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Identification and classification of construction equipment operators' multi-level mental 

fatigue using wearable eye-tracking technology 

Abstract 

In the construction industry, the operator's mental fatigue is one of the most important causes of construction 

equipment-related accidents. Mental fatigue can easily lead to poor performance of construction equipment 

operations and accidents in the worst case scenario. Hence, it is necessary to propose an objective method that can 

accurately detect multiple levels of mental fatigue of construction equipment operators. To address such issue, this 

paper develops a novel method to identify and classify operator's multi-level mental fatigue using wearable eye-

tracking technology. For the purpose, six participants were recruited to perform a simulated excavator operation 

experiment to obtain relevant data. First, a Toeplitz Inverse Covariance-Based Clustering (TICC) method was used 

to determine the number of levels of mental fatigue using relevant subjective and objective data collected during the 

experiments. The results revealed the number of mental fatigue levels to be 3 using TICC-based method. Second, 

four eye movement feature-sets suitable for different construction scenarios were extracted and supervised learning 

algorithms were used to classify multi-level mental fatigue of the operator. The classification performance analysis 

of the supervised learning algorithms showed Support Vector Machine (SVM) was the most suitable algorithm to 

classify mental fatigue in the face of various construction scenarios and subject bias (accuracy between 79.5% and 

85.0%). Overall, this study demonstrates the feasibility of applying wearable eye-tracking technology to identify and 

classify the mental fatigue of construction equipment operators. 
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1. Introduction 

Construction equipment operation often involves mentally demanding tasks during which operators are required 

to maintain sustained attention and keep vigilance on surrounding hazards simultaneously. Because of prolonged 

operating and vigilance activities, construction equipment operators are prone to mental fatigue [1,2]. Mental fatigue 

has been associated with serious hazard detection failures (i.e., change blindness, inattention, vigilance lapse, etc.) 

[1,3,4], which has been identified as one of the leading causes of construction fatal accidents [5-7]. For example, 

struck-by interactions between pedestrian workers and construction equipment accounted for almost one-fifth of 

fatalities in 2016 in the United States construction industry [8]. Similarly, Occupational Safety and Health Association 

(OSHA) found such struck-by accidents as one of the four major causes of fatalities in the construction industry. In 

addition to fatal accidents, short-term mental fatigue can easily lead to low productivity in the workplace [9], and 

long-term mental fatigue can result in serious physical and mental health problems [10]. Taking the above into 

account, detecting and managing mental fatigue are necessary which could help to reduce the risk of struck-by 

accidents that has become an important priority for researchers and practitioners in the construction industry. 

Previous studies have endeavored to measure fatigue for construction safety [3,11-14]. However, many of these 

studies have mainly focused on physical fatigue which could be detected relatively easily using multiple 

physiological measures (i.e., heart rate, electromyography, skin temperature) [11]. Unlike physical fatigue, there are 

a few effective means of measuring mental fatigue on construction sites. Several studies have measured and assessed 

construction workers' mental fatigue by relying on workers' subjective assessment [15] or by asking the workers to 

be involved in additional task performance assessment [14]. As such, these methods interfere with regular work-tasks 

and are impractical for continuous real-time mental fatigue monitoring. Although a series of neurophysiological 

measurement techniques (e.g., electroencephalogram and electrocardiograph) have been developed which can 

provide objective, real-time mental fatigue detection, these techniques are based on the recording of the electrical 
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activity of the human body, which is highly invasive to workers and the electrical signals are susceptible to harsh 

environmental conditions at the construction site, limiting their reliability and availability of application on 

construction sites. To address such issues, this study proposes a non-invasive, easy-to-install wearable eye-tracking 

technology to measure construction equipment operators' mental fatigue. 

In order to enable automatic construction equipment operators' mental fatigue detection, this study applied 

supervised learning to extract eye-movement-related features and classify corresponding mental fatigue levels based 

on eye movement data. Moreover, interestingly, the current studies on supervised learning-based mental fatigue 

classification usually use individual subjective feelings or researchers' experience as a ground truth for determining 

mental fatigue levels. Most of these studies classify mental fatigue into a binary classification: fatigue and no fatigue, 

which is not sufficient to provide an adequate understanding of mental fatigue for researchers and practitioners to 

make safety management decisions [16,17]. The development of fatigue is a gradual process of accumulation in 

which multiple intermediate states of mental fatigue have different effects on operators' operating tasks. Therefore, 

it is necessary to find an objective and reliable method to classify mental fatigue at multiple levels to help construction 

practitioners identify the safety risks caused by each mental fatigue level and propose more effective safety 

interventions respectively. 

This paper proposes a machine-learning-based automated mental fatigue identification and classification method 

for construction equipment operators using wearable eye-tracking technology and a Toeplitz Inverse Covariance-

Based Clustering (TICC)-based multi-level mental fatigue identification and data labeling method. A laboratory 

experiment was conducted to collect relevant data from simulated equipment operating task. We collected mental 

fatigue, productivity, and safety related time series data from the experiment, used TICC method to identify mental 

fatigue levels and labels for the data. Different levels of mental fatigue are associated with different subjective 

feelings, task performance, and eye movement behaviors that are reflected in specific combination pattern of various 
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eye movement features measured by wearable eye tracking technology. On this basis, classification and detection of 

mental fatigue were performed. Supervised learning algorithms were developed to classify levels of mental fatigue 

by using spatial and temporal features that reflect the specific eye movement data patterns. The detection performance 

evaluation was conducted based on the experiment data. According to the results, the feasibility of the proposed 

research approach, its future application prospect and corresponding improvement direction were discussed. 

2. Related work 

2.1. Mental fatigue measurement methods 

Mental fatigue measurement methods can be broadly classified into two categories: subjective assessment and 

instrument-based measurement (Fig. 1). Early attempts at measuring mental fatigue involved various assessment 

scales that relied on subjective responses to a set of questions relating to physical and mental states [18,19]. Several 

construction-related studies have also utilized different self-assessment scales for assessing worker's mental fatigue 

[13-15]. However, an inherent problem of subjective assessment is that a person's true objective state (e.g. mental 

fatigue level) is different from his subjective feeling of his own state [20]. Furthermore, collecting worker's self-

assessment is burdensome and not practical on construction sites, highlighting a need for methods that can 

continuously monitor mental fatigue with minimal interference to construction activities. 

In order to address the problems of the subjective assessment methods, various instrument-based measurements 

have been proposed. As shown in Fig.1, a series of individual behavioral and physiological features that reflect the 

level of mental fatigue can be monitored through task performance testing, electrophysiological state monitoring, and 

physical activity monitoring. Task performance testing method assesses individual mental fatigue levels by recording 

task performance on standardized tasks reflecting mental fatigue, such as Psychomotor Vigilance Test (PVT) [11,21]. 

Electrophysiological state monitoring is a technique for measuring mental fatigue by monitoring the 
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electrophysiological signals of human bodies. They are widely used and offer different electrophysiological signals 

for mental fatigue measurement, such as electroencephalogram (EEG) [22,23], electrooculogram (EOG) [24], and 

electrocardiograph (ECG) [25]. In recent years, physical activity monitoring method are applied to measure and 

evaluate car drivers' mental fatigue, which mainly involves facial expression recognition and eye-tracking [26]. 

Generally, these behavioral and physiological features contribute significantly to mental fatigue measuring because 

a person usually has little control over them unlike subjective assessment, which makes them reliable and objective 

source of information to determine person's mental fatigue [27]. 

Mental fatigue 
measurement method

Subjective 
assessment

Instrument-based 
measurement

Task performance testing 

Electrophysiological state 
monitoring

Physical activity monitoring

• SSS, NASA-TLX, KSS, ...

• PVT performance
• Primary task performance

• EEG, EOG, ECG

• Facial expression recognition
• Eye-tracking  

Fig. 1. Summary of mental fatigue measurement methods. 

Note: SSS= Stanford Sleepiness Scale; NASA-TLX= NASA Task Load Index; KSS= Karolinska Sleepiness Scale. 

In recent studies, EEG, ECG, and EOG have become common and effective methods that measure mental fatigue. 

However, these technologies are invasive in nature and require skin preparation for sensors adherence which might 

instigate irritation. Moreover, on-site equipment operation often requires operators to do a lot of physical and mental 

activities in a complex and harsh operating environment, leading to circumstances, such as equipment 

electromagnetic interference, high temperature, equipment vibration, body movement and sweat [28], which could 

hinder the application of these technologies on construction sites. 

Compared to the mental fatigue measurement methods based on electrophysiological signal monitoring, eye-

tracking technology is not susceptible to interference from those factors on the construction site. There have been 

few studies focusing on measuring mental fatigue or some cognitive activities related to mental fatigue using eye-

tracking technology in the construction industry. Li, et al. [4] evaluated the impairing effect of mental fatigue on 
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excavator operators' hazard detection performance through eye-tracking technology. From the statistical point of view, 

they demonstrated that the eye movement metrics measured by a wearable eye tracker can reflect operators' mental 

fatigue state. Other studies have applied eye-tracking technology to measure cognitive functions/activities that might 

be related to mental fatigue, such as situation awareness [29] and visual search patterns[30]. However, these studies 

did not directly investigate workers' mental fatigue, nor did they verify the feasibility of eye-tracking technology for 

mental fatigue measurement. In general, previous studies have not been able to directly measure and detect mental 

fatigue of workers or operators in the construction industry, which could greatly burden the management and 

intervention of mental fatigue on construction sites. In this study, a low-invasive, easy-to-install wearable eye tracker 

was used to monitor construction equipment operators' eye movement for measuring and detecting their mental 

fatigue. 

2.2. Machine-learning-based mental fatigue detection 

Previous studies have attempted to develop various methods for the detection of mental fatigue based on 

physiological signals and those studies mainly used statistical analysis [25,31], single-index-based assessment [32], 

and machine learning methods. Compared with the first two methods, machine-learning-based methods have been 

demonstrated in many studies that the classification of different individual physiological and psychological features 

through various supervised learning algorithms can support a quick, accurate and robust mental fatigue detection 

[26,33,34]. In the related research, the mental fatigue detection method with EEG signal as the main feature has been 

found the most widely used [21,35,36]. However, as mentioned earlier, it is difficult to apply EEG and other 

electrophysiological signal measurement methods at the construction site for a series of reasons aforementioned. 

Consequently, researchers have begun to use supervised machine learning to process individual eye movement data 

to detect mental fatigue [17,37]. This provides a potential solution for construction equipment operators' mental 
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fatigue detection. Noteworthy, the eye movement features reflecting mental fatigue in a video watching situation 

[17,37] may not be applicable to the operator's mental fatigue test because of specific environment of the construction 

industry which needs to be evaluated. Accordingly, in this study, we explored suitable eye movement features that 

can effectively reflect the mental fatigue of the operators in construction sites. 

A key process before mental fatigue detection based on machine learning is the identification of mental fatigue 

levels and the data labeling [16,17]. The labels are used to classify mental fatigue in training and evaluating the 

algorithms, which represent the ground truth of the mental fatigue levels being predicted [38]. Whether it is based on 

EEG, eye-tracking or other measurement methods, the identification and data labeling methods can be summarized 

as two main methods. In the first method, mental fatigue levels are often identified and manually labeled using the 

subjective assessment scale [39] or performance test [21]. The second method usually identifies mental fatigue levels 

and labels corresponding data according to time-on-task phases [17,34-36,40] or task types (e.g., working at heights 

vs. working on the ground) [41]. The above studies usually divide mental fatigue into binary states: fatigue and non-

fatigue. However, identifying mental fatigue on a scalar or ordinal scale will be more useful for monitoring and 

managing operators' safety. Moreover, classifying mental fatigue from two levels through subjective evaluation or 

task time division is not accurate and objective enough [37,42], and most importantly, it is not enough to provide 

sufficient and explicable information and basis for safety management decision-making [16,17,34]. The development 

of mental fatigue is a process of gradual change and accumulation [22,43] in which there are multiple intermediate 

states, leading to different behaviors [44], task performance [45], and different levels of safety risks [11]. Determining 

these intermediate states/levels can help to deepen the understanding of construction equipment operators' mental 

fatigue and provide construction practitioners with a basis for developing mental fatigue intervention measures. 
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3. Methods 

The research framework consists of four main steps, as shown in Fig. 2. In Step 1, an experiment was conducted 

to help acquire relevant data. An eye tracker was used to obtain the eye movement data of the operators, and data 

related to mental fatigue such as subjective feelings of mental fatigue (task load and sleepiness) and operation task 

performance (production performance and safety performance of the operating task) was collected. In Step 2, based 

on the TICC method, we analyzed the time series data that can intuitively reflect the operator's mental fatigue, 

identified multiple levels of operator's mental fatigue, and automatically labeled the eye movement data. In step 3, 

combining the labeled eye movement data, the automatic classification and detection of the multi-level mental fatigue 

of the operator were performed based on supervised learning, and the proposed classification algorithms were 

validated and evaluated. The details of the research method can be seen below. 

Step 1. Experiment & data acquisition
Simulation experiment. Data 
acquisition using eye tracker.

Step 2. Mental fatigue levels 
identification and labeling

TICC-based multi-levels of mental fatigue 
identification and data labeling.

Step 3. Supervised-learning based 
mental fatigue detection

Detecting multi-levels of mental fatigue 
using labeled eye movement data.

 
Fig. 2. Research framework. 

3.1. Experiment 

A laboratory experiment was conducted to help to collect relevant data, considering that it is difficult to control 

the uncertainties of the experimental tasks and ensure the experiment safety on the actual construction sites. The 

overview of the experiment is shown in Fig. 3. 
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Fig. 3. Experiment overview. 

3.1.1. Participants 

Six participants (6 males), between the age of 26 and 31 (Mean 28.33 years, SD 1.86 years) took part in this study. 

The participants were all excavator operators from the industry with a mean experience of 3 years (range 1 to 8 years). 

All participants had normal vision and good health. They slept for at least seven hours and were required to quit 

alcohol or caffeine beverages 24 hours before the experiment. All participants were unaware of the purpose of the 

experiment and the expected results. Written informed consent was obtained before the experiment. 

3.1.2. Experimental apparatus 

The eye movement behaviors of the participants were recorded by the wearable Pupil-labs eye tracker [46], as 

shown in Fig. 3. The eye tracker consisted of a world camera and two eye cameras. The world camera was a 100 

degrees diagonal camera directed toward the scene in front of the user with a 60 Hz sampling frequency and 

1280×720 pixels resolution. The eye cameras can record the user's gaze point, blink and pupil behaviors with infrared 

illumination at a 200 Hz sampling frequency. Pupil-labs eye tracker is very light, and its frame is durable and can be 

adjusted according to the user's facial features, greatly reducing the interference with the user's task and increasing 

the reliability of the data acquisition. Moreover, this product has a lower price than other commercial eye trackers 
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and provides open source software and alternative ordinary camera accessories. Its price can be as low as $100 under 

the premise of ensuring the reliability of eye tracker. Considering the cost control of the construction project and the 

practicality of the eye-tracking technology on the construction site, this product is very suitable for the construction 

industry. 

Excavation operating simulation system consisted of three monitors with 1680× 1050 pixels resolution, two 

joysticks with force feedback and an adjustable seat, as shown in Fig 3. The monitor in the middle was used to display 

the scene in front of the excavator cockpit, and the monitors on both sides were used to display key scenes in the two 

rearview mirrors of the excavator along with surrounding scenes. The distance between the participant's eye point 

and the front monitor was about 120 cm. This system can record the various task performances (e.g., excavation task 

and hazard detection task performance) of the participants in real time. 

3.1.3. Experimental procedure and task design 

All participants needed to complete a Time-On-Operating (TOO) experiment procedure as shown in Fig. 3. TOO 

is a common experimental design paradigm that helps induce mental fatigue [22,31,43]. The simulated construction 

site can also be seen in Fig. 3. Participants were instructed to perform the TOO task using the simulation system in a 

laboratory where temperature, illumination, and noise were controlled and constant. All light condition and noise 

changes are generated from simulation scenarios in the simulation system. The simulation scenario is a typical open 

construction site under daylight condition. There are no drastic, frequent lighting changes in this simulation scene. 

The entire experiment lasted about 100 min, including a practice task, a rest break, and five TOO phases. To avoid 

an end-spurt effect-reactivation that occurs when participants know they are approaching the end of an experiment 

session, participants were uninformed about the experiment duration [31]. 

A 60-min TOO procedure combined with dual experimental tasks setting was adopted to reproduce the 

characteristics of the real excavator operating situation. The dual experimental tasks included a primary task and a 
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secondary task, these two tasks are carried out simultaneously according to the real construction operational task. 

This experimental task design is a common experiment paradigm in the field of experimental psychology [22,43], 

road transportation safety [31,47] and aviation safety [48]. The primary task was an excavation task that is the most 

common operation in earthworks. The secondary task was a hazard detection task (HDT). HDT required participants 

to manually respond to visual stimuli, which can be used to measure the hazard detecting performance of the 

participants [49,50]. This long-term continuous, repetitive dual experimental task setting is widely used in many 

fields such as psychology [51,52] and driving safety [25,50], enabling participants to feel sufficiently high level of 

mental fatigue in the experimental task that has a shorter duration than the actual task. It could make the experimental 

results reflective of the problems caused by mental fatigue in the real construction site. 

In this experiment, the participant needed to respond to the situations reflected in the rearview mirrors comprising 

of occasional appearance of pedestrian worker. The instance of appearance of worker in the mirror and the distance 

between worker and excavator were random for all participants. Participants needed to determine whether the worker 

is in a hazardous area (within the radius of rotation of the excavator) by judging the distance between the worker and 

the excavator. Once the worker appearing in the rearview mirror enters the hazardous area, all participants needed to 

do their best to respond quickly by pressing a button on the joysticks and slow down the rotating speed of the 

excavator or temporarily stop the operation to avoid struck-by accident. 

3.1.4 Data acquisition 

During the experiment, the task performances and eye movements of the participants were recorded by the 

simulation system and the eye tracker respectively in real time. Although research in psychology [17,44,53], 

transportation safety [54] and other fields has concluded that there are several eye movement behaviors have 

significant correlation with the development of mental fatigue, the specific eye movement metrics to be selected in 

this study still need to comprehensively consider the function of the eye tracker, TICC algorithm, supervised learning 
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algorithms, and construction practice. First, despite the Pupil-labs eye tracker is very suitable for the construction 

industry, its limited measurement accuracy and function cannot support the identification of some metrics that require 

higher image recognition capability, such as saccade velocity. Therefore we did not use these metrics. Second, to 

achieve TICC-based identification and supervised learning-based classification, on the one hand, a higher sampling 

frequency is required to record enough data samples; on the other hand, the metrics must be able to correctly reflect 

the dynamic features of operators' mental fatigue accumulation. Therefore, we abandon those metrics that only have 

sparse data or are prone to irregular changes due to the influences of uncertain external stimuli (e.g., pedestrian 

workers and surrounding moving equipment), such as fixation duration, fixation count, dwell time, etc. 

As a result, this study selected blink rate, blink duration, pupil diameter, and gaze position for the identification 

and classification of mental fatigue. These metrics have been shown to be sensitive to the change of individual mental 

fatigue state. Among them, pupil diameter will be significantly reduced as mental fatigue increases [17,44,53]. Blink 

rate and blink duration increase significantly as mental fatigue increases [17,54-57]. The gaze position can be used 

to represent the operator's visual attention range, which is significantly related to mental fatigue [4]. These metrics 

are easily measured at the construction site and have been demonstrated to reflect the mental fatigue of construction 

equipment operators [4]. From the perspective of construction project cost control and eye tracker usability mentioned 

above, if we can use the data of these metrics to obtain satisfactory mental fatigue classification performance, this 

can provide strong evidence for the feasibility of applying eye-tracking technology in the construction industry. 

Therefore, these metrics were selected as the source of data for mental fatigue identification and classification in the 

study. All eye movement raw data in this study was recorded and generated by Pupil Capture and Pupil Player [46]. 

In addition, subjective feeling of mental fatigue was assessed through the Stanford Sleepiness Scale (SSS) and the 

NASA Task Load Index (NASA-TLX) before the start of the TOO procedure and after each TOO phase (a total of 6 

times) in order to measure their temporal development (see Fig. 3). 
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3.2. Multi-level mental fatigue identification and data labeling based on Toeplitz Inverse Covariance-Based 

Clustering 

The aforementioned measures resulted in a large amount of time series data. Determining multiple levels of mental 

fatigue from time series data obtained through different sensors/measurement methods is challenging. Moreover, 

manual labeling of a large amount of mental fatigue time series data is labor-intensive and tedious. To this end, a 

highly efficient subsequence clustering method, the Toeplitz Inverse Covariance-Based Clustering method (TICC) 

[58] was used to identify and classify multiple levels of operator mental fatigue and automatically label relevant time 

series data. 

3.2.1 Toeplitz Inverse Covariance-Based Clustering 

TICC is a model-based multivariate time series subsequence clustering method for discovering repeated patterns 

in temporal data [58]. TICC defines each cluster as a dependency network showing the relationships between different 

sensors in a short subsequence, which is able to find accurate and interpretable structure in the data. Considering that 

the data related to mental fatigue (e.g., eye movement metrics, task performance metrics and subjective assessment) 

obtained in the experiment is a multi-dimensional time series and mental fatigue is gradually accumulated over time, 

TICC is suitable for the problem of multi-level classification of mental fatigue in this study. 

  As defined by TICC, we first consider a time series of T sequential observations,  

𝑥𝑜𝑟𝑖𝑔 = [
|
𝑥1
|

|
𝑥2
|

|
𝑥3
|

 
…
 

|
𝑥𝑇
|
], (1) 

where 𝑥𝑡 ∈ 𝑹
𝑛 is the t-th multivariate observation. In brief, the goal is to cluster these T observations into K clusters. 

TICC focus on clustering a short subsequence of size 𝑤 ≪ 𝑇 that ends at 𝑡. The observations 𝑥𝑡−𝑤+1, … , 𝑥𝑡 is 

constructed into an 𝑛𝑤-dimensional vector 𝑋𝑡. As a result, a new sequence from 𝑋1 to 𝑋𝑡 is generated, which is 

a helpful medium for providing proper context for each of the T observations. Therefore, the TICC method does not 
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directly cluster the observations, but clusters these subsequences 𝑋1, … , 𝑋𝑡. 

TICC defines each cluster as a Markov Random Field (MRF) to describe the interrelationships between various 

observations in a representative subsequence of the cluster [58]. Specifically, a Gaussian inverse covariance 𝛩𝑖 ∈

𝑹𝑛𝑤×𝑛𝑤 is used as the mathematical expression of the cluster i's MRF in the form of block Toeplitz: 

Θ𝑖 =

[
 
 
 
 
 
 
𝐴(0) (𝐴(1))𝑇 (𝐴(2))𝑇 ⋯ ⋯ (𝐴(𝑤−1))𝑇

𝐴(1) 𝐴(0) (𝐴(1))𝑇 ⋱  ⋮

𝐴(2) 𝐴(1) ⋱ ⋱ ⋯ ⋮
⋮ ⋱ ⋱ ⋱ (𝐴(1))𝑇 (𝐴(2))𝑇

⋮  ⋱ 𝐴(1) 𝐴(0) (𝐴(1))𝑇

𝐴(𝑤−1) ⋯ ⋯ 𝐴(2) 𝐴(1) 𝐴(0) ]
 
 
 
 
 
 

, (2) 

where 𝐴(0), 𝐴(1), … , 𝐴(𝑤−1) ∈ 𝑹𝑛×𝑛. 𝐴(0) describes the intra-time partial interdependencies, so that 𝐴𝑖𝑗
(0)

 defines 

the interrelationship between concurrent values of sensor 𝑖 and sensor 𝑗 (e.g., the hazard detection performance 

recording system and the eye tracker). 

The overall goal of TICC is to solve the K inverse covariances 𝜣 = {𝛩1, … , 𝛩𝐾} and get the corresponding point 

assignment sets 𝑷 = {𝑃1, … , 𝑃𝐾}  (𝑃𝑖 ⊂ {1,2,… , 𝑇} ), which is an optimization problem and can be expressed as 

follows: 

argmin
𝜣∈𝝉,𝑷

∑ [‖𝜆 ∘ 𝛩𝑖‖1⏞      
𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

+ ∑ (−ℓℓ(𝑋𝑡, 𝛩𝑖)⏞      
𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑑

+ 𝛽1{𝑋𝑡−1 ∉ 𝑃𝑖}⏞        
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

)𝑋𝑡∈𝑃𝑖 ]𝐾
𝑖=1 ,  (3) 

where, 𝝉  is the set of symmetric block Toeplitz 𝑛𝑤 × 𝑛𝑤  matrices. ‖𝜆 ∘ 𝛩𝑖‖1  is an ℓ1 -norm penalty of the 

Hadamard product to incentivize a sparse inverse covariance, where 𝜆 ∈ 𝑹𝑛𝑤×𝑛𝑤  is a regularization parameter. 

ℓℓ(𝑋𝑡, 𝛩𝑖) is the log likelihood that 𝑋𝑡 came from cluster 𝑖. The penalty parameter β is used to enforce temporal 

consistency, and 1{𝑋𝑡−1 ∉ 𝑃𝑖} is an indicator function judging whether adjacent points are assigned to the same 

cluster. 

TICC solves the optimization problem expressed as Eq. (3) by two main steps: Assigning Points to Clusters and 

Toeplitz Graphical Lasso. A variation of the expectation maximization (EM) algorithm is used to alternate between 
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assigning points to clusters and then updating the cluster parameters. 

  Step 1. Assigning Points to Clusters: All observation points are assigned to clusters by determining Θ and solving 

the combinatorial optimization problem for 𝑷 = {𝑃1, … , 𝑃𝐾}, which can be expressed as follows: 

min∑ ∑ −ℓℓ(𝑋𝑡, 𝛩𝑖) + 𝛽1{𝑋𝑡−1 ∉ 𝑃𝑖}𝑋𝑡∈𝑃𝑖
𝐾
𝑖=1 .  (4) 

This step assigns each T subsequences to one of the K clusters to collectively maximize the log likelihood and the 

time consistency, and trade off between the two objectives adjusted by the regularization parameter β. TICC use a 

dynamic programming algorithm to assign each 𝑋𝑡 into a cluster. 

Step 2. Updating Cluster Parameters (Toeplitz Graphical Lasso): Updating the cluster parameters 𝛩1, … , 𝛩𝐾 by 

solving the optimization problem expressed as Eq. (3) while holding the given P constant. Each 𝛩𝑖 is solved in 

parallel, which can be expressed as 

min− 𝑙𝑜𝑔 𝑑𝑒𝑡 𝛩𝑖 + 𝑡𝑟(𝑆𝑖𝛩𝑖) +
1

|𝑃𝑖|
‖𝜆 ∘ 𝛩𝑖‖1, subject to  𝛩𝑖 ∈ 𝝉,   (5) 

where |𝑃𝑖| is the number of points assigned to cluster i, 𝑆𝑖 is the empirical covariance of these points. This is a 

variation on the graphical lasso problem. Alternating direction method of multipliers (ADMM) is used to solve a 

separate Toeplitz graphical lasso for each cluster at every iteration of TICC algorithm to solve the overall optimization 

problem expressed in Eq. (3). A message passing algorithm is used to iteratively converge to the global optimal 

solution. The detailed TICC solution process can be referred to [58]. 

3.2.2 TICC-based mental fatigue multi-level identification and data labeling 

The framework of TICC-based mental fatigue multi-level identification and data labeling is shown in Fig. 4. We 

first selected typical variables related to mental fatigue as a time series data source for TICC-based analysis (see 

Table 1). These multidimensional temporal variables can intuitively describe the characteristics of operators' 

subjective feelings, task performance and objective eye movement behaviors under the state of mental fatigue, 
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making it easier to explain and understand the effects of different levels of mental fatigue on various facets of 

construction equipment operation. The subjective feelings include the NASA-TLX score reflecting the task mental 

workload, and the SSS score reflecting the degree of drowsiness. The task performance includes the performance of 

the excavation task reflecting the productivity and the HDT performance reflecting the operation safety. The eye 

movement behaviors are related to the three main aspects of blink, pupil, and gaze. 

 

Fig. 4. TICC-based mental fatigue multi-level identification and data labeling. 

Specifically, the eye movement behavior-related variables mentioned above include blink rate, pupil diameter, 

and gaze position. The blink rate and the pupil diameter represent typical blink activity and pupil state that reflect the 

level of mental fatigue, respectively. The gaze position can visually reflect the operator's visual attention allocation 

range to the surrounding hazards under mental fatigue. The visual attention allocation range can be calculated from 

the spatial positions of the gaze points of participants. As shown in Fig. 5, each monitor was assigned a standardized 

coordinate system, and the position of the gaze point on each monitor can be quantized by the coordinates of the 

corresponding coordinate system. The visual attention allocation range was measured by the distances from the gaze 

points on the left/right monitor to the middle monitor, which are 𝑑𝑙→𝑚 and 𝑑𝑟→𝑚 respectively. In order to make it 

more intuitive to quantify, the average value of 𝑑𝑙→𝑚 and 𝑑𝑟→𝑚 was directly used to represent the visual attention 

allocation range of the participant. 
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Table 1 The multidimensional time series data for TICC-based mental fatigue identification. 

Data source Description 

Subjective feelings NASA score and SSS score of each TOO phase. 

Excavation task performance The productivity of excavation task per minute (number of excavator operating 

cycles/minute). 

HDT performance Hit rate (times/minute). A hit is a correct response to a hazardous situation.  

False alarm (FA) rate (times/minute); A FA is an erroneous response to a safety situation. 

Objective eye movement behaviors Pupil diameter (pixel), blink rate (times/minute), visual attention allocation range = 

(𝑑𝑙→𝑚 + 𝑑𝑟→𝑚) 2⁄  

 

Fig. 5. Normalized coordinate systems of the left and right monitors. 

Note: to illustrate the above settings clearly, the middle monitor is omitted. 

To make the relevant time series data meet the requirements of the TICC algorithm, data interpolation and 

resampling technique were adopted for data preprocessing. Considering that the amount of missing data is small and 

most of the missing data is in a small time interval in which the data values are basically linear, a linear interpolation 

is used to complete the missing data. Furthermore, considering that the time series data were obtained at various 

sampling frequencies and the time scale for distinguishing changes in eye movement variables is less than 1 second, 

we set the data sampling frequency to 10 Hz. For variables with insufficient sampling frequency, such as subjective 

evaluation scores and task performance, upsampling are used to fill the data; for eye movement data with sampling 

frequency exceeding 10 Hz, down sampling was performed. In addition, the above data was normalized to eliminate 

individual differences (such as differences in pupil size) and to eliminate differences in characteristic properties 

between variables. After the pre-processing, a 8 × 𝑇 × 10 multivariate time series was obtained. 

TICC was used to discover repeated patterns in the above time series. Once these patterns are recognized, the large 

set of time series data can be described by a limited number of mental fatigue states. As shown in Fig. 4, the TICC 

performs simultaneous segmentation and clustering on the time series of all participants. In this study, without 
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considering the performance of the TICC algorithm, we set the window value as the minimum value 0.1s (1 sample). 

Refer to the preferred empirical values of the parameters in the TICC cases, the penalty factor 𝛽 was selected from 

10, 40, 100, 400 and regularization parameter λ was selected from 0.01, 0.1, and 0.5. Bayesian information criterion 

(BIC) is used as an objective criterion for evaluating and determining the optimization model and the appropriate 

clustering results. All data preprocessing, TICC-based analysis, and data visualization of the results were 

implemented using Python. 

3.3. Mental fatigue classification using supervised learning 

The relevant data required for the automated classification of mental fatigue was derived from the operator's eye 

movement data only. Based on the wearable eye-tracking technology, a variety of eye movement data-sets were 

collected, including pupil-related, blink-related, and gaze-related data. We performed basic data preprocessing on 

these data, including outlier deletion, noise data elimination, missing data interpolation and data resampling. The 

basic data used for supervised learning was a data set consisting of the above six participants' eye movement data, 

which had a sampling frequency of 0.2 Hz and a total of 4320 samples. The sliding window technique was used for 

data segmentation to convert sequential supervised learning problems into traditional supervised learning problems. 

The length of each feature extraction window was 10 s. And a 50% overlap of the adjacent windows was used. Based 

on the clustering results obtained in the previous step, preprocessed eye movement data were labeled by the 

corresponding level of mental fatigue. 

As has been explained in Section 3.1.4, this study identified and selected three main eye movement feature sets 

that have been demonstrated to be related to mental fatigue, which are blink behavior, pupil state, and gaze point 

distribution, respectively. As shown in Table 2, blink behavior-related features include blink rate and blink duration. 

The pupil diameter was used as the primary pupil state feature in this paper, which has been widely used to assess 
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individual mental fatigue. Gaze point distribution was divided into six features related to gaze point count and gaze 

point location, where the gaze point location was quantized by the coordinate values of the coordinate system shown 

in Fig. 5. In addition, task duration was also identified as a key feature that is directly related to the accumulation of 

mental fatigue. 

Table 2 Definition and descriptions for eye movement-related features for supervised learning. 

Feature set Feature Definition and description 

Blink behavior Blink rate (times/minute) The number of blink events detected. 

Blink duration (ms) Calculated from the start position of blink to the end value of blink. 

Pupil measure Pupil diameter (pixel) Pupil size measured in pixels. 

Gaze point Horizontal gaze point location The abscissa values of the gaze points in the left and right monitors. 

Vertical gaze point location The ordinate values of the gaze points in the left and right monitors. 

Gaze count Number of gaze points in the left and right monitors. 

In order to construct the mental fatigue classification model, some features that reflect the characteristics of the 

above-mentioned data needed to be extracted. First, the data of the feature sets described above was normalized using 

the Z score normalization method. The features extracted from these standardized data include the mean value, 

variance, standard deviation, maximum, minimum, data range, and kurtosis. As a result, 70 features were extracted, 

including 14 blink behavior features, 7 pupil diameter features, 42 gaze point distribution features, and 7 task duration 

features. These extracted features were then used in the training and testing of supervised learning algorithms. 

Different well-established classification algorithms were tested to select the classification algorithm that provides 

the highest accuracy, including Support Vector Machines (SVM), Decision Tree (DT), K-Nearest Neighbor (KNN), 

Boosted Tree (BT), and Linear Discriminant Analysis (LDA) [11]. Due to the limitation of the length of the paper, a 

detailed introduction to these algorithms is not provided. For more information, please refer to the machine learning 

related literature [59]. 

To determine the model parameters (e.g., features and algorithms) to achieve the best performance for classifying 

the multiple levels of mental fatigue, the performance of each algorithm was evaluated by cross-validation. 

Considering the practical application of the proposed method, the study used leave-one-subject-out (LOSO) cross-
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validation approach to evaluate the accuracy and validity of the classification algorithms. LOSO partitions the data 

of one subject as the test dataset, and the data of remaining subjects as the training dataset, which enables it to make 

full use of each subject's sample to reduce the subject bias caused by individual differences[60]. Therefore, it is very 

practical that LOSO requires training data from only one operator and does not require collecting new training data 

and retraining the classifier, before applying to a new operator. This advantage makes LOSO has been gradually 

applied to construction safety management, such as workers' activity recognition [61,62]. In this paper, the proposed 

classification algorithms and the classification evaluation were implemented in Python 3.7. 

4. Results 

4.1 The identified multiple levels of operators' mental fatigue 

A total of 216,000 samples of data from 6 participants was used for TICC-based analysis. According to the BIC 

value of the results corresponding to the combination of different model parameters, we obtained an optimal 

combination of model parameters, where the penalty factor 𝛽 was 400 and the regularization parameterλ was 0.01. 

As shown in Table 3, it was inferred that 3 with the smallest BIC value represents the appropriate number of clusters. 

Moreover, taking into account the actual needs of construction safety management, three levels might be a reasonable 

selection. The corresponding three-level mental fatigue intervention measures could be both effective and easy to 

implement on the construction site. Therefore, the levels of mental fatigue of the excavator operator in this study 

were determined to be 3. 

Table 3 The BIC values corresponding to each K values (window size = 1, 𝛽 = 400, λ = 0.01). 

K 2 3 4 5 6 

BIC 2162.63 1610.46 2046.54 2679.96 2527.65 

In order to explain the three-level of operator mental fatigue obtained from the TICC-based analysis, the mean 

values of the points in each cluster are used to directly reflect the effects of different levels of mental fatigue on 
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various aspects, such as subjective feelings, task performance, and eye movement behaviors. As shown in Table 4, 

although the data varies monotonically among three levels, the average trend and the difference between the levels 

was not consistent, reflecting the characteristics of different levels of mental fatigue. In Level 1 of mental fatigue, 

the operator had unapparent subjective feelings. In this level, operators performed both the excavation task and the 

hazard detection task well; the eye movement metrics also indicated that the operator was in a relaxed and energetic 

status. In the Level 2, the subjective feelings of the operator's mental fatigue increased significantly, and the objective 

eye movement behaviors also confirmed this; in this level, the task performances were reduced, especially the 

excavation performance dropped by more than 10%. The operator's subjective feelings of mental fatigue at Level 3 

were further affected by fatigue. Their extremely high blink frequency and significantly reduced pupil diameter and 

visual attention range all showed great impact from mental fatigue. Meanwhile, both the performances of excavation 

task and hazard detection task had been significantly impaired from Level 2 to Level 3. 

Table 4 The mean value of features of each level of mental fatigue. 

Level 
Subjective feelings 

ET performance 
HDT performance  Eye movement behaviors 

NASA-TLX SSS Hit FA  GD PD BR 

1 0.150 0.180 0.834 0.903 0.015  0.598 0.568 0.451 

2 0.327 0.417 0.736 0.825 0.036  0.537 0.463 0.664 

3 0.515 0.693 0.707 0.614 0.057  0.448 0.424 0.859 

Note: NASA-TLX= NASA Task Load Index; SSS= Stanford Sleepiness Scale; ET= Excavation task; HDT= Hazard detection task; 

FA=false alarm rate; GD= gaze distribution; BR= blink rate; PD= pupil diameter. 

Furthermore, we can explain the above results from a perspective that more reflects the characteristics of 

construction practices. This study analyzes the characteristics of different levels of mental fatigue and its impact on 

operators from three dimensions: Safety, Productivity, and Mental Fatigue Index. The Safety dimension consists of 

HDT performance and gaze points distribution. Gaze points distribution indicates the operator's visual attention range, 

which has a significant impact on operational safety. The Mental Fatigue Index is determined by both the subjective 

feelings and objective symptom. Productivity is determined by excavation performance. The data values of the three 

dimensions varies from 0 to 1. The values are calculated from the average of the features constituting this dimension. 
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In the Safety dimension, 0 means unsafe and 1 refers to safe approach. 0 in the Productivity dimension indicates low 

excavation performance while 1 indicates high performance. For the Mental Fatigue Index, 0 indicates no mental 

fatigue, and 1 represents the highest value of mental fatigue. 

 

Fig. 6. Scatter plot of each mental fatigue level data in dimensions of Safety, Productivity and Mental Fatigue Index. 

A three-dimensional scatterplot was drawn to intuitively demonstrate the characteristics of mental fatigue in the 

above three dimensions. As shown in Fig. 6, the operator in Level 1 is in a very low mental fatigue level, and its 

operational safety and productivity are significantly higher than the performance of Level 2 and Level 3. In Level 2, 

the operator's productivity was significantly reduced, operational safety was further reduced, and the mental fatigue 

index increased. This level shows that the operator is in a transition phase from low to high mental fatigue. At Level 

3, the operator was in a very mentally exhausted phase, and the productivity is barely equal to Level 2, but operational 

safety is at a minimum level. 

4.2 Evaluation of operators' mental fatigue classification algorithms 

The eye movement data was labeled according to 3 levels of mental fatigue and the data set (with a total of 70 

features that has been mentioned above) was used for the classification model. To acquire a more comprehensive 

understanding of the classification results, the classification performance of the proposed algorithms was evaluated 
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by overall mean accuracy, macro average precision (macro-P), macro average recall (macro-R), and macro average 

F1 score (macro-F1). Additionally, four different combinations of features were selected to demonstrate the feasibility 

of wearable eye-tracking technology in various construction scenarios, which are summarized as follows.  

(1) Feature set 1: Only pupil-based and blink-based features (21 features). In situations where the operator's 

operating position is not fixed (such as truck drivers who often get on and off the truck), gaze-based data is prone to 

loss. Therefore, the combination of features of pupil and blink is considered. 

(2) Feature set 2: Only blink-based and gaze-based features (56 features). In extreme situations where there are 

frequent and intense illumination changes, since the pupil diameter is sensitive to such light changes, the pupil 

diameter-related features are likely to be invalid for mental fatigue classification. Therefore, the combination of blink 

and gaze features is considered. 

(3) Feature set 3: All eye movement features (63 features). In situations where the external environment is relatively 

stable and the operator's operating position is relatively fixed (such as a tower crane operator), it is possible that all 

eye movement features are useful for mental fatigue detecting. 

(4) Feature set 4: All eye movement and task duration features (70 features). Task duration is an important feature 

that reflects the accumulation of mental fatigue. Therefore, under the assumption that the task duration can be 

measured, we consider the model performance under the combination of all eye movement features and task duration 

features. 

The classification performances of each supervised learning algorithm with these four feature sets are listed in 

Table 5. From the comparative evaluation based on LOSO cross-validation, it can be observed that the overall better-

performing algorithms are SVM, LDA, and DT, and the classification performance of BT and KNN is lower than the 

first three algorithms. SVM had the most balanced classification performance and also achieved high performance 

across all four feature sets (accuracy is from 79.5% to 85.0%). LDA achieved the best classification performance in 
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feature set 1 (86.0% accuracy), 2 (81.2% accuracy), and 3 (80.5% accuracy) compared with other four algorithms, 

but the classification performance with the feature set 4 was poor (78.8% accuracy). The performances of DT with 

the feature set 1, 2, and 3 were not as good as those of SVM and LDA. However, when using feature set 4, DT 

produced the best classification results compared with other algorithms (87.1% accuracy, 88.4% macro-P, 87.1% 

macro-R, and 86.6% macro-F1). In general, SVM has the best adaptability for all four feature sets while ensuring 

high mental fatigue detection performance. LDA has the best capability of mental fatigue detection for the feature set 

1, 2, and 3. In this paper, confusion matrix and receiver operating characteristic (ROC) curve were used to further 

evaluate the performance of SVM and LDA with all four feature sets. 

Table 5 Classification performance of the proposed classification algorithms with different feature sets. 

Algorithm Feature set 
Classification performance (%) 

Accuracy macro-P macro-R macro-F1 

SVM 1 85.0 86.6 85.9 85.1 

2 81.3 82.0 81.4 80.9 

3 79.5 80.6 79.6 79.0 

4 84.1 85.7 84.5 83.6 

Decision Tree 1 78.4 80.3 80.4 78.8 

2 79.4 80.1 79.9 79.2 

3 79.7 80.1 80.2 79.3 

4 87.1 88.4 87.1 86.6 

Boosted Tree 1 81.0 81.2 82.6 79.8 

2 71.5 73.6 74.2 69.9 

3 73.6 75.3 80.0 72.8 

4 75.4 75.6 72.4 71.0 

KNN 1 76.5 78.1 76.8 76.3 

2 63.4 63.8 63.6 62.6 

3 63.9 64.8 64.3 63.6 

4 73.9 74.5 73.7 73.1 

LDA 1 86.0 87.7 86.7 86.1 

2 81.2 82.4 81.3 80.8 

3 80.5 82.0 80.8 80.2 

4 78.8 80.0 81.1 75.8 

Confusion matrix is a specific visualization of the performance of each algorithm, which allows easy identification 

of confusion between different classes. In this study, normalized confusion matrix was used to achieve a more visual 

interpretation of which level is being misclassified (Fig. 7 and Fig. 8). Each column of the matrix represents the 

instances in a predicted mental fatigue level while each row represents the instances in a true level. The values of the 

diagonal elements represent the proportion of correctly predicted levels. 
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Fig. 7. Normalized confusion matrixes of SVM. 

Fig. 7 (a-d) show the accuracy of SVM predicting three levels of mental fatigue under the four feature sets. 

Considering the classification results in all feature sets together, SVM yielded the average accuracy of 83%, 75%, 

and 89% for mental fatigue level 1, 2, and 3, respectively. Fig.8 (a-d) present the accuracy of LDA predicting each 

mental fatigue level with the four feature sets. The average accuracies of LDA for mental fatigue level 1, 2, and 3 

under all four feature sets were 85%, 70%, and 89%, respectively. The above results suggested that although both 

algorithms showed excellent mental fatigue classification performance, their correct prediction rates for the 

intermediate-level mental fatigue (level 2) were lower than those for other levels. For example, SVM achieved the 

classification accuracy of 68% for mental fatigue level 2 with feature set 3 (Fig. 7(c)), and LDA had a lower accuracy 
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of 56 % for mental fatigue level 2 with feature set 4 (56%, as shown in Fig.8 (d)), which means that the probability 

of misclassification was high when detecting mental fatigue level 2. This might be attributed that mental fatigue is a 

continuous cumulative process, and the corresponding data is also continuous, resulting in a decrease in the accuracy 

of predicting some intermediate states adjacent to mental fatigue level 1 or level 3. 

 

Fig. 8. Normalized confusion matrixes of LDA. 

ROC curve is usually applied as a visual tool to illustrate the relationship between true positive rate (TPR, or 

sensitivity) and false positive rate (FPR, or 1-specificity) along with the change of a threshold parameter [63]. The 

area under the ROC curve (AUC) is a robust measure to compare the performance of different features or 

classification algorithms because it is not sensitive to the proportion of true cases. Generally, a classification model 



27 

 

is considered to be effective when the AUC is greater than 0.9, a larger AUC indicates a better classification 

performance. Since six participants were corresponding to six LOSO cross-validation folds, the ROC curves of each 

fold of the SVM and LDA algorithms with all four feature sets are illustrated in Fig. 9 and Fig. 10, respectively. 

 

Fig. 9. ROC curves of SVM algorithm under all four feature sets. 

Note: “ROC fold 0” indicates that the ROC curve corresponds to the case where the test data is from subject 1 while the training data is 

from the remaining five subjects, and so on. 

Fig. 9 (a-d) and Fig.10 (a-d) illustrate ROC curves of SVM and LDA for the proposed four feature sets respectively. 

The characteristics of each LOSO cross-validation fold are compared using their corresponding ROC curves, which 

could help us to identify the difference in mental fatigue detection performance of the classification algorithm in the 

face of different individuals. From the comparison of the ROC curves corresponding to each fold, SVM had a better 
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ability to suppress the subject bias generated by individual differences than LDA. By using the feature set 4, LDA 

algorithm achieved a minimum AUC of 0.88 in LOSO cross-validation fold 1 (Fig 10 (d)). Hence, although the fold 

2 of LDA with the feature set 4 yielded a high AUC of 0.97, the mean AUC of the six folds was only 0.92, which 

indicates that LDA is less adaptable to subject bias than SVM. Furthermore, to evaluate the overall classification 

performance of each algorithm, their average ROC curves in various feature sets were illustrated and the 

corresponding average AUCs were computed. It can be observed that compared to LDA, SVM can achieve higher 

AUC for all four feature sets (0.96 for “pupil+blink”, 0.95 for “blink+gaze”, 0.94 for “all eye movement”, and 0.96 

for “eye movement+task duration”), which once again supports the statement that SVM has a better adaptability to 

various construction scenarios mentioned above. 
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Fig. 10. ROC curves of LDA algorithm under all four feature sets. 

Note: “ROC fold 0” indicates that the ROC curve corresponds to the case where the test data is from subject 1 while the training data 

is from the remaining five subjects, and so on. 

5. Discussion 

5.1. Contributions and implications 

The results highlight that wearable eye-tracking technology has achieved good mental fatigue detection 

performance in several widely used classification algorithms. Especially for the SVM and LDA, high classification 

accuracy was obtained. Regardless of the various feature set used, the accuracies of mental fatigue classification with 

the SVM algorithm was at least 80%. Additionally, the results of LOSO cross-validation further indicate that SVM 

can better alleviate the low classification accuracy caused by subject bias, which is very important for applying the 

proposed method to the actual construction site. With regards to the feature sets, the findings indicate the effectiveness 

of four feature sets for predicting multi-level mental fatigue. Interestingly, “pupil + blink” feature combination 

revealed a high classification accuracy (85.0% for SVM and 86.0% for LDA) with only 21 features. This emphasizes 

that for some budget-constrained construction projects, even low-cost webcams can be used to capture pupil and 

blink data for automatic mental fatigue detection. For the feature sets, the results highlight that by combining different 

features, the adverse site conditions which could hinder the usage of certain features, can be mitigated. 

In addition to highlighting the usefulness of eye-tracking technology for operator's mental fatigue, the experimental 

results also reveal some interesting observations. First, the different levels of mental fatigue had varying effecting on 

the operator's productivity and safety performance, as well as the operator's coping strategy to mental fatigue. While 

mental fatigue increases from Level 1 to Level 3, operators were found to be compromising on task safety and 

productivity (Fig. 6). Second, the decline rates of the safety and productivity dimensions are very different, the results 

showed that HDT performance declined rapidly, while excavation performance depicted a slight decline. The operator 

seems to put more energy into the excavation task and pay less attention to the hazard detection. Many relevant 
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studies have reached similar conclusions [64,65]. At the real construction site, although ensuring construction safety 

is the primary goal, when an operator is suffering from mental fatigue along with a schedule pressure, he/she is more 

likely to devote more energy to complete construction tasks. Under such macro conditions, the operator's ability to 

detect hazards is often greatly impaired, resulting in a variety of safety risks.  

The above results and discussion can serve as the basis for designing multi-level intervention strategies for three 

levels of operator mental fatigue. Since different levels of mental fatigue have different characteristics and different 

influences on operator's task performance, their corresponding intervention strategies might be very different, such 

as auditory attentional cueing [66], meditation [67], neuropsychological recovery [68], etc. As such, combining 

engineering psychology, ergonomics and other disciplines to conduct targeted grading and adapting interventions for 

construction equipment operators' mental fatigue could be a meaningful research direction in the future. 

5.2. Limitations and future works 

First, the data sources used for TICC-based analysis were diverse. Eye movement data had a high sampling 

frequency. However, subjective evaluation data had a low sampling frequency. Low sampling frequency results in 

sparse data samples. Hence data upsampling technique was used to fill the sample, but such an approach might affect 

the data quality and the corresponding results. Moreover, more eye movement metrics associated with mental fatigue 

need to be discovered and applied to further improve the detection performance of multi-level mental fatigue. Second, 

the experimental results from the 60-min simulation experiment task may not fully reflect all levels of mental fatigue 

of operators who work more than 8 hours a day in real construction tasks, such as extreme fatigue or even the state 

of drowsiness. In the future, we will consider collecting the mental fatigue data of operators who perform a long-

term operational task in the real construction site. Furthermore, the real construction site environment is more 

dynamic and complex than the laboratory experiment environment, which may lead to some different behavioral 
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characteristics and task performance of operators under the influence of mental fatigue. At the same time, operators 

in the real-time construction site may feel more physical fatigue, and the interaction between physical fatigue and 

mental fatigue may make the equipment operation safety problem more complicated. In the case that ICT technology 

is widely used in current construction projects [69-71], the future work will focus on obtaining high sampling 

frequency multi-modal data through other effective ICT technologies, and using the “TICC + supervised learning” 

method for not only the mental fatigue detection but also a wider range of pattern discovery, identification and 

detection problems at the construction site. 

6. Conclusions 

Detecting construction equipment operator's mental fatigue has great potential in reducing the risk of caught-in-

between and struck-by hazards. The present research proposed an automated mental fatigue identification and 

classification method for operators' mental fatigue using wearable eye-tracking technology. Toeplitz Inverse 

Covariance-Based Clustering (TICC) method was successfully used to determine multiple levels of mental fatigue 

and to complete the labeling of relevant eye movement data. Considering that different types of eye movement data 

may be invalidated in different construction scenarios, four corresponding types of eye movement feature sets were 

extracted to examine the feasibility of the wearable eye-tracking technology. The results depicted that SVM and LDA 

algorithms had better detection performance when compared to the other three commonly used supervised learning 

algorithms. The high classification accuracies corresponding to the four feature sets demonstrated that eye-tracking 

technology had a great potential to be used for various construction site conditions. Additionally, the results also 

revealed that the operator's operational safety performance and productivity have experienced different degrees of 

decline under the influence of different levels of mental fatigue. Considering the limitations of simulation-based 

experiment and the practicality of the proposed method, future research will focus on the verification and application 
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of the proposed method in the real construction site and the development of multi-level intervention strategies for 

construction equipment operators' mental fatigue. 
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