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Abstract 

Construction workers are commonly subjected to ergonomic. Accurate ergonomic assessment is 

needed to reduce ergonomic risks. However, the diverse and dynamic nature of construction site 

makes it difficult to collect workers posture data for ergonomic assessment without intrusiveness. 

The Joint-level Vision-based Ergonomic assessment tool for Construction workers (JVEC), 
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therefore, is proposed to provide automatic and detailed ergonomic assessment for construction 

workers based on construction videos. JVEC extracts construction workers’ skeleton data from 

videos with advanced deep learning methods, then Rapid Entire Body Assessment (REBA) is used 

to conduct the joint-level ergonomic assessment. This approach was demonstrated and tested with 

a laboratory experiment and an on-site experiment, which indicates that the accuracy of ergonomic 

risk scores (70-96%) and the feasibility of construction sites. This research contributes to an 

accurate and non-intrusive ergonomic assessment method for construction workers. In addition, 

this research, for the first time, introduces the 2D video-based 3D pose estimation algorithms to 

the construction industry, which may benefit research on construction health, safety, and 

productivity by providing long-time and accurate behavior data. 

Keyword: construction, worker, ergonomic risks, computer vision, deep learning, occupational 

safety and health, 3D posture estimation. 

Introduction 

The construction industry is one of the most dangerous industries due to the high rate of work-

related injuries and death. Compared with other industries, construction workers suffer two times 

more work-related injuries (Entzel et al., 2007). The incident rate of nonfatal occupational injuries 

and illnesses involving days away from work in the US construction sector reached up to 34.6% 

in 2015 (U.S. Bureau of Labor Statistics, 2016). Work-related musculoskeletal disorders (WMSD) 

are the biggest work-related health issues (Kim, 2017). In the US, WMSDs are the main causes of 



absence from work (Punnett et al., 2004). Sweden and Brazil also share the same trends (Kim, 

2017). Besides, aging of the labor force, rising labor wages and a shortage of manpower have been 

becoming new challenges to the construction industry. Working ergonomically can help improve 

productivity and relieve labor force issues. Therefore, it is necessary to make the current 

construction workforce sustainable by improving occupational health. 

Ergonomic interventions have been proved effective to prevent work-related injuries (Entzel et al., 

2007). Efficient ergonomic assessment is the prerequisite for ergonomic interventions. However, 

due to the large variety of construction activities and the complexity of construction sites, it is 

difficult to get posture data accurately and continuously, let alone provide an accurate ergonomic 

assessment (Wang et al., 2015). Manual observation and 3D pose estimation sensors have been 

applied to capture working posture data. Although these studies have proven the concept, they 

might be inaccurate and intrusive in nature. In addition, the result of manual observation is 

subjective. Different observers might give different assessments based on the same posture. The 

results of 3D pose estimation sensors are more objective and accurate, but this method requires 

multiple sensors to be attached to the body of construction workers, which might result in 

uncomfortableness and irritation. 

In order to achieve nonintrusive and accurate ergonomic assessment for construction workers, this 

research aims to develop a joint-level vision-based ergonomic assessment tool for construction 

workers (JVEC). JVEC contains a 3D pose estimator and a REBA (Rapid Entire Body 

Assessment)-based ergonomic risk score module. The 3D (three-dimensional) pose estimator is 

composed of two deep learning networks, which are able to get 3D joint coordinates from the 



videos related to construction workers. Such a data collection method makes it possible to collect 

construction workers’ postures on sites instead of in laboratories, providing a solid foundation for 

ergonomic assessment and improvements. REBA-based ergonomic risk score module transfers the 

3D joint coordinates to joint angles, then utilizes REBA to provide a joint-level ergonomic risk 

score for the whole body. By combining the deep learning 3D pose estimator and REBA rules, 

JVEC realizes joint-level ergonomic assessments based on the data from real construction sites.  

The remainder of this paper is arranged as follows. First, a review is given to provide a summary 

and comparison of previous ergonomic assessment methods from the perspectives of data 

collection and ergonomic assessment rules, revealing the current research gaps of ergonomic 

assessment for construction workers. Then the research methodology is explained. Thirdly, the 

design and results of a laboratory experiment and an on-site experiment are given, followed by a 

discussion about the contributions and limitations of the methodology. Finally, a conclusion is 

drawn. 

Literature review 

Previous ergonomic assessment methods can be divided into the self-report-based methods and 

data-based analysis. Data-based analysis methods can be further divided into optical and non-

optical (Nunes et al., 2015). These methods have various strengths and weakness. The aim of this 

review is to compare the above methods and select the one that best fit the data requirements of 

ergonomic assessment as well as the harsh environments on construction sites.  



Self-report-based ergonomic assessment method 

The self-report-based ergonomic assessment method focuses on workers’ subjective ergonomic 

feelings and self-assessment on physical discomfort. For example, Corlett and Bishop (1976) 

developed a scale named “body map” to score the discomfort level of each body part. (Borg, 1998) 

introduced the Borg RPE scale (Borg Rating of Perceived Exertion Scale) to describe the workers’ 

perceived workload. (Åhsberg and Gamberale, 1998) used Swedish Occupational Fatigue 

Inventory (SOFI) for workers to assess the fatigue level. Above the methods provide effective tools 

for workers’ ergonomic-assessment. However, as these methods mainly focus on workers’ 

subjective feelings, making the results not general enough to support ergonomic improvements. 

Besides, questionnaires and interviews are the main data collection approaches in these methods 

(Wiktorin et al., 1993), making data collection time- and effort- consuming. 

Optical posture data collection methods for ergonomic assessment 

Manual observation 

The observation-based ergonomic assessment method classifies working postures through manual 

observation, then rates ergonomic rates based on posture category. Relevant ergonomic assessment 

tools provide objective and general approaches to assess workers' ergonomics. RULA (Rapid 

Upper Limb Assessment), OWAS (Ovako Working Posture Analyzing System) and REBA (Rapid 

Entire Body Assessment) are three popular ergonomic assessment tools (Hignett and McAtamney, 

2000; Karhu et al., 1981; McAtamney and Nigel Corlett, 1993).  RULA provides upper limb 



ergonomic assessment based on force and muscle activities. It is easy and convenient for 

ergonomic assessment, but not suitable enough for the construction industry, because construction 

activities are not only limited to upper limb postures and lifting tasks. OWAS is an assessment tool 

covering the whole body, which provides score based on the posture of each body part, such as 

“back bent slightly” or “back bent heavily” (Yan et al., 2017). It is easy and convenient but is not 

objective enough. OWAS describes postures with ambiguous words such as “slightly” and “heavily” 

without providing a clear boundary. REBA provides ergonomic risk scores according to objective 

joint angles and benefits the sequent automation process. Besides, REBA provides multi-level 

results, including joint level, body-part level, whole-body level. Such results are more 

comprehensive for ergonomic improvements. Based on the above strengths, REBA is selected as 

the ergonomic assessment rule. However, visual observations are imprecise and subjective, leading 

to less dependable fatigue evaluation (Alavinia et al., 2007; Valero et al., 2016). So, a more reliable 

data collection methods is required to provide accurate REBA-based ergonomic risk assessment. 

Marker-based 3D pose estimation methods 

Marker-based 3D pose estimation system requires certain markers (usually Light-emitting diode 

markers) attached to the subjects to emit signals and devices placed in the surrounding spaces to 

receive signals (Nunes et al., 2011). The marker-based method can provide highly accurate 3D 

pose estimation results, but not suitable for construction site environments due to three reasons: 1) 

the system requires careful calibration and highly controlled laboratory condition. 2) the system 

requires expensive multi-camera, which will increase the cost of the ergonomic assessment. 3) the 



markers are intrusive in nature and might lead to construction workers’ uncomfortableness and 

irritation. 

Markerless 3D pose estimation methods 

Considering the intrusiveness of marker-based 3D pose estimation system, markerless 3D pose 

estimation methods have been proposed to get accurate posture data in a non-intrusive way. These 

methods generate accurate data by identifying surface features. According to different vision data 

sources, this section divides the markerless 3D pose estimation methods into depth camera 

methods and RGB camera methods. 

Depth camera. Depth cameras have also been successfully applied in ergonomic risk evaluation 

(Dutta, 2012; Ning and Guo, 2013; Seo et al., 2016). More specifically, several previous studies 

have applied RGBD (RGB-Depth) sensors in construction management, for example, to use to 

recognize workers action (Ray and Teizer, 2012) to use depth cameras to capture worker joint 

angles (Yu et al., 2017; Zhu et al., 2014). Depth camera is turned out to be an efficient tool to 

collect posture data for ergonomic evaluation but is not appropriate for construction sites because 

depth cameras cannot work under direct sunlight.  

RGB camera. Other research extracted posture information based on RGB pictures from ordinary 

cameras. For example, S. Han et al. (2013) has successfully classified workers’ postures with a 

double lens camera; Seo et al. (2015) proposed computer vision-based framework to identify 

construction activities from 2D image sequences. S. U. Han et al. (2012) and Seo, Yin, et al. (2016) 



applied cameras to capture the worker’s posture. However, since the pictures just contain 2D 

information, one can only identify worker’s postures such as standing and squatting, rather than 

joint angles, therefore making it difficult to assess ergonomics more detailed. Yan et al. (2017) 

successfully applied view-invariant features to classify postures as “slightly”, “normally” and 

“heavily” danger, and provided ergonomic assessments with OWAS. However, the ambiguous 

classification standards may result in subjective ergonomic risk assessment results. As mentioned 

previously, REBA is more objective than OWAS, because it scores the ergonomic risks based on 

joint angle values. However, the posture capture method in (Yan et al. 2017) cannot provide data 

accurate enough for REBA. A new research also shows the necessity of applying 3D posture-based 

ergonomic assessment (Li et al., 2018), which visualized the 3D posture of construction workers 

and combined it with REBA for ergonomic assessment. The visualization process making the 

ergonomic assessment more accurate and intuitional. The methodology was proved to be feasible 

in the laboratory. However, as construction activities are of great variety and different workers 

have different work habits, it is necessary to provide ergonomic assessments based on data from 

real construction sites. 

Non-optical posture data collection methods for ergonomic assessment 

A variety of sensors have been applied for ergonomic assessments, including posture-based 

approaches and physical indicator approaches. Posture-based approaches collect motion data 

through sensors and use the above ergonomic tools to find out ergonomic risk; physical indicator 

approaches utilize sensors to collect workers physical signals that can reflect fatigue or 



nonergonomic situations, such as electromyography (EMG) and heart rate (HR). 

Posture-based approaches. Wearable sensors were used to collect more precise worker’s posture 

data (Nath et al., 2017; Yan et al., 2017). One of the widely-used 3D pose estimation sensor systems 

is inertial measurement unit (IMU) (Alwasel et al., 2017; Sedighi Maman et al., 2017; Valero et 

al., 2016). If attached to key joints, IMU sensors are able to capture the location and acceleration 

of the joints, and the human body motion data can thus be retrieved (Yan et al. 2017). Previous 

research has successfully used IMU to collect posture data and use it in ergonomic assessment 

(Valero et al. 2016; Nath et al. 2017). IMU can collect motion data automatically and continuously, 

making the ergonomic evaluation more convincing. The main disadvantage is the intrusiveness. 

IMU sensors are required to be tied tightly to the human body, but from the view of the application, 

workers may reject wearing sensors so tightly. Such sensors are feasible for the short-period track 

but may instigate irritation if used for long-time application (Golabchi et al., 2016; Valero et al., 

2016). 

Physical indicator-based approaches. Physical indicator-based approaches analyze ergonomics by 

directly measuring the physical indicators during work. Electromyography (EMG) and heart rate 

(HR) are two frequently used indicators (Antwi-Afari et al., 2017; Hwang et al., 2016; Umer et al., 

2017). Besides, if combined with work-related postures, the physical indicators can reflect 

ergonomic situations more accurately (Cheng et al., 2013). These indicators are easy to be 

measured with commercially available sensors. However, because of the intrusiveness, these 

assessments can only be performed in laboratories, focusing on certain body parts and certain work 



postures. As a result, these methods are too microcosmic to assess a worker’s ergonomic status of 

the whole body. Besides, EMG and HR sensors require direct contact with skin, limiting the 

application on construction sites. 

To conclude, the above 3D pose estimation methodologies are not suitable for ergonomic 

assessment in the construction industry. The non-optical methods and the marker-based methods 

are intrusive and may result in uncomfortableness. As far as the markerless methods, depth 

cameras can provide 3D posture data but cannot work in the outdoor environment. Previous RGB 

camera-based methods can only generate 2D posture data. A recent progress in computer vision 

shed lights on RGB camera-based 3D joint level ergonomic assessment. The computer vision 

algorithm can estimate 3D human skeleton from 2D video frames, making it possible to collect 

joint angles just based on videos (Zhou et al., 2017). By combining the state-of-art computer vision 

algorithm and the widely-used REBA, this research aims at developing an accurate, real-time, and 

non-intrusive ergonomic assessment method which is suitable for both indoor and outdoor 

environments. 

Methodology 

JVEC consists of a 3D posture estimator and a REBA score calculator. Figure 1 illustrates the 

framework of the methodology. First, a 3D pose estimator is trained to estimate workers’ joint 3D 

coordinates from 2D images. The method is based on an advanced deep-learning algorithm for 

human-body detection (Zhou et al. 2017). Then, joint angles are calculated based on the 3D 



coordinators. Finally, by comparing the joint angles and the REBA rules, the ergonomic status of 

a posture during construction tasks can be evaluated (Hignett and McAtamney, 2000). An 

experiment is designed to test the accuracy through the comparing with IMU.  

Computer vision-based 3D posture estimator 

To make the proposed method non-intrusive, the motion data must be collected automatically 

without interfering with work activities. This involves the use of computer vision. The workflow 

of the 3D pose estimator is shown in Figure 2. First, RGB images are collected from construction 

video clips. A deep leaning architecture, named hourglass network (Newell et al. 2016), is trained 

to estimate the 2D coordinates of joints. Then the joint length ratio constraints (set as the average 

of all subjects of Human 3.6M dataset), are used to estimate the 3D coordinates (Zhou et al. 2017). 

The following is a more detailed explanation. 

2D joint position estimation. Stacked hourglass network architecture is applied to estimate the 2D 

joint capacity position. The framework is presented in Figure 2. The architecture contains repeated 

hourglass structures. The first hourglass structure takes an RGB image as input and joint heat maps 

as output. As for the other hourglass structure, both the input and output are joint heat maps. The 

goal of each heat map is to minimize the difference between the estimated joint positions and the 

ground truth, as shown in Eq.1. 

Eq.1 

where 
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𝑃𝑃�(𝑥𝑥, 𝑦𝑦) represents the estimated heat map, i.e. the possibility distribution of the joint on each pixel; 

𝑃𝑃0(𝑥𝑥, 𝑦𝑦) represents the real possibility distribution; 

W and H is the width and height of a picture, and (𝑥𝑥,𝑦𝑦) represents pixel position.  

Figure 3 illustrates the detailed structure of each hourglass structure. In an hourglass structure, the 

input, an RGB image, is first compressed to extract features and then decompressed to consolidate 

the features for inferring human joint positions. Input compression includes convolution and max-

pooling, as shown in Figure 3. An RGB image is essentially a matrix denoted as 𝑴𝑴𝟎𝟎(𝑤𝑤0∗ℎ0∗3). The

features can be extracted through multiplying a weight matrix 𝑾𝑾𝟏𝟏, and different features can be 

extracted with different matrices. In Figure 3(a), for example, k features are extracted by 

multiplying (𝑾𝑾𝟏𝟏,  𝑾𝑾𝟐𝟐, … ,  𝑾𝑾𝒌𝒌) . To improve the non-linearity of the model and decrease the 

amount of calculation, max pooling is used to reduce the size of convolutional layer. Figure 3(a) 

provides an intuitive explanation of max pooling. The value of the four pixels on the top left corner 

is 5,1,9,2. In the max pooling layer, the four pixels are represented by only one pixel, and the value 

is set as the maximum of the original four pixels, that is, 9. The picture will be ultimately 

compressed to lowest resolution at 4×4 pixels. In the decompression period, the low-resolution 

results will be restored to the original size through nearest neighbor up-sampling and adding 

features across scales. Figure 3(b) shows the up-sampling process. The method first enlarges the 

image size by, for example, three times. 

Then, the convolutional layer of the same size will be added to the up-sampled layer. This step 

makes sure that the model involves into not only the partial features of the image through 



convolution but also the features of the whole image through adding the features across scales. 

After repetitive down-sampling and up-sampling, each pixel has its own score describing the 

possibility of whether the pixel belongs to a joint, for example, the right knee joint. The score is 

basically a weighted average of the image information of each pixel. The training process is used 

to calculate the weights by minimizing the differences between the predicted score (0~1) with the 

ground truth score (0 or 1). After being trained, the network could be used to calculate the right 

knee score for each pixel in a new picture, then the heap map of the right knee can be retrieved 

(Newell et al., 2016). 

3D joint position estimation. Based on the estimated 2D joint heat map, a model is trained to 

estimate the depth of each joint according to the 2D joint positions and the geometry constraints 

of the joints. The objective of the model training is to minimize the following loss function Eq.2. 

The basic idea of the geometry constraints is that the bone length of a person should be fixed. 

Based on the idea, the method aims to minimize the length difference between the bones of an 

identified skeleton and the ones of a standard skeleton. Eq.2 is the loss function of the arm group 

A, including left/right upper/lower arm bone, represented by 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∈ 𝐴𝐴. n represents the number 

of elements belonging to A, which equals to 4. For each bone, the estimated length is 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. The 

standard length is 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, which is calculated as the average of the length of all the samples in the 

database. 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the ratio between 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.  
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In this step, 16 key joints will be selected as the research subjects, i.e. J=16, as shown in Figure 2. 

There are totally 18 joints in Figure 2 because joint 3 neck and joint 13 hip are the middle points 

of join2/4 and 12/16 respectively. 

Validation of the posture capture method 

An experiment was enacted to validate the accuracy of the above method. IMU sensors were 

applied to collect the ground truth of joint positions. During the experiments, 13 sensors were tied 

to the subject’s key joints. At the same time, a common RGB camera collected videos 

simultaneously. Then, the IMU data was transferred to skeleton data, and the skeleton data was 

extracted from the RGB video with the 3d posture estimator method. The skeleton data from IMU 

at time t is denoted as 𝑿𝑿(𝑡𝑡), where 𝑿𝑿 = (𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, … ,𝒙𝒙𝟏𝟏𝟏𝟏) is a 13×3 matrix representing the 3D 

coordinates of 13 joints. The predicted skeleton is denoted as 𝒀𝒀(𝑡𝑡), which is a similar 13×3 matrix. 

The prediction accuracy is defined as the average of Euclidean distance between X and Y, i.e. 

 Eq.3

The REBA-based WMSD risk score 

REBA is an ergonomic assessment tool mainly based on joint angles. To utilize REBA in this 

research, the captured 3D joint coordinates must be transferred to joint parameters as required by 

REBA. Then according to these parameters, REBA can provide joint level, body part level, and 
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whole-body level ergonomic assessments. 

Joint angle calculation 

The joint parameters required by REBA are presented in Figure 4. REBA divides the human body 

into five parts including trunk, neck, leg, upper arm and lower arm. The following part explains 

how to calculate the above parameters. 

Trunk parameters. Trunk parameters include trunk flexion angle, side angle and twist angle. The 

calculation of trunk flexion and side is shown in Figure 5a. The numbers represent the 

corresponding joints in Figure 2. Plane a represents the upper body, which is defined by the neck 

and two hips. Plane b is the lower body plane, which is defined by waist and two knees. 𝛼𝛼 is the 

angle between plane a and plane b. 𝛽𝛽 = 90 − 𝛼𝛼 is the trunk flexion angle. 𝛾𝛾 is the trunk lateral 

flexion angle, which is defined by the angle between line 13-3 and line 13-3’, where 13-3 

represents the current spine position and 13-3’ represents the neutral spine position. If we denote 

the norm vector of plane a as the n, vector 12-16 as v, then vector 13-3’ = 𝒏𝒏 × 𝒗𝒗. Trunk twist is 

defined as the angles between shoulders vector 5-8 and hip vector 12-16, as shown in Figure 5b. 

Neck parameters. Neck parameters include neck flexion angle and neck side angle. The calculation 

is similar with trunk flexion angle and trunk side angle. The two planes are replaced with upper 

shoulder plane defined by point 1, 2, 4 and lower shoulder plane defined by point 2,4,11.  

Upper arm parameters. Upper arm parameters include the flexion and abduction angles of both 

upper arms. Figure 6 illustrates the calculation process. Plane a is the frontal plane. Plane b is a 



sagittal plane, which is perpendicular to plane a. Line l is the intersecting line of the plane a and 

plane b. Line 8-9 represents the left upper arm. Line 8-9’ is the projection on plane a, and line 8-

9’’ is the projection on plane b. Then the upper arm abduction is defined by angle 𝛽𝛽, i.e. the angle 

between line l and line 8-9’; the upper arm flexion is defined by angle 𝛼𝛼, i.e. the angle between 

line l and line 8-9’’.  

Lower arm parameters. Lower arm parameters include the flexion angles of both elbows. The 

calculation is similar with leg flexion angles.  

Leg parameters. Leg parameters include the flexion angles of both knees and the balance of legs. 

As shown in Figure 6b, the flexion angles equal to the supplement of the angle between vector 12-

14 and vector 14-15. The balance of legs is defined by the difference between two knee flexion 

angles.  

REBA score 

REBA provides ergonomic risk score rules based on the above parameters. Figure 4 illustrates the 

calculation process of the REBA score. Firstly, a joint-level score is given based on joint 

parameters. Take the trunk score for instance. A base trunk score is given based on trunk flexion 

angles; then the score will be added by 1 if trunk twist or side is found. Secondly, a body segment 

level score is calculated according to the joint-level score. REBA divides the human body into two 

parts. Part A includes trunk, neck, and legs, and part B includes upper arms and lower arms. The 

scores of part A and part B are separately regulated by table A and table B in REBA. Finally, the 



whole-body level score, which also provides the urgency of ergonomic improvements, is 

calculated according to the scores of part A and part B based on Table C in REBA. Table C in 

REBA is a score matrix, where the row represents score A and the column represents score B. Each 

element in Table C is the whole-body score according to score A and score B. In this research, the 

posture-based score was completed by JVEC, while the load- and work pattern-related score was 

completed manually. For a more detailed explanation, please refer to (Hignett and McAtamney, 

2000).  

Experiments, results, and analysis 

Two experiments were conducted to validate the proposed methodology. The first one is a 

laboratory experiment aiming at testing the accuracy of the methodology. While the second one is 

an on-site experiment for the validation of the whole ergonomic assessment methodology.  

Laboratory experiment for accuracy assessment 

Experiment dataset 

In the experiment, the subject enacted three construction activities including rebar, bricklaying, 

and plaster. The subject was wearing IMU sensors during the whole experiment process. The IMU 

sensor has an accuracy of 1° (3-Space™ Wireless 2.4GHz DSSS) (Yost Labs, 2017). To ensure the 

accuracy of IMU sensors, the researchers (1) calibrated the IMU sensors with static postures for 1 

minute and rotated each IMU sensor for 30 times to eliminate the initial error; and (2) controlled 



the duration of each task and calibrated the IMU sensors with static postures before each task to 

mitigate the time-accumulated error. A common camera and a set of IMU sensors recorded the 

subject’s motions simultaneously. The frequency of camera data is 25 fps (frames per second), and 

the frequency of IMU data is 30 fps. Figure 7 shows the representative frames of the experiment, 

Table 1 presents the raw data.  

Camera data. The camera data was captured with the 3D-pose estimator. Figure 8 shows one of 

the captured frames. The data of each frame was represented by a 16×3 matrix composed of the 

3D coordinates of 16 joints.  

IMU data. The IMU data was captured with IMU sensors. These IMU sensors were tied to the key 

joints of the subject. The sensor data was recorded in BVH (Biovision Hierarchy) format, which 

contains the joints’ three dimensions relative to original position and the offset of one child joint 

to its parent joint. The BVH structure is presented in Figure 9. The root joint is hip joint, which 

contains six parameters in raw data, including three-dimensional positions and three-dimensional 

rotations. In this research, we only focus on the posture of the subject, rather than the orientation 

and location, so all the six parameters of the hip joint were set as zero during the experiment. The 

arrows start at parent joints and end at child joints. The chest point gives an example of the data 

structure of all the joints except for the hip/root joint. Each joint contains the offsets along three 

dimensions relative to the original posture and three-dimensional rotation angles relative to the 

original posture at time t.  



Data processing 

The camera data and the IMU data are different in joint description, skeleton description, 

orientation, and frequency, thus the data must be preprocessed to eliminate the differences.  

Unify skeleton description. For the camera data, a skeleton includes 16 joints, while an IMU 

skeleton includes only 13 joints. Consequently, when validating the camera data with the IMU 

data, only the positions of 13 joints, including the head and the 12 joints of four limbs, were 

adopted. 

Unify joint description by translating IMU data from Euler angles to positions. It is a general 

practice to evaluate the accuracy of a pose estimation algorithms with the distance between 

predicted joint locations with the ground truth (Grinciunaite et al., 2016). In this study, camera 

data corresponded to the predicted joint locations and was represented by 3D joint positions. IMU 

data corresponded to the ground truth and was recorded by the rotation and offset of each joint. To 

make these two kinds of data comparable, the IMU data was transformed to joint positions based 

on the Denavit-Hartenberg matrix. The matrix separates a screw displacement into the product of 

a pure translation along a line and a pure rotation about the line (Legnani et al., 1996). In this study, 

the motion of each joint was seen as a screw displacement relevant to its parent joint, which was 

separated to pure translations and pure rotation along x, y and z-axis. Eq.4 illustrates the calculation 

process. Figure 10 provides the positive directions of the rotation systems and the rotation angles. 

𝒗𝒗𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋 = 𝒗𝒗𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 · 𝑫𝑫𝑯𝑯𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋 Eq.



𝑫𝑫𝑫𝑫𝒄𝒄 = 𝑫𝑫𝑯𝑯𝑷𝑷 · 𝑹𝑹 · 𝑻𝑻 

𝑹𝑹 = 𝑹𝑹𝒛𝒛𝑹𝑹𝒚𝒚𝑹𝑹𝒙𝒙

= �
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where 

 𝒗𝒗𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 is the position of the root joint; 𝐯𝐯𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣 is the position of the target joint; 

 𝑫𝑫𝑫𝑫  means the Denavit-Hartenberg matrix from one joint to another;  𝑫𝑫𝑯𝑯𝒄𝒄  means the 

Denavit-Hartenberg matrix of a child joint; 𝑫𝑫𝑯𝑯𝒑𝒑  means the Denavit-Hartenberg matrix of a 

parent joint; 

 𝑹𝑹𝒙𝒙,𝑹𝑹𝒚𝒚,𝑹𝑹𝒛𝒛 are the rotation matrices around Zr, Yr, Xr axis; R is the rotation matrix; T is the 

transformation matrix; 

 rx, 𝑟𝑟𝑦𝑦. 𝑟𝑟𝑧𝑧 are the rotation angles around the Xr, Yr, Zr axis; 

 Δ𝑥𝑥, Δ𝑦𝑦, Δ𝑧𝑧 are the offsets of a child joint to its parent joint along X, Y, Z axis. 

Unify joint description by translating camera data from positions to Euler angles. Since REBA 

score is based on joint angles, a comparison was also made according to the differences between 

joint angles generated from camera data and IMU data. Since the IMU data only contains 12 limb 

joints and 1 head joint, only joint angles on limbs could be compared, including elbow angles and 



knee angles. 

Unify frequency. In the experiment, both the camera and IMU sensors could record the start time 

automatically. Then the time of each camera frame and IMU frame was calculated based on the 

start time, a number of frames and the data frequency (Eq.5). Then the IMU frame and camera 

frame with the same or nearest time were matched. 

 Eq.5 

where 

is the time of the frame . The format of is hh: mm: ss.000; 

is the start time. The format of  is hh: mm: ss.000; 

is the data frequency. = 25 fps for camera data; = 30 fps for IMU data. 

Unify orientation. As previously mentioned, the orientation of the IMU skeleton, i.e. the rotation 

of the hips/root joint, was set as zero. However, the camera skeleton’s orientation varied over time. 

To make the orientation consistent, firstly, the origin of the camera data was set as the hip joint, 

which was defined by the middle point of the left and right hip. Then the two skeletons were 

aligned based on the hip vector and the left upper leg vector. The hip vector starts from left hip 

joint and middle hips joint; the left upper leg vector starts from the left hip joint and ends at left 

knee joint. Rodrigues matrix is applied to align the vectors. The Rodrigues matrix is usually used 

to calculate the DH matrix (Denavit-Hartenberg matrix) given the rotated vector and the original 

vector. For example, the hip vector in an IMU skeleton is denoted as 𝐯𝐯𝟎𝟎, the hips vector in the 

0ft t f v= +

ft f ft

0t 0t

v v v



corresponding camera skeleton is 𝐯𝐯. Then the Rodrigues matrix is defined as: 

𝒗𝒗 = 𝒗𝒗𝟎𝟎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + (𝒌𝒌 × 𝒗𝒗)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝒌𝒌(𝒌𝒌 · 𝒗𝒗)(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) Eq.6 

where 

𝜃𝜃 is the rotation angle, 𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎( 𝒗𝒗·𝒗𝒗𝟎𝟎
|𝒗𝒗||𝒗𝒗𝟎𝟎|

);

𝒌𝒌 is the rotation axis, 𝒌𝒌 = 𝒗𝒗·𝒗𝒗𝟎𝟎
|𝒗𝒗||𝒗𝒗𝟎𝟎|𝑠𝑠𝑠𝑠𝑠𝑠𝜽𝜽

Other joints rotated with the same rotation angle 𝜃𝜃 and axis 𝒌𝒌. 

Results of accuracy assessment by comparing camera data with sensor data 

Joint coordinates estimation accuracy. The estimated joint locations based on camera data were 

compared with the joint locations measured with IMU sensors. The comparison results are shown 

in Table 2 and Figure 11. The average error is 4.10 cm per joint. The nearer the joint is to the hips, 

the smaller the error is. The reason is that when transforming IMU data from angles to positions, 

the child joint position was calculated based on its parent joint’s position, so the error was 

accumulated.  

Joint angles estimation accuracy. The joint angles, including the elbow angles and knee angles 

on both sides, were calculated based on camera data and IMU data respectively. The joint angle 

estimation error was evaluated by the difference between camera joint angel results and IMU 

joint angle results. The distribution of the error is given in Figure 12. The mean of the error is -

0.70°. The standard deviation is 8.21°. 



Joint score estimation accuracy. The aim of this research is to provide ergonomic risk scores based 

on joint angels, so the REBA-based ergonomic risk score was also used as an indicator to provide 

accuracy. In this experiment, the ergonomic risk scores were calculated based on camera data and 

IMU data. The camera data-based score is compared with IMU data-based score to assess the 

accuracy of the ergonomic evaluation. As aforementioned, only 4 joint angles (the angles of both 

elbows and both knees) could be generated from IMU data, so only the elbow and knee score were 

compared. Figure 13 is the result of each frame and Figure 14 is the confusion matrix of the score 

result. 

According to REBA, knee angles were divided into 3 categories (0-120°,120-150°,150-180°), 

which correspond to score 2, 1, 0 respectively. Elbow angels were divided into 2 categories (80-

120°, and else), which correspond to score 2 and score 1. It could be observed from Figure 13 that 

most of the joint angles were classified into the right category, which means the method could 

provide the right ergonomic risk score. Figure 14 provided a more quantitative description about 

the accuracy. For the knee joint, the accuracy of score 0, 1 and 2 were 70%, 93%, and 85% 

respectively; for the elbow joint, the accuracy of score 1 and 2 were 96% and 75% respectively. 

Site experiment 

Experiment dataset 

The site experiment was conducted to validate the feasibility of the JVEC methodology. Six trades 

of construction workers were involved, including bricklayer, concreter, pipe layer, bar fixer, 



scaffolder and formwork erector. The authors shot a ten-minute video for each worker and then 

applying JVEC to performer ergonomic assessments based on the videos. The video frequency is 

25 fps. 

Results of 3D pose estimator 

The 3D pose estimator was applied to get the worker's motion data from the video clips. Figure 15 

shows the results of 3D pose estimation. It could be observed that the 3D pose estimation could 

generate 3D skeleton based on video frames in a real construction site. Compared with depth 

camera-based methods, the 3D pose estimation worked well in both indoor (the 1st and 2nd rows in 

Figure 15) and outdoor environments (the 3rd-12th rows in Figure 15). In addition, the 3D pose 

estimation also worked well in a dark environment such as the bricklayer images (the 1st row). 

However, the joint position estimation results on construction sites were not so accurate as those 

in the laboratory. For example, the estimated right knee angle of frame 9 in bricklayer images (the 

2nd row), the left elbow angle of frame 9 in scaffolder images (the 10th row), and the left knee in 

frame 9 in form worker images (the 12th row) are obviously different with the corresponding video 

frames. The reasons might be 1) the obstructions between the human body and the camera such as 

the worker’s body segments in the bricklaying task (the 1st row), the tubes in the scaffolding task 

(the 5th row) and the forms in the form task (the 11th row); 2) the differences in the lengths of 

human body segments between the workers and the ones used to train the 3D pose estimator. The 

3D pose estimator estimates the depth of joints based on body segment lengths. If the workers’ 

body segment lengths are different with the body segment lengths in the training dataset, 



estimation error will occur. 

Results of the ergonomic assessment 

Figure 16 and Figure 17 represent the results of the ergonomic assessment. Figure 16 shows the 

whole body ergonomic risk score of each frame, which demonstrates that the proposed 

methodology could provide a quantitative ergonomic risk score for each frame of videos on real 

construction site. Most of the scores were between 10 and 13, which is consistent with the 

observation results of the REBA scores of construction workers (Kulkarni and Devalkar, 2018). It 

could be observed from Figure 16 that the pipe layer, bar fixer, form worker and bricklayer seemed 

to have higher ergonomic risk than concreter and scaffolder during the on-site experiment, which 

means, during this experiment, the former four trades of workers were faced with higher ergonomic 

risk than concreters and scaffolders. 

Figure 17 shows more detailed results, which consist of 30 frequency histograms (5 body segment 

REBA score items ×  6 construction trades). The pipe layer had the highest trunk and leg 

ergonomic risk score because the pipe layer was continuously squatting or bending during the 

experiment. The comparison of each column in Figure 17 suggested the ergonomic risk of each 

body segment. In the first and last column, the trunk score, upper arm score, and lower arm score 

tend to be higher than other scores, which suggested that the bricklayer and form erector should 

pay attention to their arms and trunks. Similarly, for the concreter and scaffolder, both neck and 

lower arms deserved more attention. 



Discussion 

Construction workers faced with high ergonomic risks, resulting in a negative influence on the 

workers’ well-being and productivity. It is important, therefore, to assess the workers’ ergonomic 

risk accurately. Observations, sensors, and depth cameras are three main posture data collecting 

methods but are faced with challenges of low accuracy, uncomfortableness, and unsuitability to 

outdoor environments. This research intends to solve the issues by blending a video-based 3D pose 

estimation algorithm with REBA ergonomic risk score. 

Contributions of JVEC 

Higher ergonomic estimation accuracy. According to the laboratory experiment, the joint position 

error was 4.10cm per joint; the mean of joint angle error was -0.70°; and the ergonomic risk score 

accuracy was 70-96%. The probability of misclassifying was 4-30%. Previous posture-based 

ergonomic assessment methods are mainly based on manual-observation to collect the joint angles 

data, of which the accuracy is about 54% (Lowe, 2004). Thus the accuracy has been increased a 

lot, benefiting efficient ergonomic assessment.  

Vision-based ergonomic assessments. JVEC collects posture data from videos or images, which 

makes it more applicable for construction sites. The vision-based method can capture workers 

posture without any sensors. Besides, compared with the depth camera, such as Kinect, the method 

can work under direct sunlight, which makes it more suitable for construction sites. 

Joint-level ergonomic assessments. Different from previous vision-based methods (Yan, Li et al. 



2017), the method can provide joint-level ergonomic assessments, which makes the assessments 

results in more accurate and more benefit to specific ergonomic interventions. The reason lies in 

the new posture data collection method. This study uses the deep-learning-based computer vision 

algorithm to provide 3D joint location data with monocular RGB camera (such as cameras in smart 

phones). The benefits include 1) collecting posture data and assessing ergonomic risk in a non-

intrusive way without inferring workers’ normal construction tasks, and 2) providing 3D posture 

data, instead of 2D posture data, so that the joint angles can be measured more accurately.   

Near real-time ergonomic assessments. In the experiments, JVEC performed 3D pose estimation, 

joint angle calculation and REBA scoring for each video frame. The whole JVEC process for one 

frame took about 0.2 s on one Titan X GPU with CUDA 8.0 and cudnn 6, which means that the 

processor frequency is 5 fps. 

Limitations of JVEC 

Higher 3D motion estimation accuracy. Figure 18 provides two failure cases of the on-site 

experiment. The reason lies in visual obstacles. In Figure 18a, the worker was squatting, and most 

of the body parts were invisible. In Figure 18c, the worker’s right arm was blocked by the form, 

leading to the high error of the left arm. The 3D pose estimation could be improved by adding 

more pictures with obstructions to the training dataset so that the blocked body segment could be 

inferred. In addition, the current accuracy evaluation assumes that the IMU could provide the 

ground truth joint angles. However, the IMU sensors have an error of 1 degree (3-Space™ Wireless 

2.4GHz DSSS) (Yost Labs, 2017). This may lead to a joint location error positively related to the 



segment length. The accuracy assessment could be more objective if there are more accurate 3D 

joint location methods suitable for outdoor environment.  

Multi-worker motion estimation. The current version of JVEC can only be applied on frames 

containing only one worker. However, in most of the case, one supervision camera can record the 

activities of several workers. If JVEC can recognize all the workers within one frame, the 

efficiency could be increased a lot. 

Automatic external load and repetitiveness identification. REBA provides ergonomic risk score 

based on posture, external load, and repetitiveness. However, JVEC could only generate posture 

information automatically. In this research, the external load and repetitiveness score were still 

given by manual observation. 

More on-site data. Though the experiment demonstrates the feasibility of the methodology, the on-

site experiment only records a ten-minute video for each worker. For data-based ergonomic 

improvement suggestions, it is necessary to take longer-period video records for more construction 

workers. 

Suggestions for future research 

Based on the above limitations of JVEC, extensive research should be conducted in the future to 

make the method more applicable for ergonomic assessments on construction sites. 

1) Ergonomic assessments considering external loads 

As one of the ergonomic risks, external loads should be considered in the future version of JVEC. 



Two methods could be used to collect the external load data: 

Inferring external load data from videos. This method will first identify the objects carried by the 

worker, then infer the external load based on the object category. Two assumptions are involved 

here: 1) Most of the construction workloads are located at hands, and 2) the objects of the same 

category are of the same weight. 

Inferring external load data with pressure sensors. This method will involve insole-shaped 

pressure sensors, which can measure workers’ ground reaction forces during work. The difference 

between the total ground reaction force and the worker’s self-weight is the external load. The 

assumption is that the construction workloads are located at hands. 

2) Identifying motion repetitiveness with activity recognition algorithms 

The time sequence of each joint angle could be generated based on the joint positions of each 

frame. The time sequence data contains information such as motion repetitiveness and duration, 

which could contribute to a more automatic and accurate ergonomic risk assessment method. To 

reach the goal, machine learning and deep learning algorithms for sequence data could be applied, 

such as Long Short-Term Memory (LSTM) (Yoo, 2017).  

3) Inferring multiple construction workers’ 3D postures and those behind visual obstacles 

The 3D pose estimator can be improved by integrating with two advanced deep learning algorithms 

for multiple worker recognition and vision-obstacle remove. The algorithm in (Chu et al., 2017) 

can remove obstacles, and the open pose algorithm can identify 2D skeletons from images (Cao et 

al., 2017). 



4) Collecting more site data for data-based ergonomic improvement suggestions

The authors will collect more videos from construction sites for comprehensive ergonomic 

assessment results, which may support the following suggestions including the most high-risk 

construction trades, the heavy-load joints of each trade, and the work-rest schedule for each trade 

and even each worker. 

Conclusion 

This research presents an automatic ergonomic assessment tool for construction workers based on 

on-site data to prevent ergonomic risks. It can provide accurate and timely ergonomic assessment 

based on 2D videos by using a state-of-art 3D posture estimation algorithm to capture 3D joint 

positions from 2D images as well as adopting the REBA rule to get multi-level ergonomic risk 

scores. The laboratory experiments show that the proposed method can successfully and efficiently 

get workers’ 3D joint positions and practice accurate enough for the sequent REBA-based 

ergonomic assessment. The site experiment demonstrates that JVEC is workable on construction 

sites as well. The proposed methodology contributes to both construction workers behavior data 

collection and ergonomic assessment. Compared with previous behavior data collection methods 

(manual observation, 3D pose estimation sensors, and depth cameras), this methodology could 

provide accurate posture data with a less intrusive way in both indoor and outdoor environments, 

which makes it suitable for construction sites. By blending the data collection methods and REBA 

score, JVEC has a potential to provide comprehensive ergonomic assessment results and 



suggestions such as the most high-risk construction trades, the heavy-load joints of each trade, and 

the work-rest schedule for each trade or worker, for decision making on ergonomic risk 

management in the future.  
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Data generated or analyzed during the study are available from the corresponding author by 

request.  Information about the Journal’s data-sharing policy can be found here: 
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Table 1 The raw data of the indoor experiment 

Activity 
 

Duration 
(second) 

Camera data  IMU data 

Number of frames Number of joints Number of frames Number of joints 

Rebar 114 2853 16 3424 13 

Bricklaying 22 550 16 660 13 

Plaster 19 475 16 570 13 

Total 155 3878 - 4654 - 

 

Table 2 The errors of the 3D joint position capture from 3D video frames (Unit: cm) 

Task 
Statisit

c 
Head LS RS LE RE LW RW LH RH LK RK LA RA 

Mea

n 

Rebar 

Mean 6.12 
4.1

7 

3.1

1 

4.7

6 
4.38 5.40 5.79 

0.8

8 

0.8

8 

0.8

8 

1.8

6 

3.6

2 

4.1

0 
3.53 

Std. 1.99 
1.2

2 

1.1

9 

1.1

5 
1.11 1.24 1.10 

0.3

2 

0.3

2 

0.3

2 

0.8

9 

2.2

1 

2.4

5 
1.40 

Bricklaye

r 

Mean 7.94 
5.6

9 

5.5

8 

4.2

3 
3.71 6.38 5.57 

1.1

3 

1.1

3 

1.1

3 

3.0

2 

9.1

0 

9.4

7 
4.93 

Std. 1.94 
1.3

6 

1.2

5 

0.8

8 
0.86 1.02 1.27 

0.3

5 

0.3

5 

0.3

5 

1.2

0 

1.6

2 

1.6

6 
0.93 

Plaster 

Mean 
10.3

8 

8.8

5 

8.7

7 

7.5

8 
8.98 

10.3

1 

12.9

7 

0.5

8 

0.5

8 

0.5

8 

2.1

1 

2.7

4 

3.1

4 
3.24 

Std. 1.45 
1.0

1 

1.3

1 

0.9

3 
1.95 1.07 2.00 

0.1

7 

0.1

7 

0.1

7 

1.0

0 

1.2

2 

1.2

4 
1.32 

Mean 

Mean 8.14 
6.2

4 

5.8

2 

5.5

2 
5.69 7.36 8.11 

0.8

7 

0.8

7 

0.8

7 

2.3

3 

5.1

6 

5.5

7 
3.90 

Std. 2.26 
1.7

0 

1.9

3 

1.3

0 
1.70 1.71 2.27 

0.3

4 

0.3

4 

0.3

4 

1.0

3 

2.8

4 

2.9

6 
1.59 

Note: Std. represents standard deviation. 



Figure Captions 

Figure 1 The framework of the ergonomic assessment methodology 

Figure 2 The framework of the 3D pose estimator 

Figure 3 The process of compression and decompression: (a) Convolution and max pooling in compression 

period; (b) Up-sampling in decompression period 

Figure 4 The structure of REBA 

Figure 5 The calculation of trunk flexion, trunk and twist side angle: (a) Trunk flexion and side; (b) Trunk twist 

Figure 6 The calculation of upper arm flexion, abduction and knee flexion: (a) Upper arm flexion and 

abduction; (b) Knee flexion 

Figure 7 Representative frames of the experiment 

Figure 8 The captured 3D joint data from camera frame 

Figure 9 The BVH data structure 

Figure 10 The calculation of joint positions 

Figure 11 The distribution of joint position estimation error 

Figure 12 The distribution of joint angle estimation error 

Figure 13 The distribution of joint score based on camera and IMU data 

Figure 14 The confusion matrix to assess the ergonomic assessment accuracy 

Figure 15 Part results of the 3D motion capture 

Figure 16 The whole body ergonomic risk scores 

Figure 17 Eight score items of six construction trades 

Figure 18 Two failure cases of motion capture: (a) The video frame of first failure case; (b) The 3D pose 

estimation result of first failure case; (c) The video frame of second failure case; (d) The 3D pose 

estimation result of second failure case 
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