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ABSTRACT
Accurate simulation of evaporation plays an important role in the efficient management of water
Resources. Generally, evaporation is measured using the direct method where Class A pan-
evaporimeter is used, and an indirect method that includes empirical equations. However, despite
its widespread usage, Class A pan-evaporimeter method can be affected by human and instrumen-
tation errors. Empirical equations, on the other hand, are generally linked to the different climatic
factors that should provide initial or boundary conditions in the mathematical equations that affect
the rate of evaporation. Considering these challenging, heuristic soft computing approaches that do
not need key information about the physics of evaporation. In this study, a Quantum-behaved Parti-
cle SwarmOptimization algorithm, embedded into amulti-layer perceptron technique, is developed
to estimate the evaporation rates over a daily forecast horizon. Themeasured evaporation data from
2012–2014 for Talesh meteorological station located in Northern Iran are employed. The predictive
accuracy of the MLP-QPSO model is evaluated with existing methods: i.e. a hybrid MLP-PSO and
a standalone MLP model. The results are evaluated in respect to statistical performance criterion:
the mean absolute error, root mean square error (RMSE), Willmott’s Index and the Nash–Sutcliffe
coefficient. In conjunction with these metrics, Taylor diagrams are also utilized to assess the level of
agreement between the forecasted andobserved evaporation data. Evidently, the hybridMLP-QPSO
model is confirmed to be an optimal forecasting tool applied for estimating daily pan evapora-
tion, outperforming both the hybrid MLP-PSO and the standalone model.In light of these results,
the present study justifies the potential utility of the hybrid MLP-QPSO model to be applied for
estimating daily evaporation rates in North of Iran.
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1. Introduction

Evaporation is an integral component of the global
hydrological cycle. Therefore, the accurate estimation
of evaporation rates using novel learning algorithms is
a vital task for hydrologic engineering, water resources
management and agriculture, particularly in arid and
semi-arid regions (Deo & Samui, 2017; Deo, Samui, &
Kim, 2016; Goyal, Bharti, Quilty, Adamowski, & Pandey,
2014; Kim, Shiri, Singh, Kisi, & Landeras, 2015; Kisi,
2015). Acquisition of pan evaporation by means of direct
measurements can be an expensive and a tedious task, so
the evaporation rate are routinely estimated by statistical
regression and parametric methods such as the Thornth-
waite and Hargreaves approaches (Jacobs, Heusinkveld,
& Lucassen, 1998; Tabari, Marofi, & Sabziparvar, 2010;
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Thornthwaite, 1948). However, among the several sta-
tistical regression models, the widely Penman-Monteith
approach (Linacre, 1994) can incur a potential challenge
if the boundary conditions data in the physical equations
are unavailable or if they are unrealistic and an reasonable
assumption in this regard needs to be made (Almedeij,
2012). Any errors in estimating thewatermass balance on
which the parametric equation is intrinsically reliant, can
produce significant errors in the estimated evaporation
rate (McJannet,Webster, Stenson, & Sherman, 2008). It is
also important to note that the physical processes related
to evaporation rates are highly non-linear (Kisi, 2007),
therefore, consistent and powerful forecasting methods
should be able to analyze the non-linear trends related
with the predictor variables for the evaporation rate,
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in order to accurately predict this important hydrolog-
ical variable. Hence non-linear forecast models, do not
depend on the physical processes, require less informa-
tion (e.g. initial or boundary conditions) are useful for
decision-making for data-sparse regions compared to the
other types of parametricmethods (Deo& Şahin, 2015a).

Over the last several decades, the evolution of soft
computing, data-driven learning algorithms coupled
with new artificial intelligence (AI) tools (Deo et al.,
2016; Garousi-Nejad, Bozorg-Haddad, & Loáiciga, 2016)
based on artificial neural network-multi-layer percep-
tron and Particle Swarm Optimization (MLP-PSO) have
successfully led to an extensive number of investigations
that attempted to model the evaporation rates. As these
models are completely non-parametric (and assumption-
free), they provide considerable advantage compared to
the physically-based models. This is because prior infor-
mation about the relationships between inputs and objec-
tive variables are not required (e.g. Ghorbani et al., 2017;
Ghorbani, Deo, Yaseen, Kashani, & Mohammadi, 2018;
Ghorbani, Zadeh, Isazadeh, & Terzi, 2016; Gocić et al.,
2015; Khatibi et al., 2013; Khatibi, Ghorbani, Kashani, &
Kisi, 2011). An important and a primary advantageous
feature of AI-based techniques is that they can be gener-
ally be applied at local scales. As a result of this advantage,
the AI-models have a greater applicability for practi-
cal implementations that require estimated evaporation
rates.

A brief summary of the previous research works that
have applied AI-based methods for water resources fore-
casting can be presented in the following. A hybrid neural
network model, which incorporated the fuzzy pattern-
recognition ability was proposed to forecast downstream
river flows based on upstream river flow data and areal
average precipitation (Chen, Chau, & Busari, 2015). A
genetic algorithm based artificial neural networks, was
employed for flood forecasting purposes (Wu & Chau,
2006) Another research work applied an ANN model
together with dendrochronology (tree-rings) datasets to
forecast groundwater level fluctuations (Gholami, Chau,
Fadaee, Torkaman, & Ghaffari, 2015) whereas an ANN
model was used for river forecasting with base flow
separation and binary-coded swarm optimization and a
Binary-coded swarm optimization technique to identify
filter parameters and model structures (Taormina, Chau,
& Sivakumar, 2015).

Other than the aforementioned studies, several
researchers have validated the utility of a standalone
ANN and a hybrid MLP-PSO model for forecasting pan
evaporation rates (Abudu, Cui, King,Moreno, & Bawazir,
2011; Deo & Şahin, 2015a; Deo & Samui, 2017; Keshte-
gar, Piri, & Kisi, 2016; Kisi, Genc, Dinc, & Zounemat-
Kermani, 2016). On the other hand, regardless of the

profusely testified prospects of using AI-based methods
for their relatively accurate performance, a large propor-
tion of these research works have utilized a standalone
AI method. In such models, there was no algorithm that
enabled a pre-processing of input and target data and
did not use a feature optimizer algorithm. It is note-
worthy that in the hybridized form, a neural network
model connected with an optimizer algorithm is nor-
mally implemented to attain consistently optimal val-
ues of the internal parameters of the standalone model
Notwithstanding this limitation in the current standalone
model, recent research works have also advocated the
application of several optimizer algorithms (within a
standalone forecast model). In fact, the statistical perfor-
mance of the hybrid (or integrated) AI-based model has
seemingly been better than their non-optimized counter-
part models (e.g. Garousi-Nejad et al., 2016; Olatomiwa
et al., 2015; Yang, 2010). Having stated that, the applica-
tion of an optimizer algorithmwithin a standalonemodel
for the forecasting of daily pan evaporation is yet to be
fully explored, especially in the context of data-sparse (i.e.
both arid and semi-arid) regions such as Northern Iran.

The present study embraces a global optimizer,
the Quantum-Performed Particle Swarm Optimization
(QPSO) algorithm (Sun, Feng, & Xu, 2004). In gen-
eral, the QPSO is a novel learning algorithm inspired
by the fundamental theory of the Particle Swarms, inte-
grated with characteristic features within the field of
quantum mechanics. This involves the application of
Schrodinger equation and the potential field distribu-
tions applied to solve the optimization problem (Fang,
Sun, Ding, Wu, & Xu, 2010). Due to its growing pop-
ularity, the QPSO algorithm has been applied in many
research areas. For example, the study of (Cheng, Niu,
Feng, Shen, & Chau, 2015) proposed an ANN model
integrated with the QPSO algorithm for forecasting
daily reservoir runoffs. QPSO has also been applied in
streamflow forecasting problems (Ch, Anand, Panigrahi,
& Mathur, 2013), groundwater level forecasting (Sud-
heer, Shrivastava, Panigrahi, &Mathur, 2011), evaluation
of fused images (Le et al., 2013) and in solving eco-
nomic dispatch problems (Niu, Zhou, Zhang, & Deng,
2012). However, the application of the QPSO model for
daily pan evaporation forecasting in arid and semi-arid
regions (e.g. the region studied in this paper) where it
can potentially aid decision-makers to apply the tool in
hydrological and water resources problems, is yet to be
undertaken.

In this paper, a new hybrid forecast model to inte-
grate the multi-layer perceptron (MLP) technique (i.e. a
specific architecture of an ANN model) with the QPSO
algorithm has been designed and applied to a case study
problem for the estimation of pan evaporation at Talesh
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station. In this paper, QPSO was integrated with the
MLP algorithm to identify the optimal weights and neu-
ronal parameters of the forecasting model. Due to the
integration of the two algorithms (i.e. QPSO for weight
optimization and ANN for prediction purposes), the
mean square error produced by the fully trained forecast
model can be minimized in respect to the error encoun-
tered by the standalone MLP model. While the QPSO
algorithm has been effectively applied in several differ-
ent contexts, in literature review, there exist no previous
study testing the MLP-QPSO capability to forecast daily
evaporation rates. In this study, the cross-validation of
the hybrid MLP-QPSO model has been performed in
respect to the standaloneMLP and the earlier hybrid ver-
sion, the hybrid MLP-PSO model. The novelty of this
study is therefore, to develop a hybridMLP-QPSOmodel
for the forecasting of the daily evaporation rates in the
data-sparse region of Northern Iran.

The purpose of this research paper is as follows. (1) To
develop and evaluate the performance of a hybrid MLP-
QPSOmodel applied in a problemof forecasting the daily
pan evaporation rate for Talesh meteorological station
in Northern Iran using data for the period 2012–2014.
For the first time in this study region, the study aims
to also: (2) evaluate the predictive ability of the hybrid
MLP-QPSO model in respect to the standalone and the
hybrid MLP-PSO model (i.e. a non-quantum-behaved
counterpart) by means of statistical metrics, diagnostic
plots and visual model performancemeasures in an inde-
pendent testing phase. To make it easily understandable
by the non-expert readers of this paper, it is important to
also clarify that, the multi-layer perception is an AI tech-
nique applied for forecasting the pan evaporation data,
but the Quantum-Behaved Particle Swarm Optimization
algorithmhas been integratedwith theMLP (standalone)
model to screen the model’s internal parameters (i.e.
the synaptic weights and thresholds), resulting in the
final hybrid MLP-QPSO model. The rest of the paper is
organized is as follows. In Section 2, the Methods and
Materials are presented, including a brief account of the
model’s theory, study area, required model development
data and the performance evaluation criterion. In Section
3, the Results and Discussions are presented, followed
by Section where the Conclusions in regards to the fore-
casting ability of the integrated MLP-QPSO model are
made.

2. Materials andmethod

2.1. Multi-layer perceptron neural networks

The multi-layer perceptron (MLP) has an input, hidden
and the output as layer with the Levenberg–Marquardt

(LM) back propagation learning procedure as the gen-
eral MLP structure. The sigmoid and the linear activa-
tion functions are normally adopted in the hidden and
the output layer to analyze the input data characteris-
tics (Deo & Şahin, 2015a; Lima, Cannon, & Hsieh, 2016)
The choice of the Levenberg–Marquardt algorithm in
this study is relevant to the problem of interest, as this
algorithm is a variation of the commonly used Newton’s
method (Hagan&Menhaj, 1994) applied in the computa-
tional phase to identify the model’s neuronal weights. In
this study, the LMalgorithmhas been employed as a well-
established approximation tool to the Newton’s method.
This model offers robustness, speed and a better ability
to determine and model the local minima or maximum
present in the training data in respect to the other learn-
ing algorithms (Adamowski, Fung Chan, Prasher, Ozga-
Zielinski, & Sliusarieva, 2012; Tiwari & Adamowski,
2013). This makes the LM algorithm an attractive mod-
eling tool for the MLP-based model (Sapna, Tamilarasi,
& Kumar, 2012). For further details and application, the
authors can refer to several previousworks (e.g. Ghorbani
et al., 2016, 2018; Raheli, Aalami, El-Shafie, Ghorbani, &
Deo, 2017).

2.2. Particle swarm optimization

In this paper we apply the Particle Swarm Optimization
(PSO), as a novel learning method proposed originally
by Kennedy and Eberhart in 1995 (Eberhart & Kennedy,
1995). PSO is used to progressive population-based pro-
cedure for optimization of the global problems and has
been used in a number of optimization problems (e.g. Al-
Musaylh, Deo, Adamowski, & Li, 2018). The theory of the
PSO is based on the biological analogy and sociological
feeding performances of the bird swarm. In the context of
predictivemodeling, the PSO algorithm is firstly adjusted
with random solutions in the search of an ideal situation
through the flying problem space. The flight of each parti-
cle is then conducted constantly based on the best known
situation (i.e. the personal best situation ‘pbest’), besides
the best known situation of the whole population (i.e. the
global best solution, ‘gbest’).

Each particle has velocity and a location vector, and
by a utilization of these parameters, it is able to dis-
cover the penetrating space using simple formulas. A
wider and thoughtful similarity is found between the
PSO and some of the other evolutionary computation
methods, such as a genetic algorithm. Offering a bet-
ter alternative compared to the genetic algorithm, the
PSO algorithm is generally faster in the convergence
speed, and it does not contain the evolution opera-
tors as crossover and selection procedure in other algo-
rithms. Furthermore, the PSO algorithm contains fewer
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parameters that require an adjustment, which is depend
directly on task values relatively than the information on
derivatives.

Consequently, the PSO algorithm can simply be
trapped into a local optima (rather than the global
optima) despite its fast convergence rates (Clerc &
Kennedy, 2002; Ren et al., 2014). For this reason, alterna-
tive forms of the PSO algorithm, such as the Quantum-
Behaved PSO applied in our study, can potentially be
used as an alternative optimization tool to improve the
performance of the traditional PSO algorithm.

2.3. MLP based on quantum-behaved particle
swarm optimization (QPSO)

In this paper, the QPSO algorithm, which is an advanced
modeling algorithm compared to the original PSO
algorithm, has been applied. In the QPSO, the parti-
cles prevail in the perfect D-dimensional examination
space through the iterative phase. In current literature
the application of the QPSO algorithm for solving hydro-
logical modeling problems, particularly in pan evapo-
ration forecasting area remains very limited. We have
therefore, adopted this improved version of the original
PSO algorithm into the present case study-based research
paper.

The QPSO, which has been adopted in the present
study to optimize the standalone MLP model, was devel-
oped by Sun (Sun et al., 2004). The formulation of the
QPSO algorithm essentially involves solving the appro-
priate time-dependent Schrödinger equation where ψ(y,
t) is the wave task. It is applied to define the term of a
particle as an alternative of location X and velocity V in
conventional mechanics (Xi, Sun, & Xu, 2008). In fact,
the term |ψ (y, t) |2 represents the probability density
function of its situation (Sun et al., 2004):∫ ∞

−∞
|ψ(y, t)|2dy = 1 (1)

The situation of the particle updates follows the
equation (Sun et al., 2004):

Xi,j(k + 1) = pi,j(k)± α(k)|Ci,j(k)− Xi,j(k)| ln
(
1
u

)
(2)

In Equation (2), Xi,j(k) is the location for jth dimen-
sion of ith particle in kth generation, and u shows a
randomly generated number distributed uniformly in (0,
1) (Cheng et al., 2015). The inputs for i are 1,2, . . . ,M,
for j are 1,2, . . . ,d, and for k are 1,2, . . . , k. Here pi,j(k)
denotes the jth dimension of local attractor i in the kth
generation. α is the representative of the contraction
extension coefficient. It is the individual factor in QPSO
to regulate the convergence rate.

A popular control strategy of α is set to decrease
linearly from 1.0 to 0.5viz:

α(k) = 1.0 − 0.5
k

kmax
(3)

where Ci,j(k) is the mean finest location:

Ci,j (k) =
(

1
M

M∑
i=1

Pi1(k),
1
M

M∑
i=1

Pi2(k), . . . ,
1
M

M∑
i=1

PiD(k)

)

(4)
In order to integrate the standalone MLP model with

the QPSO algorithm, in this study, the optimum weights
applied to the MLP algorithm were calculated by the
QPSO algorithm as an add-in optimizer tool. As this
research work is in the early stage of developing and
applying the QPSO algorithm for pan evaporation fore-
casting, our paper has aimed to demonstrate the useful-
ness of the quantum-behaved PSO-MLP hybrid model
for a particular study region: that is, the Talesh stations
(the site used as a case study).

Figure 1 displays the hybrid modeling mechanism. In
general, the process involves the determination of input
variables based on the combinations of maximum and
minimum temperatures, relative humidity (%), duration
of sunshine, and wind speed (kmhr−1) which are the
predictor variables used for forecasting pan evaporation
data. (Jacobs et al., 1998; Wintle, McCarthy, Volinsky, &
Kavanagh, 2003)

It is noteworthy that the MLP-based approaches
adopted in this research paper are well-established pre-
dictive tools, also applied for several other study locations
(e.g. Altunkaynak, 2013; Gardner &Dorling, 1998; Pham
&Sagiroglu, 2001; SaralaThambavani &UmaMageswari,
2014; Singh, Imtiyaz, Isaac, &Denis, 2012; Tabari, Talaee,
& Abghari, 2012) but their application to the present
data-scarce region has been very limited.

The novelty of this work, is off course, is that our study
provide a valuable contribution to the science that aims to
report a unique dataset and a respective case study region
with amore improved version of PSO-MLP (i.e. we intro-
duced quantum-behaved model) to construct the hybrid
MLP-QPSO predictive model.

2.4. Study region and datasets

In order to construct the hybrid MLP-QPSO model, the
daily meteorological data for a case study region (Talesh
meteorological station) located in Northern Iran has
been utilized.

Figure 2 shows the geographic location of the tested
station and Figure 3 plots a time-series of the daily varia-
tion in pan evaporation over the study period 2012–2014,
acquired from Talesh meteorological station.
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Figure 1. Flowchart of the proposed MLP-QPSOmodel structure.

Daily meteorological data from 2012 to 2014 were
applied as the predictor (or the model input) vari-
ables. These data composed of a time-series of max-
imum temperature (Tmax) (°C), minimum tempera-
ture (Tmin) (°C), wind speed (WS) (kmhr−1), sun-
shine hours (SSH), mean relative humidity (RH) (%),
while the objective variable modeled by the hybrid
MLP-FFA model was the daily pan evaporation (Epan)
(mmday−1) (Ghorbani et al., 2018; Wintle et al.,
2003) The development of the hybrid predictive model
required an appropriate separation of the measured

meteorological data into two different groups via: the
training set (which had a total of 822 records or 75%
of the entire dataset) and the testing subsets (which
had an overall of 274 records or 25% of the entire
dataset).

Table 1 shows the training and testing data for Talesh
meteorological station. It is evident that the maximum
temperature and sunshine hours are considered as the
primary variables that are likely to carry the most signifi-
cant predictive features used for forecasting the daily pan
evaporation data for this study region.
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Figure 2. Geographic location of the Talesh meteorological station.

Figure 3. Variation of the daily evaporation time-series for the period 2012-2014 depicting the training and testing datasets.

2.5. Predictivemodel development

In order to construct an accurate hybrid MLP-QPSO
model, a total of 6 different input combinations of the
predictor variables (related to the problem of forecasting
daily pan evaporation), comprised of the maximum and
minimum air temperatures, wind speed, mean relative
humidity and sunshine hours, were considered (Table 2).
The order of properly incorporating each predictor vari-
able into the inputs defined by the former variable was
distinguished in harmony with a sensitivity test (i.e. cor-
relation coefficients) of the predictorswith the target vari-
able (Table 1). All predictive models were assessed sub-
sequently. To evaluate the accuracy of the compatibility
of different input variables with the model’s forecasting
reply, the order of inputs for the hybrid MLP-QPSO and
the counterpart comparative models (i.e. MLP-PSO and
the standalone MLP) was kept identical.

All forecasting models were firstly designed with
an MLP model and then improved with the QPSO
algorithm, under the MATLAB programming software
(Inc, 2015). Prior to the modeling process, the datasets
were normalized to be between [0, 1] to ensure that the
larger numeric attributes within the predictor variable
do not dominate the importance of the features pro-
vided by those of smaller numeric ranges (Hsu, Chang,
& Lin, 2003; Lin & Lin, 2003). As an extensively applied
procedure in neural networks, the current MLP method
was applied with a back propagation feed forward train-
ing procedure, and a linear transfer and a logarithmic
sigmoid function, in the output and hidden layer, respec-
tively. An extensive model optimization process was also
implemented whereby the best neuronal architecture and
model weights for optimal feature extraction from the
predictor datasets were attained by a trial and error pro-
cess following earlier work (Deo & Şahin, 2015a).
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Table 1. Summary statistics of the used data at Talesh weather.

Predictor Variables Objective Variable

Data Partition Statistics Tmax(°C) Tmin(°C) RH (%) WS (km hr−1) SSH (Wintle, et al.) Epan (mm day−1)

All data Standard deviation 8.2 7.3 11.9 2.5 4.1 2.3
Maximum 37.0 32.0 99.0 28.0 12.6 13.1
Minimum −0.4 −4.2 19.0 2.0 0.0 0.1
Correlation Coefficientrwith Epan 0.74 0.61 −0.63 0.18 0.71 1.00

Training Standard deviation 8.2 7.2 12.3 2.7 4.1 2.3
Maximum 37.0 26.0 99.0 28.0 12.6 13.1
Minimum −0.2 −4.2 19.0 0 0 0.1
Correlation Coefficientrwith Epan 0.76 0.62 −0.65 0.20 0.72 1.00

Testing Standard deviation 7.9 7.4 10.8 2.0 4.0 2.2
Maximum 35.0 32.0 99.0 23.0 12.2 8.8
Minimum −0.4 −3.0 44.0 0.0 0.0 0.1
Correlation Coefficientrwith Epan 0.70 0.59 −0.55 0.08 0.69 1.00

Table 2. The different input combinations and model designations used in this study.

Models

No. Input Output MLP MLP-PSO MLP-QPSO

1 Tmax, Tmin, RH, WS, SSH Epan MLP1 MLP-PSO1 MLP-QPSO1
2 Tmax, Tmin, RH, WS Epan MLP2 MLP-PSO2 MLP-QPSO2
3 Tmax, WS, RH, SSH Epan MLP3 MLP-PSO3 MLP-QPSO3
4 Tmax, Tmin, RH Epan MLP4 MLP-PSO4 MLP-QPSO4
5 Tmax, WS Epan MLP5 MLP-PSO5 MLP-QPSO5
6 Tmax Epan MLP6 MLP-PSO6 MLP-QPSO6

In this paper, we aimed to attain an optimal forecast
model by setting the network training parameters accor-
dance to previous research works (Deo & Şahin, 2017;
Prasad, Deo, Li, & Maraseni, 2017). Notwithstanding
this, a noteworthy point in the experimental design is also
that we have used the LM learning procedure (i.e. one of
the most general algorithm applied to train a neural net-
workmodel). The notion of using this algorithmhas been
advocated in previous studies (Tiwari & Adamowski,
2013; Tiwari & Chatterjee, 2010, 2011) by virtue of its
relatively faster execution time (i.e. computational effi-
ciency) and superior training performance.

In a study by (Deo, Kisi, & Singh, 2017), the LM
method was applied to forecast drought index through
an ANN model, demonstrating it as a well-established
tool. Implemented as a second-order training rule, this
learning method was able to minimize the mean square
error between the forecasted and observed data in the
training period. It is pertinent to also mention that the
neurons in hidden layer were recognized by trial and
error process. This is approach is an acceptable norm,
in accordance with other studies (Deo & Şahin, 2015b,
2017; Deo, Tiwari, Adamowski, & Quilty, 2017; Prasad
et al., 2017) for selecting the bestmodel with lowestmean
square error in the training dataset.

2.6. Model performance criteria

Performance measures are assessed by comparing pre-
dicted with their corresponding observed values using

the following criteria: I: Nash–Sutcliffe coefficient (NS)
(Nash & Sutcliffe, 1970), written as

NS = 1 −

⎡
⎢⎢⎢⎣

N∑
i=1
(Oi − Pi)2

N∑
i=1
(Oi −

__
Oi)

2

⎤
⎥⎥⎥⎦ , −∞ < NS ≤ 1 (5)

II: Root mean square error (RMSE) (Willmott & Mat-
suura, 2005) written as

RMSE =
√√√√ 1

N

N∑
i=1

(Pi − Oi)
2 (6)

III: Mean absolute error (MAE) (Chai & Draxler, 2014)
written as

MAE = 1
N

N∑
i=1

|(Pi − Oi)| (7)

IV: Willmott’s Index of Agreement (Willmott, Robeson,
& Matsuura, 2012; Wintle et al., 2003) written as

WI = 1 −

⎡
⎢⎢⎢⎣

N∑
i=1
(Oi − Pi)2

N∑
i=1
(|Pi −

__
Oi| + |Oi −

__
Oi|)2

⎤
⎥⎥⎥⎦, 0 ≤ WI ≤ 1

(8)
In all equations,Oi and Piare the observed and forecasted
ith value of the Epan, Ō is the average of observed O.
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Other than the performancemetrics outlined in Equa-
tions (10–13), we have also employed the Taylor diagram
(Taylor, 2001) to explore its usage in current hydrological
context.

3. Results and discussion

In Table 3 we provide the integrated hybrid MLP-QPSO
(vs. MLP-PSO and MLP) model training performances
as well as the performances in the evaluative phase (i.e.
the testing period). Referring to the results of the test-
ing period, it was evident that the MLP-PSOmethod was
capable to estimate daily evaporation amounts more suf-
ficient than the standalone MLP method. It was found
that the model error was lower and alsoWillmott’s Index
and Nash-Sutcliffe’s coefficients were the largest for the
developed PSO-based model. As reported by Table 3, the
model marked as MLP3 where Tmax, Tmin, RH and WS
data were used could be chosen as the optimal and the
most favorablemodel for the Talesh station. This was also
indicated for all models where a progressive extension
of all predictors’ variable inspire a slowly growth in the
amount of the WI and NS, and reduce in RMSE/MAE
(Tables 2 and 3. In the face of the similar tendency for
the standalone MLP and the hybrid MLP-PSO models,
the efficiency of the MLP-PSO hybrid model was much
better than the standalone MLP method.

With an inclusive objective to enhance the predictive
correctness of theMLPmethod, themore advanced, inte-
grated MLP-QPSO modeling procedure was assessed.
Optimum weights of the MLP method was recognized
by the novel Quantum-Behaved Particle Swarm Opti-
mization algorithm. According to Table 3, the model
represented asMLP-QPSO3 showed the smallest amount

ofMAE (0.521mmday−1) and RMSE (0.755mmday−1)
and the highest amount of NS (0.882) and WI (0.963)
in the test period compared to any other model for the
station of Talesh. Such an optimum model, the most
appropriate neuronal architecture has 4 input layer neu-
rons, 4 hidden layer neurons, and 1 output layer neuron
(denoted as 4-4-1).

Attained by means of rigorous a trial-and-error pro-
cedure, Table 3 shows the optimal neuronal arrangement
in the single hidden layer of each model, which remains
unique to a particular designated model. It is noteworthy
that the optimal number of neurons was recognized in a
trial and error practice (e.g. Deo & Şahin, 2015a) to select
amethod that reached the lowestRMSE in the competent
dataset. It is important to note that training RMSE is
a popular metric, providing a balanced evaluation of
the goodness of fit of the developed model. For a per-
fect method, RMSE value is expected to be near to zero
(Table 3). Accordingly, the model designated as MLP3
for all three types of algorithms (i.e. standalone, MLP-
PSO and MLP-QPSO) is seen as a better performing
model among all 6 model structures based on the RMSE,
MAE, NS andWI (i.e. 1.099mmday−1, 0.833mmday−1,
0.789 and 0.934, respectively) for the training dataset.
Likewise, the table presents these values for the best
model in the test dataset with RMSE = 1.303mm day−1,
MAE = 0.921mmday−1, NS = 0.646 and WI = 0.878,
respectively).

In spite of the internal consistency between training
and testing sets among different designated models, it is
generally true that the quality of the optimal model per-
formance drops from the training to the testing phase
and this is the case for all of the 6 model structures in
accordance with each of performance metrics.

Table 3. The performance metrics in the training and testing phases for the station of Talesh. Units for RMSE/MAE ((mmday−1) and
neuronal architecture is denoted as per input-hidden-output neurons. Optimal model is shown in boldface.

Training Testing

Model Designation Neuronal Structure RMSE MAE NS WI RMSE MAE NS WI

Standalone Model MLP1 5-2-1 1.106 0.836 0.777 0.932 1.356 0.932 0.621 0.873
MLP2 4-20-1 1.196 0.870 0.740 0.925 1.511 1.0422 0.5303 0.829
MLP3 4-4-1 1.099 0.833 0.789 0.934 1.303 0.921 0.646 0.878
MLP4 3-12-1 1.181 0.861 0.746 0.922 1.529 1.090 0.519 0.806
MLP5 2-3-1 1.384 1.050 0.652 0.883 1.536 1.094 0.514 0.811
MLP6 1-2-1 1.400 1.037 0.644 0.882 1.591 1.114 0.479 0.804

MLP-PSO hybrid model MLP-PSO1 5-2-1 0.961 0.733 0.813 0.946 1.357 0.963 0.620 0.851
MLP-PSO2 4-20-1 1.005 0.745 0.816 0.949 1.308 0.893 0.647 0.872
MLP-PSO3 4-4-1 0.951 0.725 0.832 0.950 1.221 0.840 0.693 0.884
MLP-PSO4 3-12-1 1.014 0.753 0.835 0.952 1.208 0.829 0.699 0.900
MLP-PSO5 2-3-1 1.200 0.923 0.738 0.918 1.378 0.978 0.609 0.850
MLP-PSO6 1-2-1 1.199 0.899 0.738 0.920 1.424 0.995 0.582 0.845

Hybrid MLP-QPSO Model MLP-QPSO1 5-2-1 0.778 0.612 0.890 0.974 0.770 0.529 0.877 0.962
MLP-QPSO2 4-20-1 0.798 0.636 0.884 0.972 0.802 0.552 0.867 0.956
MLP-QPSO3 4-4-1 0.778 0.583 0.890 0.974 0.755 0.521 0.882 0.963
MLP-QPSO4 3-12-1 0.864 0.677 0.864 0.968 0.850 0.594 0.851 0.949
MLP-QPSO5 2-3-1 0.921 0.754 0.845 0.962 0.922 0.645 0.824 0.940
MLP-QPSO6 1-2-1 0.972 0.783 0.828 0.959 0.937 0.653 0.819 0.939
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It is imperative to mention that we have developed 3
sets of simulations (i.e. MLP,MLP-PSO andMLP-QPSO)
with several different neuronal structures for each pre-
dictive model considered to investigate the performance
of the stochastic algorithm. In each case, we followed

the notion of earlier works (e.g. Deo et al., 2016; Deo &
Şahin, 2015a, 2015b) where, initially severalMLPmodels
were developed with different neuronal architectures and
finally, the bestmodel that yielded the smallestRMSEwas
selected. The comparison results indicate that different

Figure 4. A scatterplot of the forecasted and observed pan evaporation for Talesh station, presented in the testing phase for the optimal
hybrid MLP-QPSOmodel (MLP-QPSO3) relative to the MLP-PSO3 and the standalone MLP3 model. In each panel, the line of best fit with
coefficient of determination (R2) has been included, (a) MLP3; (b) MLP-PSO3; (c) MLP-QPSO3.

Figure 5. Histogram of the forecasted pan evaporation data in the testing phase, (a) MLP3; (b) MLP-PSO3; (c) MLP-QPSO3.
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input combination were attained for the MLP model, as
shown in Table 3.

The scatterplots comparing the observed and esti-
mated daily pan evaporation at Talesh weather stations
are presented in Figure 4.

Figure 4 reveals that the exactitude of the hybridMLP-
QPSO method was found to be significantly better than
the comparative standalone MLP and MLP-PSO hybrid
method. The results indicated a lower level of the scat-
tered in the data forecasted-observed data pairs, with a
larger magnitude of the R2 value and a more appropriate
fit of the forecasted outcomes compared with the exper-
imental data based on the 1:1 agreement line. Finally, it
was distinguished that present results justify the impor-
tance of the QPSO as an optimization algorithm in the
present case study, bringing an improved calibration of
the MLP method with a superior performance in the
testing dataset.

More rapidly test of the forecasted and the experimen-
tal values of daily evaporation produced by the MLP-
QPSO, MLP-PSO and MLP methods are illustrated in
Figure 5. Here the histograms represent the possibility
scattering of the data within the practical time for the
3 models with their optimal input combination, as indi-
cated in Table 3. These figures are very advantageous for
representing the possibility incident of the pan evapora-
tion value contained by a specific interval, which accords
with earlier works (e.g. Al-Shammari et al., 2016) Obvi-
ously, as stipulated in Figure 5, the analyzing data have
been grouped in different classes with 1 (mm day−1)
interval. Notably, the highest differences are for interval
of 2–4mm day−1. Also, the histograms show a similar
pattern with negatively skewed distribution and the per-
formances are seen to be relatively better at the tail of the
histogram, indicating the results with under-estimated
pan evaporation in the testing phase.

Figure 6 shows the Taylor diagram of the usedmodels.
Consequently, a forecasting ideal method (with higher

agreement with explanations) is noticeable by the
orientation point with a correlation coefficient equal to
1, and the same fullness of variations compared to the
observation data (Heo et al., 2014). The integrated hybrid
MLP-QPSO method significantly produced evaporation
predicted results much nearby the experimental evapo-
rations compared to the hybrid MLP-PSO and the stan-
dalone MLP method.

In view of the Taylor plot closely, it was revealed that
in both panel of results, the hybridMLP-QPSO outcomes
(where a standaloneMLP procedure had been integrated
with a QPSO as an optimizer tool), has a better result
such that a correlation coefficient is approximately 0.95.
More interesting is also to note that the root mean square
error (represented by the brown points contour lines) for

the hybridMLP-QPSOmodel is noticeably lower (<1.0)
as the data for these methods are bundled within this
group. Besides, MLPmethod within the QPSO optimizer
algorithms, the hybrid MLP-QPSO3 method where the
inputs are defined by Tmax, RH, WS and SSH (Table 2)
stands out as the best forecasted method in consistent
with outcomes.

Finally, Figure 6 also shows that the proposed hybrid
MLP-QPSO model provides a significant improvement
in the model’s overall performance such that the per-
formance may be ranked in order of MLP-QPSO, MLP-
PSO and MLP as the best, moderate and worst models,
respectively for the present case study area.

4. Conclusion and future research work

A forecast model for daily pan evaporation can be an
important decision-support tool in water engineering,
agriculture, rural and urban water systems, water pol-
icy planning and design of hydrologic structures (e.g.
dams or irrigations). The incorporation of an opti-
mizer algorithmwhere a standalone artificial intelligence
model is integrated with a global search algorithm to
deduce optimal model’s internal parameters, and con-
sequently improving the overall predictive performance,
is gaining prominence in hydrologic research. In the
present research, the hybrid artificial intelligence pro-
cedure based on a multi-layer perceptron framework
incorporated with the MLP-QPSO procedure, was estab-
lished and evaluated for its preciseness in the estimation
of daily pan evaporation. For a specific case study region
in Northern Iran, the present study has utilized key
meteorological parameters including the maximum and
minimum temperature, sunshine hours, relative humid-
ity, and wind speed datasets as the predictor variables.
Besides this, the predictive ability of the developed hybrid
method (i.e. the MLP-QPSO model) was evaluated and
compared to a standalone MLP and a hybrid MLP-PSO
model. The findings of the present study showed a much
improved accuracy of the hybrid MLP-QPSO model in
respect to a hybrid MLP-PSO and a standalone MLP
model applied in the context of daily pan evaporation.

In the first phase of the forecasting model develop-
ment, a standalone MLP method was used with the back
propagation feed forward approach and the hybridMLP-
PSO method with the smallest root mean square error,
was developed. In the next phase, a QPSO procedure
was applied to the MLP to improve the model’s train-
ing accuracy by optimizing the models internal param-
eters (or hidden neuron weights and biases). In the sta-
tistical evaluative phase of the hybrid and standalone
model design, the statistical error metrics and other
performance parameters were examined in the testing
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Figure 6. Taylor Diagram comparing a total of 18 predictive models developed for forecasting evaporation of the pan of Talesh station
in experimental time. For model designations, readers should see Table 3.

phase to investigate the ability of the model to forecast
daily evaporation in the independent testing dataset.

Evaluated over a relatively large list of 18 predictive
models developed in this paper, the results confirmed
superior ability of the integrated hybri d MLP-QPSO
method in comparison with lower accuracy of the stan-
dalone MLP and the hybrid MLP-PSO model. Despite a
high level of accuracy attained by integrated hybridMLP-
QPSO method relative to the counterpart models, this
study does carry some degree of limitations that has cre-
ated an opportunity for a follow-up research work. In
real-time applications, use of these models in decision-
making process can be practically appealing if the devel-
opedmodels incorporate some degree of confidence level
of the error bounds generated by the simulations, mainly
to overcome the lack of understanding on how accurate
a forecasted evaporation value could be. Therefore, in-
depth studies are thus warranted to address the issues of
uncertainty in the forecasted evaporation data which can
no doubt assist range of stakeholders (e.g. water resource
managers; irrigation managers; farmers, etc.) to avoid
decisions linked to over-confident projections and about
certain inferences that could be risky due to their deci-
sions. It should also be highlighted that an operational
application of the integrated hybrid MLP-QPSO model
could be broadened by incorporating the model into

a Bayesian Model Averaging (BMA) algorithm, which
is able to assess the model selection uncertainty (Kim,
Mohanty, & Shin, 2015; Rathinasamy, Adamowski, &
Khosa, 2013; Wintle et al., 2003). The integration of
the BMA with the integrated hybrid MLP-QPSO model
could lead provide a more coherent mechanism for
accounting for the model’s uncertainties.

Although in this study we have utilized the fully-
optimized, integrated hybrid MLP-QPSO algorithm by
constructing a model with a set of best model param-
eters, an ensemble modeling approach, as applied in
previous studies (Efron & Tibshirani, 1994; Tiwari &
Adamowski, 2013; Tiwari & Chatterjee, 2010) may also
assist in improving the hybrid model, particularly eval-
uated for its parametric uncertainties (Kim, Mohanty,
et al., 2011; Tiwari &Adamowski, 2013).Moreover, issues
related to the non-stationarities in the climate datasets,
applied as the model inputs, can also be addressed in a
separate study by testing the present hybrid model with
innovative multi-resolution data pre-processing tools
that provide better resolved frequencies that are present
within the input dataset. In this regard, the development
of an integrated hybrid MLP-QPSO model embedded
with empirical mode decomposition (EMD) and non-
decimated discrete wavelet transform algorithm (Prasad
et al., 2017) can help improve the practical relevance of
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the hybrid MLP-QPSO model. Finally, to enhance the
practicality of the approach, a follow-up study, one could
also consider utilizing several other test locations (subject
to the availability of such data) to validate the proposed
MLP-QPSO method.
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