. First, smart 

insoles equipped with 26 pressure sensors are used to capture workers’ plantar pressure. These 

pressure sensors register the force due to the workers’ self-weight and other external forces while 

carrying loads, operating tools, etc. Second, an RGB (red-green-blue) camera computer is used in 

conjunction with a specially developed vision-based motion capture algorithm to model the 

motions of a worker’s various body parts while performing construction tasks. Inverse dynamics, 

applied to the 3D posture data from the motion capture algorithm and force data from the insoles, 

is used to calculate the joint torque, which is then compared with individual joint capacity to 

estimate the workload borne by each joint.  

The proposed approach is both practically and theoretically significant. The development of 

such a system would equip the industry with a non-invasive tool for workload monitoring. 

Specifically, the visualized results will help construction workers and managers have an intuitive 

understanding of whole-body workloads and ergonomic risks. The posture and external load data 



also contain rich information of work patterns and workloads that could help understand the 

relationship between construction activities and workloads, provide a data base for refining 

ergonomic guidelines (e.g., work-rest schedule and work platform design), and improve the 

occupational health and safety of the industry.  

The remainder of this paper is arranged as follows. First, a literature review summarizes 

relevant workload assessment methods and identifies the gap between existing methods and the 

demands of construction applications. Second, a research framework is introduced, and the method 

is then demonstrated to test the feasibility and accuracy of the approach. Finally, the method’s 

advantages and shortcomings are summarized in the discussion and conclusion, where some 

suggestions are provided for further improvement. 

Literature review 

The purpose of this review is to provide an understanding of the previous research in this area as 

well as providing a rationale for the choice of workload assessment and data collection methods 

used in the present study. We begin with a review of the definitions and influences of workloads; 

two workload assessment methods, scales and biomechanical analysis, are then reviewed and 

compared; this is followed by a discussion of the behavior data collection methods used previously 

in the construction context. 

Definition of physical workload 

Workload represents all the factors reflecting the amount of difficulty of a person’s work, including 

physical workload and mental workload (Bowling and Kirkendall, 2012). This research focuses 

on physical workload because this has been proved to be a major factor leading to acute trauma 

injuries and cumulative MSDs (Radwin et al., 2001; Van Nieuwenhuyse, 2006), and it is more 

practical to provide a relatively objective and quantitative assessment of physical workload with 



current technical support. Physical workloads have two different definitions according to different 

load measurements, i.e. biomechanical load and cardiovascular load (Sandmark et al., 1999). 

Biomechanical load measures workload as the force or torque acting on the human body, which 

can be estimated by observation or computer vision, while cardiovascular load measures workload 

with cardiovascular indicators. The measurement of cardiovascular indicators usually involved 

wearable sensors with direct skin contact, which might be uncomfortable and irritating to wear 

(Sandmark et al., 1999). Moreover, biomechanical load has a more intuitive and direct relationship 

with external load and work duration. In short, workload assessment from a biomechanics 

perspective can provide direct suggestions for ergonomic improvements (Winkel and Mathiassen, 

1994). Based on these considerations, therefore, the present research assesses physical workload 

from the biomechanical perspective. The term “physical workload” is used to represent “physical 

workload from biomechanical perspective” for the remainder of the paper. 

Physical workload is the physical stress acting on a body, where stress is determined by 

working posture, the magnitude and location of external forces (such as hand loads and ground 

reaction forces), and the repetition and duration of working posture or external forces. The methods 

that have been proposed to measure physical workload from these aspects are reviewed in the 

following section. 

Workload assessment methods 

Scales for workload assessment 

Ergonomic scales assess the level of workload according to work posture, external load, 

repetitiveness, and duration. A variety of scales have been developed and applied, e.g. OCRA 

(Occupational Repetitive Actions) (Occhipiniti, 1998), RULA (Rapid Upper Limb Assessment) 

(McAtamney and Nigel Corlett, 1993), and REBA (Rapid Entire Body Assessment (Hignett and 



McAtamney, 2000). These tools are easy to use and provide quantitative workload assessments. 

However, most methods focus on only a few aspects of the workload factors involved. For 

example, RULA and REBA just assess whole body workload, while OCRA focuses on the upper 

body only; REBA and RULA consider static load, while OCRA considers workload repetitiveness 

and duration. Most scales define body posture quantitatively by the angle of the joints involved, 

but differ in their range of values. Consequently, assessing the same workload with different scales 

may lead to different results (Roman-Liu, 2014). In addition, these tools are aimed at 

manufacturing workers and consider motion and external load as repetitiveness, while the motion 

and external load patterns of construction workers are less regular, which make the scales difficult 

to apply in the construction situation. To solve these issues, we aim to develop a workload 

assessment method that is suitable for the complex nature of construction activities by using 

biomechanical analysis. The following section reviews the biomechanical-based workload 

assessment methods available. 

Biomechanical analysis for workload assessment 

Biomechanical analysis measures physical workloads in terms of joint force or torque. The 

biomechanical approach simplifies the human body as a lever system and uses mechanics to 

calculate internal torques based on joint position, external loads, and the person’s anthropometry 

parameters (Winkel and Mathiassen, 1994). Biomechanical analysis has been used to provide 

workload assessment in various contexts. Otsuka et al. (2010), for example, apply biomechanical 

methods to explore the relationship between work posture and workload during the insertion of 

pin connectors; Neumann et al. (2001) apply biomechanical analysis to assess low back pain risks; 

while the biomechanical method has also been successfully applied in the construction industry to 

facilitate the simulation of work-rest schedules (Seo et al., 2016a).  



Theoretically, biomechanics involves all the key factors of workload assessment (the 

magnitude, repetitiveness, and duration of external forces and location). Without restrictions on 

motion or load pattern (i.e. repetitive motion and static external loads), biomechanical analysis can 

be applied to almost any work tasks and all parts of the body (Roman-Liu, 2014). The gap between 

theoretical analysis and real practice is the method of collecting the motion and external load data. 

Observation has been widely used to collect motion data in previous workload assessment studies 

(Neumann et al., 2001; Otsuka et al., 2010).  However, the observed results are considered too 

subjective and inaccurate to support biomechanical analysis. It is also difficult to identify motion 

or load patterns based solely on manual observation (Valero et al., 2016). To solve these problems, 

several data collection methods have been applied to collect accurate workload-related data 

automatically; the following section reviews these methods. 

Automatic data collection methods for workload assessment 

Automatic posture data collection 

One widely used sensor system for capturing motion is the inertial measurement unit (IMU). If 

attached to key joints, IMU sensors are able to capture the accurate location and acceleration of 

the joints automatically (Yan et al., 2017). Previous research has used IMU to successfully collect 

posture data for workload assessment (Nath et al., 2017). The main disadvantage, however, is the 

necessary to tie IMU sensors tightly to the human body – an intrusiveness that may not be 

acceptable in practice. As Golabchi et al. (2016) and Valero et al. (2016) comment, such sensors 

may be feasible for a short-period but are likely to be irritating in long-time applications.  

The development of computer vision has prompted the proposal of various video-based 

methods to collect worker posture data, as cameras are clearly less intrusive than body sensors. 

Depth cameras have been particularly successful in workload evaluation (Ning and Guo, 2013), 



and several studies have applied them in construction management to recognize worker actions, 

(Ray and Teizer, 2012), for example, or to capture worker joint angles (Yu et al., 2017). However, 

although depth cameras have proven to be an efficient tool for collecting posture data for 

ergonomic evaluation in laboratory conditions, their inability to work under direct sunlight limits 

their application on construction sites 

Other research has extracted posture information based on RGB pictures from ordinary 

cameras. Shin et al. (2014), for example, have successfully classified workers’ postures with a 

double-lens camera; Seo et al. (2016b) propose a computer vision-based framework to identify 

construction activities from 2D image sequences; while Seo et al. (2016b) and Yan et al. (2017) 

use cameras to capture worker posture. However, while these methods are suitable for outdoor 

environments and can provide the non-intrusive workload estimation needed, they cannot support 

the 3D biomechanical analysis needed for construction workload assessment. 

Recent progress in computer vision is now making 3D biomechanics-based workload 

assessment possible, however. This involves a newly-developed computer vision algorithm that 

can model a 3D human skeleton from 2D video frames, making it possible to collect 3D joint 

positions based solely on videos or images (Zhou et al., 2017). Here, we examine the algorithm’s 

potential as a novel method for collecting construction worker behavior data and test its accuracy 

with construction activities experimentally. 

Automatic external load data collection 

The use of insole-shaped plantar pressure sensors in the workers’ footwear provides a potentially 

very efficient means of collecting external load data automatically. Two such sensor can collect 

the total ground reaction force of both feet (Lin Shu et al., 2010) then, by comparing this with the 

worker’s self-weight, the external loads involved can thus be estimated. This sensor has been 



widely used in biomedicine to collect plantar pressure data (Zeng et al., 2014). Importantly for the 

construction context, it is also is portable and non-intrusive. Recently, Antwi-Afari et al. (2018) 

have demonstrated the potential of applying the smart insole to obtain the plantar pressure of 

construction workers without interfering with their normal construction activities. Here, we obtain 

the external loads involved by applying the smart insoles continuously to obtain the ground 

reaction force involved. 

In summary, the prospects of automatic construction industry workload assessments are 

limited in that they: 1) lack a workload assessment method suited to the complex posture and load 

patterns of construction activities; and 2) lack a behavior data collection method (including posture 

data and external load data) for construction workers that is automatic, accurate, and non-intrusive. 

Here, we solve these problems by automatic biomechanical analysis, involving a new workload 

assessment method based on a posture model from computer vision data provided by algorithms, 

and external load data provided by smart insoles. The method could provide a relatively accurate 

and objective workload assessment for construction workers, which could not only offer the 

workers an improved understanding of the ergonomic risks involved, but also provide the data 

foundation for further studies of construction worker health, safety, and productivity. 

Method 

Outline 

Figure 1 depicts the flowchart of the proposed construction worker’s workload evaluation method. 

The input data includes video frames or pictures recorded with cameras, plantar pressure data 

collected with pressure sensors, and anthropology parameters of age, gender, height, and weight. 

The data processing period contains five tasks: 1) estimating 3D joint coordinates with a deep 

learning algorithm; 2) estimating external loads according to the plantar pressure data; 3) 



estimating joint capacity based on anthropology parameters; 4) calculating joint torque according 

to the 3D joint coordinates and external loads; and 5) assessing workload based on joint torque 

and joint capacity. 

3D posture capture from 2D images 

To ensure the non-intrusiveness of behavior data collection, the posture data must be collected 

automatically without interfering with work activities. This involves the use of computer vision. 

The workflow of the 3D pose estimator is shown in Figure 2 and comprises two steps of 2D joint 

recognition and 3D joint coordinate estimation. 

2D joint recognition. The aim of 2D joint recognition is to recognize the key joints and estimate 

their 2D coordinates. For this, a hourglass network is applied (Newell et al., 2016), which is a deep 

learning network that describes the relationship between pixels or pixel groups with multi-layer 

neuron networks. The hourglass network considers the features of both the local area and the whole 

image, making it suitable for joint recognition, which requires the recognition of each joint and 

the entire human body. A MPII (Max Planck Institute for Informatics) Human Pose dataset, which 

contains 25,000 pictures of various activities and the 2D coordinates of each joint, is used to train 

the hourglass network (Andriluka et al., 2014). Given the picture as input and 2D joint coordinates 

as output, the network is trained to find the best weight of each neuron so it can minimize the error 

between estimated joint coordinates and the real coordinates. The result of this step is a series of 

possibility distribution maps of the recognized joints, as shown in Figure 2.  

Estimation of the 3D joint coordinates. The aim of this step is to infer the 3D joint coordinates 

based on the 2D joint coordinates. It is usually difficult to infer 3D information solely from 2D 

information. However, the human body has bone length constraints, which links the 3D joint 

coordinates with 2D joint coordinates. Another deep learning algorithm is applied to simulate the 



complex nonlinear relationship between the 3D and 2D joint coordinates (Zhou et al., 2017). The 

algorithm is trained on a Human 3.6M dataset (which includes the 2D and 3D coordinates of 3.6 

million postures) to minimize the differences between the estimated and actual 3D coordinates. 

An example of a 3D joint location estimate is given in Figure 2. 

Automatic external load measurement 

The novel insole with plantar pressure sensors, named Moticon, is used to measure the worker’s 

total weight, including self-weight and other forces, as shown in Figure 3. The insole can be used 

in virtually any footwear. These commercial available smart insoles can transfer data wirelessly 

through an ANT radio service (Stöggl and Martiner, 2017). 

Each pair of insoles contains 26 pressure sensors (13 in each insole) as shown in Figure 4 to 

measure the corresponding area’s average pressure. The total ground reaction force of the insole 

equals the pressure of each sensor multiplied by the sensor area, with 
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where F , F  N  is the ground reaction force of the left foot (L) and right foot (R); S is the plantar 

contact area of each foot (S =150 cm2); N is the largest sensor number (#), (N =12; N+1=13 is the 

total number of sensors in each insole); n ∈ n ∈ ℝ |0 n N  is the number (#) of each sensor,  

p , , p , is the pressure value measured by sensor n in the left (L) or right insole (R).  

It should be noted that the insole-based weight and external burden estimation method 

involves the following assumptions: 

a) All the worker’s weight and external load act on his/her feet, which means that this method is 

unsuitable for such postures as leaning against a wall or sitting on the floor; 



b) The worker’s posture has no acceleration in the vertical direction. Otherwise, the ground 

reaction force measured with the insoles does not equal to the weight of worker and any 

external burden. 

The amount of external load is the total weight minus the worker’s self-weight. In construction 

tasks, external loads are usually located at the hands and feet (the ground reaction force). For the 

force located at the hands, two-arm and one-arm working patterns are taken into consideration. 

The angles of the shoulder joints and elbow joints on both sides are compared to identify the 

pattern. If the angles of the left and right arm are the same, the working pattern is considered a 

two-arm working pattern. Otherwise, a one-arm working pattern is identified, and the external load 

is considered at the worker’s dominant hand. 

Workload assessment based on biomechanical analysis 

Workload assessment aims to calculate the joint torques, and assess workload based on these and 

the workers’ joint capability. 

Calculation of joint torques  

Given the workers’ posture (3D coordinates of key joints) and external loads, biomechanical 

analysis is used to calculate the torque of each joint based on Newton’s Laws of Motions. To 

facilitate biomechanical analysis, the human body skeleton is simplified as a lever-hinge system, 

in which levers represent bones and hinges represent joints. An assumption is made that the motion 

of the workers’ key joints is steady and slow, which means the joints are in equilibrium. Figure 5 

illustrates the biomechanical simplification of the analysis of a forearm. In the elbow torque 

calculation, the forearm is simplified as a lever, where points A, B, and C represent the elbow’s 

location, the forearm’s gravity center, and location of the hand. The location of point C (i.e. the 

gravity center of a certain body segmentation) is given in Standardization Administration of China 



(1988, 2004). Since the forearm is assumed to be in equilibrium, the respondent torque at the elbow 

can be obtained. The external load in Figure 5 includes the self-weight of the forearm and the two 

bricks.  

The elbow torque is given by 

 𝑇 𝑊 𝐴 𝑊 𝐴  (2) 
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where T is the elbow torque; W , 𝑊  are the forearm and brick weights; 𝐴 , 𝐴  are the 

force arms of W , 𝑊 ; 𝐿  and 𝐿  are the lengths of the two parts of the forearm divided 

by its gravity center (point C); θ is the angle between the forearm and the horizontal plane; 

The coordinates of points A and B are A x ,𝑦 , 𝑧  and B x ,𝑦 , 𝑧   .  

Automatic biomechanical analysis software 3DSSPP is used to calculate the joint torques, as 

this is a relatively complex operation.  

Joint workload assessment 

Given the joint torque, this section aims to provide a workload assessment based on the workers’ 

load tolerance. The basic assumption is that different people have a different load tolerance, so 

workload assessment should consider not only such external factors as external loads and postures, 

but also the workers’ capability to tolerate loads. Maximal isometric strength (MVIC) is a widely 

used indicator to measure the human body’s biomechanical capacity. Consortium (1996) has 

developed a regression equation to predict MVIC based on gender, age, height, and weight, from 

the results of more than 500 experiments. This is used to estimate joint capability, with 
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where T  represents the maximum torque the joint can tolerate (the unit is [N]); 𝑙  is the force 

arm length during measuring external loads (the unit is [m]) - as the joint angles in the experiment 

are right angles, the force arm is equal to the corresponding bone’s length; gender =1 if the subject 

is a male; gender =0 if female; The units of age, weight, and height are [year], [kg], and [m] 

respectively; a, b, c and d are the coefficients, whose value is given in Table 1. 

Based on the current joint load T [N] and joint load capability T  [N], the joint workload is 

then given by 
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Experiments, results and analysis 

Experimental design 

Three main construction activities involved in the experiment are shown in Figure 6; these 

comprise material handling, rebar, and plastering. Three people participated in the experiment. 

Each wore smart insoles to capture the self-weight and any external load. A smart phone camera 

fixed on a tripod recorded the whole process. At the same time, a set of IMU sensors tied to the 

subject’s main joints also recorded the location of the joints. The IMU sensor has an accuracy of 

up to 1 degree (Yost Labs, 2017).  Experiments were enacted in both indoor and outdoor 

environments to demonstrate the feasibility of the proposed method. 

Experiment data 

The video data frequency is 25 fps (frames per second), and the insole pressure data is 50 fps. The 

3D joint coordinates, ground reaction forces, and hand loads were calculated and synchronized 

based on the method described. Table 2 provides the raw data. 



Posture data 

The 3D joint locations were extracted from the video frames by the 3D pose estimator. Figure 7 

shows one frame of the captured data. The 3D joint location data of each frame is a 16×3 matrix 

composed of the 3D coordinates of 16 joints. The IMU data was used to validate the 3D posture 

estimation algorithm’s accuracy, with video clips being first separated to more than 3,000 frames, 

and then the 3D pose estimator applied to each frame to obtain the 3D coordinates of each joint. 

The joint angles measured with the IMU sensors were transferred the joint locations and the two 

joint location estimation results compared. The results indicate the accuracy of the computer 

vision- based 3D posture estimation method to be approximately 3 cm per joint (Figure 8).  

Plantar pressure data 

Pressure data was used to evaluate the worker’s self-weight and other forces. In the material 

handling experiment, the subjects were required to lift various numbers (0~4) of bricks and hold 

them for 10 seconds. Each brick weighs 2 kg (19.6 N (g= 9.8 m/s2)). Figure 9 shows the postures 

involved in holding the bricks. 

At the same time, the total weight, i.e. the ground reaction force, was measured by the smart 

insoles. Each sensor recorded the corresponding area’s average pressure data (shown in Figure 5). 

Figure 10 presents an example of the pressure data recorded by the No. 8 sensor in the right insole 

when the subject was carrying 3 bricks. The pressure data was estimated as 2.5 N/cm2. Table 3 

provides the pressure values of all the 13 pressure sensors in the right insole.  

Figure 11 shows the ground reaction forces of both feet and the total ground reaction forces when 

the subject is holding 0~4 bricks. The brick weight was calculated as the difference between the 

ground reaction forces of consecutive liftings, as shown in Figure 12. The real weight of each brick 

is 19.6 N. The relative error is 5.99%, given by 
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Where δ is the relative error; N is the total number of trials (N=4); i is the brick number (i ∈

1,2,3,4 ); 𝑤    is the estimated weight of the 𝑖  brick; w is the brick’s real weight. 

Based on this analysis, the subject’s self-weight was measured as 725.8N, and weights of the four 

bricks were 17.5N, 20.2N, 18.2N, and 19.0N. 

Joint torque results 

Given the above position and external data, the joint torques were calculated with the 3DSSPP 

biomechanical analysis module. Table 4 contains part of the joint torque results in the material 

handling experiment. 

Workload assessment results 

Based on the joint torque and joint capability data (Table 4), the workload of each joint was 

assessed as the percentage of the joint torque in joint capacity (Table 5). 

Figure 13 shows the joint workload distributions during typical postures of the three construction 

activities involved. These comprise: 1) material handling: standing, bending when lifting the 

brick(s), standing again with the brick(s); 2) plastering: moving the arm from right to left; and 3) 

standing, bending, and rebar. The joint workloads in the skeleton figures are presented in Figure 

14. 

The error of joint torque was analyzed according to joint location and external load errors. As 

the forearm is the nearest joint with the external load in the experiment, and the self-weight of 

forearm is smaller than other body segments, the elbow torque was selected to calculate the 



maximum error of joint torque. Considering the forearm model in Figure 5, this can be calculated 

from 

 𝑇 𝛼𝑙𝑊 𝑙𝑊 𝑙 𝛼𝑊 𝑊  
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Where α is the ratio of the force arm of 𝑊  and the force arm of 𝑊 ; l is the force arm 

of 𝑊 ; 𝛥𝑙 , 𝛥𝑊  and 𝛥𝑇 represent the errors of 𝑙 , 𝑊  and 𝑇  respectively   . 

According to the joint coordinate and external load errors, 𝛥𝑊 /𝑊 = 5.99% and 𝛥𝑙 =3 

cm. Assume l= 30 cm and 𝛼𝑊 = 0.4 kg, then the elbow torque error was approximately 

15%. The whole physical workload assessment progress (from identifying 3D joint coordinates to 

visualizing the joint workload with the 3D skeleton) took around 0.5s in one GTX 1080Ti on a 

Linux PC with Ubuntu 16.04 system and MATLAB (2014a) on a WINDOWS 10 PC (Intel Core 

i7-5500U @ 2.4GHz, 8.00GB RAM).  

The workload assessment results demonstrated that the proposed methodology could 

automatically provide joint-level workload assessment for construction workers. The results also 

provide actual data-based workload assessment and suggestions. Comparing the joint workload of 

three construction activities indicates that material handling is more likely to result in high joint 

workload than plastering and rebar. In all the three activities, the left hip and left knee had a higher 

workload than other joints in the experiments, suggesting that the subjects may need to reduce the 

left leg workload by balancing the workload of both legs. Figure 14 provides more detailed and 

intuitive information concerning material handling. In the experiment, two subjects were required 



to lift four bricks by bending lifting and squatting lifting. It can be observed that the workloads of 

the squatting lifting were smaller, confirming the well-known fact that squatting lifting is a better 

posture for material handling. 

Field test of the proposed methodology 

To test the feasibility of the proposed methodology on construction site, two experiments were 

conducted. The first experiment tested the feasibility of the 3D posture capture method on 

construction sites. Three construction workers (a rebar worker, a masonry worker and a paving 

worker in the first experiment) participated the experiment for around 10 minutes. During the 

experiment, the rebar worker was tying the rebars in the squatting posture; the masonry worker 

was mixing mortar batches; and the paving worker was leveling the ground. Figure 15 illustrates 

several representative frames of a rebar worker, a masonry worker and a concreter in the first 

experiment. It was found that the three workers could be successfully identified. However, in the 

rebar worker experiment, the first two frames had significant errors, indicating that the method 

could not infer the joint locations accurately during tasks with severe visual obstacles, i.e., the right 

side of the workers body was blocked by the left side of the body. The experiment of the masonry 

worker demonstrated that the 3D motion capture method could work under poor lighting 

conditions. The experiment of the concrete worker demonstrated the suitability to outdoor 

environments under direct sunlight. 

The second experiment tested the feasibility of the workload assessment method.  In particular, a 

masonry worker was instructed to build a concrete block wall as shown in Figure 16. Figure 17 

shows several frames of the experiment frames. Figure 18 and Figure 19 show the joint-level 

workload results of a masonry worker. The eight curves in Figure 18 represent the workload of the 

eight joints (left/right shoulder/elbow/knee/ankle) in each frame, which demonstrates the fierce 



fluctuation of the joint workloads over time. Figure 19 presents each joint-level workloads 

graphically, where the blue bars represent the average joint workloads of the eight target muscles 

during the masonry task, and the green lines are the minimum and maximum workloads of each 

joint.  It reveals that the left shoulder and right elbow have the highest workload average and the 

highest workload maximum.  

Discussion 

This study proposes a workload assessment method aiming to solve the on-site workload 

assessment problem automatically, non-intrusively, and reasonably accurately with deep learning 

posture estimation algorithms, pressure sensors, and biomechanical analysis. A novel computer 

vision algorithm is used that can estimate 3D joint coordinates from 2D images. According to the 

experimental results, the estimation error is around 3 cm per joint. While this is higher than that of 

the depth camera (Kinect, 2 cm per joint) and motion sensor (YEI3, 1 degree) (Khoshelham and 

Elberink, 2012; Yost Labs, 2017), the method is non-intrusive and is suited to both indoor and 

outdoor environments. An additional benefit is that the pose estimation method can also be used 

in other posture-related research, such as construction worker safety and productivity management. 

Another contribution of the research is the automatic external load data collection. External 

load is a key factor in workload assessment and has been involved in several classical workload 

assessment methods (Golabchi et al., 2015). However, this is the first method for collecting 

external load data automatically and, with an experimental material handing error rate of 

approximately 6%, makes the subsequent automatic biomechanical analysis entirely feasible. 

The percentage of joint torque in joint capacity used as the workload indicator is also 

reasonably accurate, with an experimental error rate of approximately 15%. Its advantage in 

comparison with traditional ergonomic scales is that it is not limited to work posture, duration, and 



repetitiveness, and thus is more suitable for the complex and dynamic nature of construction 

activities. In addition, the method can also individualize workload assessment by considering joint 

capacity. The joint-level workload assessment provides a construction site database for such 

ergonomic improvements as suggested by the actual work postures being exhibited. 

A limitation of the method is the assumption that motions are relatively slow and steady, and 

therefore we simply use statistics when calculating the joint torques; when the workers’ motion is 

not steady, however, the acceleration will increase the joint torque. Further, when estimating 

external loads, it was assumed that all worker pressure was on the feet. Although this assumption 

may be true for most construction works, it is not applicable for situations where workers are 

sitting or sharing their body weight on their knees. The method assumes the joint capacity to be a 

constant throughout the experiment - while it is possible that continuous working could lead to a 

decrease in joint capacity, and thus an increase in the ratio of joint torque to joint capacity. In 

addition, the field test showed that when a worker was squatting, the 3D motion capture method 

couldn’t correctly identify the joints. This implies that this method may not be accurate if the vision 

is blocked. 

As well as examining the implications of these limitations, further research could consider 

improving the method’s accuracy using dynamics to analyze the joint torques if the acceleration 

data can be collected; developing more accurate external load estimation methods, such as by first 

identifying the carried object with deep learning algorithms and using the information to help 

estimate its weight; and estimating joint capacity more accurately by considering not only the 

workers anthropology parameters but also external load and work duration data. To improve the 

3D motion algorithm accuracy, the 3D motion estimation algorithm should be trained with more 



construction site pictures, especially those with higher visual obstacles between the worker and 

the camera.  

Conclusion 

A novel automatic workload assessment approach is presented by merging computer vision, 

pressure sensor technology, and biomechanical analysis. The method collects worker posture data 

with computer-vision algorithms and smart sensor insoles, which makes it possible to collect 

behavioral data non-intrusively and accurately. With a response time of approximately half a 

second and an experimental error of 3 cm per joint for joint position, 5.99% for workload, and 

15% for body joint load estimation, the method is demonstrated as being capable of successfully 

estimating joint-level workload based on video records and plantar sensors. The method potentially 

contributes to the collection of behavior data and ergonomic improvements of construction 

workers. Moreover, the workload assessment is based on biomechanical assessment, which is 

eminently suited to the complex and diversified nature of construction activities.  
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Figure Captions 

Figure 1 Outline of the automatic workload assessment method 

Figure 2 Framework of the 3D pose estimator 

Figure 3 Calculation of external loads with smart insoles 

Figure 4 Distribution of sensors in a pair of smart insoles 



Figure 5 Biomechanical analysis of the elbow in equilibrium 

Figure 6 Typical postures in material handling, rebar, and plastering 

Figure 7 Example of 3D joint coordinate estimation during plastering 

Figure 8 3D joint estimation error 

Figure 9 Subject holding 0–4 bricks 

Figure 10 Pressure data of the No. 8 sensor in the right insole when the subject is carrying 3 bricks  

Figure 11 Ground reaction forces of both feet and total ground reaction forces when the subject is 

holding 0–4 bricks  

Figure 12 Calculating the weight of brick as the difference of total ground reaction forces 

Figure 13 Calculating the weight of materials as the difference in total ground reaction force (L/R 

denotes left/right and E/S/K/H denotes elbow/shoulder/knee/hip.) 

Figure 14 Visualizing the joint workload with the 3D skeleton  

Figure 15 Example frames during the field test of the 3D motion capture method 

Figure 16 Design of the concrete block wall in the masonry task 

Figure 17 One frame during the masonry task 

Figure 18 Joint-level workloads of each frame during the masonry task 

Figure 19 Average and range of the joint-level workloads during the masonry task 

Table 1. Joint capability regression coefficients 
Joint a b c d 
Right shoulder 0.17 16.26 0.17 23.35 
Left shoulder 0.18 14.64 0.29 19.59 
Right elbow 0.13 11.24 0.07 22.78 
Left elbow 0.11 10.63 0.05 19.66 
Right hip 0.33 19.19 0.66 34.44 
Left hip 0.29 18.75 0.47 36.05 
Right knee 0.16 8.78 0.08 22.47 
Left knee 0.17 7.67 0.14 21.10 

 
Table 2. Raw data 



Activity 
Duration 

[sec.] 

Camera data Insole plantar pressure data 
Number of 

frames 
Number of 

joints 
Number of 

frames 
Number of 

sensors 
Material handling 22 550 16 1100 26 
Plaster 19 475 16 950 26 
Rebar 114 2853 16 5706 26 
Total 155 3878 - 7756 - 

 
Table 3. Values of all the right insole’s 13 pressure sensors 

Sensor Number Pressure [N/cm2] 
0 1.25 
1 1.50 
2 1.00 
3 0.50 
4 1.00 
5 3.00 
6 0.25 
7 5.25 
8 2.50 
9 5.75 
10 5.5 
11 4.24 
12 5.25 

 
 
Table 4. Examples joint torque calculation results  
Joint torque Joint capacity [N] Frame#1 [N] Frame#2 [N] Frame#3 [N] 
Right elbow 142.04 1.27 6.04 5.63 
Right shoulder 107.24 4.52 4.34 5.29 
Right knee 323.9 25.73 44.67 23.29 
Right hip 276.37 51.58 85.89 27.41 
Left elbow 125.97 1.89 4.88 3.57 
Left shoulder 100.91 3.89 6.97 8.63 
Left knee 313.54 35.1 64.86 103.69 
Left hip 268.65 69.78 107.89 169.42 

 
Table 5. Examples joint workload assessment results 
Joint workload Frame#1 [%] Frame#2 [%] Frame#3 [%] 
Right elbow 1.27 6.04 5.63 
Right shoulder 4.52 4.34 5.29 
Right knee 25.73 44.67 23.29 
Right hip 51.58 85.89 27.41 
Left elbow 1.89 4.88 3.57 
Left shoulder 3.89 6.97 8.63 
Left knee 35.1 44.86 47.69 
Left hip 49.78 47.89 49.42 

 




