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ABSTRACT RGB-D cameras, which can be attached to any mobile device and work under different
operation platforms (e.g., iOS, Android, and Windows), have great potential for indoor 3D modeling and
navigation due to their low cost and small size. The main problems of RGB-D cameras for such applications
are their range limitations and deteriorated depth accuracy. For example, for a 7-m range, the distance error of
structure sensor (one type of RGB-D camera) reaches nearly 0.5 m. We propose a new calibration procedure
for RGB-D sensors to improve the depth accuracy. First, the baseline between RGB and IR cameras is
calibrated using the direct linear transform method. The distortions of the RGB and IR cameras and the
IR projector are then calibrated using the newly proposed two-lens distortion model. Finally, the remaining
depth systematic errors are calibrated using an empirical model. Compared to existing calibration methods,
the new calibration method considers distortions from both the IR camera and projector and significantly
improves the accuracy of far-range depth measurements. The experimental results show that the proposed
calibrationmethod can precisely calibrate the full range of the RGB-D sensor, up to 7m, with an overall depth
accuracy of 1.9%, compared to the 5.5% accuracy of the manufacturer’s depth estimation. To demonstrate
the significance of calibration in indoor mapping, the 3D point cloud of a room (4.5 m x 3.5 m) is generated
using the RGB-D SLAM system. The accuracy of the 3D model with the proposed calibration method is
approximately 1.5 cm, compared to 7.0 cm using the manufacturer’s calibration parameters.

INDEX TERMS RGB-D, structured light, calibration, RGB-D distortion, depth modeling.

I. INTRODUCTION
Since RGB-D sensors were released on the market as
advanced game controllers, many research efforts have been
made to switch these sensors from gaming to surveying
and industrial applications. RGB-D sensors have been used
for indoor 3D modeling, navigation, object recognition, and
computer vision applications [1]. They are manufactured
based on two major concepts: structured light (SL) and time
of flight (ToF). The SL concept uses the apparent difference
between the IR pattern projected by an IR projector and the IR
pattern reflected by an object and received by an IR camera.
Kinect v1 [2] and Structure Sensor [3] are examples of SL
RGB-D sensors. The ToF concept uses the time difference
between the emitted and captured IR patterns to compute
the distance between an object and an IR camera based on
velocity [4] (i.e., Kinect v2 and Tango [5]). Although RGB-D
sensors can produce a real-time 3D colored point cloud for

an observed scene, the working range and the depth precision
limitations still curb those sensors to be utilized in survey-
ing applications [6]. Extensive research related to RGB-D
sensor depth quality enhancement has been conducted [7].
Most such research has been related to sensor calibration and
color-depth registration improvements [8]–[10].

For SL RGB-D sensors, different calibration procedures
are proposed. The three-lens based calibration method is
introduced to calibrate lenses’ geometric parameters and
depth systematic error based on the conventional photogram-
metric bundle adjustment method [11], [12]. The method
adopts Brown’s distortion models [13] to compensate for
radial and tangential distortion [14], [15]. Furthermore,
the depth systematic error is assumed to be a function of
radial distortion parameters. The reliability and accuracy of
the IR projector calibrated parameters and the initial values
to begin bundle adjustment are the basic limitations of this
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method [11]. Moreover, the method does not investigate the
depth range variation effect on the calibration parameters for
both RGB and depth sensors.

Another method to calibrate RGB-D sensors concerns two
sensors: the RGB camera and depth sensor, which is com-
bined from the IR camera and the IR projector [9]. This
calibration method uses either an empirical distortion model
for combined depth sensors [7], [16] or applies the IR camera
distortion parameters to the depth image to compensate for
the depth distortion [17]. This method is highly affected by
the baseline between an IR camera and an IR projector and
the depth distortion model.

The calibration of RGB-D sensors includes three main
stages: the RGB-IR camera baseline estimation, the distortion
model for depth sensors, and the depth error with different
operation ranges [18]. The majority of the existing methods
use a traditional 2D checkerboard to calibrate the external
baseline between the RGB camera and the IR camera by
adopting the method proposed by Zhang [19], which has
a limitation on the baseline calibration accuracy [20]. The
conventional calibration methods usually calibrate a specific
depth range to fit a desired application and, in some cases, use
external hardware [7] to compute the true depth. This restricts
the conventional calibration method to calibrating a certain
range for a specific application.

The depth image is derived from the IR pattern received
by the IR camera, the pattern emitted by the IR projector,
and the manufacturer constants, which are the focal length
and baseline between the IR camera and the IR projector.
The depth systematic error has attracted great attention to
be thoroughly modeled to enhance depth accuracy [21]. The
traditional depth error model is presented as a function of
the radial distortion parameters of the depth sensor [11].
However, systematic error stems from various sources, such
as the baseline between the IR camera and the IR projec-
tor, the standard projected depth, and the IR pattern inci-
dent angle, rounding off, and the correlation algorithm of
disparity.

Darwish et al. [22] presented a new model to calibrate
the distortion model for depth sensors. The distortion model
is defined by six parameters. Two represent the systematic
error resulting from the baseline between an IR camera and
an IR projector. The remaining four parameters represent
the combined distortion effect resulting from an IR camera
and an IR projector. The depth error model is assumed to
be a function of distortion parameters similar to [11]. The
calibration method deals with the fitted plane and ignores
systematic depth bias [23]. Furthermore, the calibration
method can calibrate only 35% of the sensor working range
(i.e., the method calibrates the depth up to 3 m out of 9 m).

Three main factors must be calibrated for the SL RGB-D
camera. The first factor is the baseline between RGB and
IR cameras, which is used to map the texture information
to the depth information. This factor is crucial for pixel
correspondences in the RGB-D SLAM system. The second
factor is depth distortion and disparity bias, which result from

IR sensor lenses and the IR camera and IR projector baselines,
respectively. The third factor is the depth error bias resulting
from the remaining error sources [24], such as depth uncer-
tainty, correlation algorithms, and rounding off the disparity,
incident angle, and object distance. In this study, we develop
a new procedure for calibrating all three factors. We adopt
the direct linear transform (DLT) method [25] to calibrate the
external baseline between RGB and IR cameras. We use a
3D calibration framework and space resection instead of a
2D calibration framework and homography to improve the
accuracy of RGB-IR baseline parameters. We use a two-lens
based distortion model [22] to model the depth sensor dis-
tortion and calibrate the sensor manufacturer parameters to
compensate for the IR camera and IR projector baseline
related error. Finally, based on the covariance disparity error
propagation concept, we introduce a new depth error model
to compensate for the remaining depth error resulting from
imaging condition and disparity related errors.

The remainder of this manuscript is organized as follows.
Section II shows the depth perception concept for RGB-D
sensors based on the SL concept and its related error.
Section III presents the proposed two-phase calibration
method to thoroughly handle RGB-D camera calibration.
Section IV reports the calibration results with three different
examples to show the improvements on depth precision and
3D modeling quality, both quantitatively and qualitatively.
Finally, SectionV provides concluding remarks and describes
expected future work.

II. SL RGB-D DEPTH COMPUTATION
AND ERROR ANALYSIS
An RGB-D camera combines three sensing lenses, an RGB
camera, an IR camera, and an IR projector. Normally,
the three lenses are designed to be in a fixed frame
(i.e., Kinect [2]) or RGB separated from IR sensors
(i.e., Structure Sensor [3]). Figure 1 shows the configurations
of the latest RGB-D sensor based on SL.

FIGURE 1. Main elements of RGB-D sensors (Structure Sensor [3]).

Structure Sensor uses IR sensors to compute the dis-
tance between the IR camera and an observed object.
Figure 2 illustrates the manufacturer constants involved in
the depth computation. The IR camera and IR projector are
separated with a baseline (w), whereas the focal lengths (f ) of
both the IR camera and projector are the same. A reference
pattern for a planar surface captured from a designed distance
(Z0) is stored in the depth sensor’s memory.
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FIGURE 2. Manufacturer constants for RGB-D sensors [18].

Assuming that the firmware stores the standard IR pattern
for a feature point (Qi) as (xci,0), the current IR projected
pattern from the same feature is (xci ), the firmware stores (Z0),
(w), and (f ) as manufacturer constants. The depth of the
feature point (Zi) can then be computed [12]. The apparent
difference between the IR projected and standard patterns is
defined as disparity (di = xci − x

c
i,0). As in Figure 2, we find

that xci,0 = xpi + fw/Z0, where (xpi ) is the feature location
in the IR projector. Substituting this relationship into the (di)
formula yields the following:

di = xci − x
p
i − fw/Z0 (1)

Equation (1) can be rewritten using the relationship
xci − x

p
i = −fw/Zi between the IR camera and IR projector

feature’s locations. The result is di = −
fw
Zi
−

fw
Z0
. By rear-

ranging Equation (1), we can determine the general depth
computation model:

Zi =
fw

fw
Z0
+ di

(2)

Equation (2) is the fundamental formula used by the
firmware to compute per-pixel depth value. The firmware
of the RGB-D sensor does not output the measured dis-
parity (di). However, it delivers a normalized rounded-off
disparity value from 0 to 2,047 Kinect disparity units (Kdu)
as dni , where di = α

(
dni
)
+ β and α and β are two linear

factors assigned by the firmware. By substituting the normal
disparity formula in Equation (2) and combining all of the
constants with the assigned factors (a and b), Equation (2)
becomes Equation (3):

Zi =
1

a+ bdni
(3)

where a and b are constants and can be expressed as
follows:

a =
1
Z0
+
β

fw
(4a)

b =
α

fw
(4b)

The final coordinates (Xi, Yi, and Zi) of the image point (Qi)
can be computed as follows:

Xi =
xci Zi
f
; Yi =

yci Zi
f
; Zi =

1
a+ bdni

(5)

The depth produced by RGB-D cameras contains three
main error sources. The first type of error results from the
deflection of the emitted IR projector ray and the received IR
camera ray. It is mainly caused by the distortion of both the
IR camera and the IR projector lenses. The second type of
error results from the errors of the manufacturer parameters
(a and b), which may bias the depth computations. The third
type of error is the uncertainty of depth measurement due
to the disparity correlation and rounding off the normalized
disparity. This error becomes more significant in far-range
depth and especially for low-resolution imaging devices, such
as Structure Sensor. Figure 3 shows the disparity values cor-
responding to the measured depth. It should be noted that
the disparity value is an integer and varies from 250 Kdu
to 1,100 Kdu, covering the entire sensor depth range (0.3 m
to 9.0 m). This leads to an important conclusion, which is
that the depth image is always formulated from only around
a depth value of 850, which may meet with the true value
or not, depending on the correlation model of the disparity
and rounding-off stage. Figure 3 shows that the far range is
critically sensitive to the manufacturer constants (a and b)
compared to the close range.

FIGURE 3. Depth and normal disparity relationship, where (a) is the full
range of the sensor and (b) is zoomed in for far range.

The error propagation of the depth is related to the nor-
malized disparity. From Equation (3), the depth error can be
expressed as follows:

σ 2
z =

(
∂z
∂d

)2

σ 2
d (6)

By differentiation in Equation (3) and substitution in Equa-
tion (6), the relationship between the error propagated in
the calculated depth and measured disparity is a function of
squared depth and multiplied by constant b, which is related
to the baseline between the projector and camera and the focal
length of the depth sensor.

σz = bz2σd (7)
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From Equation (7), the longer the baseline between the
IR camera and projector that the sensor designs, the more
accurate the depth that can be obtained with the same focal
length.

III. CALIBRATION METHOD AND
DEPTH ERROR MODELLING
We propose a three-stage calibration method for SL RGB-D
sensors to overcome the drawbacks of traditional calibra-
tion methods. First, to improve baseline calibration accu-
racy between RGB and IR camera calibration, we adopt
the DLT method [25] and a 3D chessboard to calibrate the
RGB-IR baseline. Second, the distortionmodel introduced by
Darwish et al. [22] is used to calibrate the depth distortion.
In addition to the depth distortion, the manufacturer constants
are also calibrated using full range depth observation. This
can overcome the far-range depth bias due to the IR camera
and IR projector baseline. Finally, an empirical error model
is designed to model the remaining depth error and biases.

A. FIRST CALIBRATION STAGE
The DLTmethod [25] is adopted for baseline calibration with
full distortion parameters [15]. The reason for using DLT
over the ordinary photogrammetric bundle adjustment is the
data availability for CCD size, due to the absence of initial
parameters to begin the bundle solution [26]. Nevertheless,
the accuracy of the DLT method is acceptable compared to
the ordinary bundle adjustment method. Figure 4 shows the
relationship between the image space coordinate system and
the object space coordinate system.

FIGURE 4. Camera coordinate system versus object coordinate system
definitions.

The pinhole camera model is a widely applicable model
used in close-range photogrammetry [16]. It expresses the
relationship between the image point coordinates (x, y) and
the corresponding ground point coordinates (X , Y , Z ):

s
[
x y 1

]
=
[
X Y Z 1

] [ R
T

]
[K ] (8)

where

s scale factor
x, y image point coordinates in pixels
X , Y , Z ground point coordinates

R 3x3 rotation matrix
T 3x1 translation vector, where T =

[
dx dy dz

]
K 3x3 intrinsic matrix, where K =

 fx e cx
0 fy cy
0 0 1


fx , fy focal length in pixels
cx , cy coordinate of the principal point in pixels
e skew between the x and y direction

For consumer grade cameras (e.g., smart phone cameras),
the camera lens material and the exact location of the camera
lens plane may deviate from the ideal case. This can cause a
bending of the line between the focal point and the ground
point passing through the image point. The bending error can
be modeled by radial and tangential distortion concepts. Both
distortion types can be eliminated using Brown’smodels [19].
Equation (9) describes the radial distortion model, while
Equation (10) describes the tangential distortion model.

xd = x
(
1+ r2k1 + r4k2 + r6k3

)
yd = y

(
1+ r2k1 + r4k2 + r6k3

)
(9)

xd = x + 2yp1 + p2(r2 + 2x2)

yd = y+ 2xp2 + p1(r2 + 2y2) (10)

where

xd , yd distorted image point coordinates
x, y coordinates of the free distortion points
k1, k2, k3 radial distortion parameters
p1, p2 tangential distortion parameters

To estimate the internal and external parameters of both
cameras, the pinhole camera model is solved by the DLT
method containing 16 parameters, including the interior and
exterior orientations for both cameras and the distortion
parameters [15]. Five distortion parameters

[
k1 k2 p1 p2 k3

]
represent the full vector of the distortion model. Equation (8)
can be rewritten in the format of the bundle adjustment model
as follows:

x =
XL1 + YL2 + ZL3 + L4
XL9 + YL10 + ZL11 + 1

y =
XL5 + YL6 + ZL7 + L8
XL9 + YL10 + ZL11 + 1

(11)

where Li (i = 1, 2, 3. . . 11) is the normalized factor contain-
ing the external and internal calibration parameters for the
camera. To eliminate the distortion effect from the camera
lens, five other parameters (L12 to L16) that represent radial
and tangential distortion are added to the DLT model. The
mathematical relations between the physical parameters illus-
trated in bundle adjustment and the 16 DLT parameters can
be found in [26].

After estimating the internal and external parameters of
both the RGB and IR cameras and the two-camera system
with a separate baseline, we apply a general cost func-
tion, Equation (12), to optimize the external and internal
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parameters for the system:

min
N∑
n

M∑
m

(∥∥∥∥pmn − (Pmn [RnTn
]
K
)∥∥∥∥2

color

+

∥∥∥∥pmn − (Pmn [RnTn
]
K
)∥∥∥∥2

IR

)
(12)

where

N number of captured images
M number of control points
Pmn ground point coordinates of point m appearing

in image n
pmn image point coordinates of point m appearing

in image n
IR IR camera system
color RGB camera system
K intrinsic matrix
Rn, Tn rotation and translation matrix of image n

B. SECOND CALIBRATION STAGE
The second calibration phase is to calibrate the distortion of
IR sensor lenses using the two-lens distortion model [18].
Different from the method proposed in [22], we first calibrate
the manufacturer parameters based on the full-range depth
observation. The distortion models are then used only to
model the distortion without considering depth-related sys-
tematic errors. The proposed method can mitigate both the
radial and tangential distortion effect resulting from both the
IR sensor lenses and is baseline independent. The distortion
model is derived from Brown’s [13] distortion models of both
the IR camera and IR projector.

The distortion model has four parameters: W1, W2, W3,
andW4.W1 andW2 model the error resulting from the relative
orientation between the IR camera and IR projector lenses
with respect to the baseline between the IR camera and IR
projector. W3 and W4 represent the relative ray distortion
effect resulting from the combined radial distortion of the
IR camera and the IR projector. The distortion model can be
presented as follows:

disi =


W1
W2
W3
W4


T 

3Ad ti
2yidti
xiAdti

xiAdti
(
Ad ti + 2 (xi − dti)2 + 2y2i

)
 (13)

where disi is the combined IR camera and IR projector dis-
tortion error for pixel i. xi and yi are the pixel locations in the
IR camera space. dti is the true disparity. A is a term defined
as A = (2xi − dti).

As the true disparity is unknown, Equation (13) can be
solved iteratively. We start with dti as the measured disparity
to compute the distortion. We then update dti using the distor-
tion and measured disparity. This can reach convergence after
two or three iterations, as the estimated disparity error is very
small compared to the computed disparity (for near range is
around 2 Kdu, and for the far range is less than 1 Kdu).

After calibrating the baseline between the RGB and IR
cameras, revealing the distortion models of the depth sensor,
and calibrating themanufacturer constants (a and b), the RGB
and IR sensors are fully geometrically calibrated. However,
the geometric sensor calibration does not deal with the imag-
ing conditions and properties of the imaged scene. Thus,
an extended calibration depth model is proposed to handle
the non-geometric effect of RGB-D cameras. We adopt a
polynomial function to calibrate the remaining depth error
after correcting the bias from the IR sensor baseline and the
IR camera and IR projector distortion effects. The depth error
model is proposed as follows:

dsys = Ad3 + Bd2 + Cd + D (14)

where

dsys systematic depth error remaining after
applying the distortion

A,B,C,D polynomial coefficients
d undistorted depth

Equation (14) is introduced as per pixel depth error model,
therefore the coefficients A,B,C, and D might depend on
pixel coordinates.

FIGURE 5. Calibration methodology for the RGB-IR camera baseline.

The proposed method (shown in Figure 5) is applied to
calibrate the RGB-IR baseline with global optimization stated
in Equation (12). We develop an automatic checkerboard
corner detection to be applied to a 3D checkerboard, which is
shown in Figure 7.

After calibrating the external baseline between the RGB
and IR cameras, the second step is proposed (shown
in Figure 6) to calibrate the manufacturer constants (a and b)
and to model both the distortion and depth systematic error.
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FIGURE 6. Depth sensor calibration methodology divided into three
parts, where the middle part is related to manufacturer constant
calibration, the lower part is the distortion model estimation,
and the left part is the systematic error model.

The proposed method uses the distortion model stated in
Equation (13) and adopts Equation (3) to calibrate the man-
ufacturer constants. It then uses the error model stated in
Equation (14) to model the depth remaining error. Figure 6
illustrates the methodology for the depth sensor calibration.
The depth calibration methodology is fully automatic. The
inputs for this step are the image pairs of the depth and
disparity. The outputs are the final calibration parameters for
the depth sensor.

By this stage, the RGB-D sensor is calibrated with respect
to two perspectives. The first perspective is the baseline
between the RGB camera and the IR camera, which pro-
duces a precise set of color and depth information. The sec-
ond perspective is the depth sensor, which is divided into
three parts. The first part is related to the manufacturer con-
stants (a and b), the second part is related to the distortion
effect resulting from the lens material and relative orientation
between the lens plane and focal points, and the third part
is the calibration of depth error. To examine the calibration
method, we apply this calibration methodology to three sam-
ples of RGB-D cameras. The following section outlines our
experimental designs, results and discussions.

IV. EXPERIMENTS AND RESULTS
A. STRUCTURE SENSOR CALIBRATION
In this experiment, we calibrate three Structure Sensors (S1,
S2, and S3) using the proposed method. For the RGB-IR
baseline calibration, we use the 3D checkerboard shown
in Figure 7. The checkerboard is combined from two nearly
perpendicular A3 checkerboards. The ground truth points are
measured using a high-grade laser total station. For the depth
calibration, we collect depth and disparity data for planar
surfaces and adopt the methodology shown in Figure 6.

FIGURE 7. Three-dimensional checkerboard captured by RGB and IR
cameras from Structure Sensor.

TABLE 1. Calibration results for three samples of structure sensor RGB-D
cameras (S1, S2, AND S3).

Table 1 shows the internal parameters of the RGB camera
and the RGB-IR baseline calibration results for the three
samples. The calibration data are given for each sensor as
focal lengths (Fx, Fy) and principal point (Cx, Cy) in pixels
with five distortion parameters (k1 k2 p1 p2 k3). Furthermore,
the external baseline is expressed as three translation com-
ponents (dx, dy, dz) in mm and three rotation Euler angles
(Rx, Ry, Rz) in radians. The focal lengths, principal point, and
distortion parameters vary significantly among the examined
sensors, which reflects the importance of individually cali-
brating each sensor.

Table 2 illustrates the depth sensor calibration parameters,
which are divided into two sets: the calibrated manufacturer
parameters (a and b) and the distortion parameters (W1, W2,
W3, andW4). The depth error model parameters for the depth
error model are per-pixel values. Thus, each coefficient is
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TABLE 2. Depth calibration parameters.

FIGURE 8. Calibrated coefficients (A, B, C, and D) of the depth error
model for the S1 sensor.

represented by an image. Figure 8 shows the four parameters
for the S1 sensor as an example. Tables 1 and 2 show that even
with the same sensor type, the calibration parameters vary
significantly. This reflects the importance of the calibration
step before adopting this kind of sensor in surveying appli-
cations (e.g., 3D modeling). Figure 8 shows that the artifacts
are detected and consumed from the observed data. Ten zones
are vertically distributed around the image center.

To check our calibration performance, we acquire depth
images for a planar surface from different distances varying
from 0.5 m to 2.0 m. The performance is quantified based on
the same procedure proposed by [7], [11], and [18], which is
the RMSE of the fitted plane. Figure 9 compares the depth
calibration performance of our proposed method to both the
manufacturer calibration (default calibration) and the method
indicated in [18]. The data shown in the figure include the
default depth, the undistorted depth based on [18] calibration
method, and the modeled depth using the calibration proce-
dure illustrated in this research.

The depth precision before applying the error model
exceeded 20 mm for a 2-m range. After applying the com-
bined error model and the calibration for the depth sen-
sor, the error decreased to 6 mm, signifying 70% and 50%
improvement compared to default and [18] calibration meth-
ods, respectively.

Considering the full range calibration, the experiment is
extended to the full depth range of the Structure Sensor

FIGURE 9. Depth precision performance of the S1 sensor.

FIGURE 10. Calibration depth performance versus default depth.

(approximately 8 m). The calibration method indicated
in [18] does not give a reliable results for far range measure-
ments. Therefore, the far depth performance is not reported
based on that method. Figure 10 shows the depth error per-
formance for the calibrated and default depth. The calibration
method can cover the entire depth range and restrains the
depth accuracy to 1.9% compared to 5.5% for the default
depth.

Figure 11 shows a constructed point cloud using our pro-
posed method calibration parameters and the manufacturer
calibration parameters. The sensor is placed 9.0 m away from
a wall.

FIGURE 11. Calibration effect on point cloud results, where (a) is the
point cloud after calibration and (b) is the point cloud before calibration.

B. 3D INDOOR RECONSTRUCTION
To check the proposed calibration method, we collect
a set of images illustrating a room with dimensions
of 4.5 m × 3.5 m. The data are processed using the visual
RGB-D SLAM algorithm [27]–[30] to form the 3D point
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FIGURE 12. Visual RGB-D SLAM reconstruction with default data.

FIGURE 13. Visual RGB-D SLAM reconstruction with calibrated data using
method indicated in [18].

cloud model. Qualitative and quantitative analyses for the
reconstructed model before and after calibration are applied.
The qualitative analysis is based on the shape of the room,
thewall noise, and the extracted details. To carry out the quan-
titative analysis, we use a total station to measure 11 preset
distances for the room and then compare the RGB-D results
before and after calibration. Figures 12, 13, and 14 show the
difference between the default model, the calibrated model
using [18], and the calibrated model using our method,
respectively.

The calibratedmodel using the proposedmethod can easily
detect the chair edges, the boundary of the door, and the edges
of the bookshelf storage unit. Furthermore, the projected wall
to floor plane is more precise compared to the model based on
calibration procedure indicated in [18]. However, the default
calibrated data can hardly detect the objects’ boundaries with
large noise and fewer details.

Table 3 shows the quantitative analysis for the calibrated
data based on our method, the calibrated data according
to [18], and the default data regarding the 11 measured dis-
tances. The differences and relative errors before and after
calibration are shown in Table 3.

The quantitative results show a significant improvement
in both absolute error and standard deviation. The cali-
brated model has a precision of ±1.5 cm compared to
±4.4 cm for the method indicated in [18] and ±7 cm for
the default model. The relative error of the default calibration
method is 3.94%, which decreases to 1.82% and 0.77% after

calibration using [18] method and our proposed method,
respectively.

The experiments show a significant improvement in indoor
modeling. The main contributions are achieved by accurately
applying the external parameters for the precise mapping of
the image point from color to depth, as more than a one-pixel
error in alignment can cause a large drift in the RGB-DSLAM
system. Furthermore, depth precision can reduce the number
of inliers used to estimate the camera pose. After applying
calibration for depth information and color camera distortion,
we can achieve centimeter accuracy for room dimensions
compared to real measurements.

C. DISCUSSIONS
1) CALIBRATION RESULTS
Three different RGB-D sensors were calibrated using our
calibration method. However the sensors belong to the same
manufacturer company, the calibration parameters include
geometric parameters (table 1) and depth calibration param-
eters (table 2), vary among the sensors. Adopting the
DLT method can achieve half pixel accuracy compared to
two-pixels accuracy for the method mentioned in [18], This
is because of the precise estimation of the camera pose during
the DLT calibration process.

The proposed calibration method individually calibrates
the systematic depth error and the lens distortion effect, this
can significantly help to remove the artifacts from RGB-D
cameras. The current calibration methods couple the depth
distortion and depth systematic error models, thus, they can-
not mitigate the artifacts [11] and cannot calibrate the far
range [7], [18].

The proposed method considerably estimates the shape of
the captured scene, as it can be seen from figure 11. Also,
figure 11 is consonant with the calibrated depth performance
in figure 10, as the method estimates the wall with a 15cm
accuracy, compared with a 50cm wall from the default cali-
brated point cloud.

FIGURE 14. Visual RGB-D SLAM reconstruction with calibrated data.

2) 3D INDOOR RECONSTRUCTION
Figures 12, 13, and 14 show the performance of the recon-
structed 3D model using the default calibration method,
the calibration method discussed in [18], and our calibration
method, respectively. It should be noted that the calibrated
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TABLE 3. Comparison between calibrated and default data for room reconstruction (Meters).

model, based on our calibration method, has less noise com-
pared with the model based on the calibration method shown
in [18]. Moreover, the projected wall, using [18] calibrated
data, is curved compared to both default and our calibrated
models. it is reasonable as the depth calibration model of [18]
is computed based on near depth.

Table 3 shows a significant improvement in relative and
absolute error comparing our calibrated model with the
default model and the calibrated model based on [18]. This
improvement in relative error results from two major parts.
The first is the correct registration between the RGB image
and the depth image, which is a critical issue for the RGB-D
SLAM algorithm. The second is the depth precision, as the
SLAM system can assign inlier points to be outliers not only
due to false matching but also if the depth precision is higher
than the preset threshold.

V. CONCLUSIONS AND FUTURE WORK
RGB-D sensors have great potential to replace expensive
high-grade laser scanners in the mapping of indoor spaces.
The calibration method including the modeling of RGB-D
camera depth plays a great role in enhancing sensor-mapping
ability. Diverse errors affect the depth precision of RGB-D
cameras, such as incident angle, IR projector and IR cam-
era baseline, disparity uncertainty, and the distortion of IR
cameras and projectors. Most existing calibration methods
combine all of these errors into one empirical model, yielding
low-accuracy calibration. We propose a calibration method
to calibrate each error source effect separately, thereby sig-
nificantly improving the depth accuracy. For the color depth
registration problem, the proposed method adopts the DLT
method to calibrate the baseline between the RGB camera
and the IR camera.

The calibration method is used to calibrate three sets of
Structure Sensor RGB-D cameras. The calibration param-
eters of each sensor are significantly different, which
reflects the importance of individually calibrating each
sensor. We compare our calibration results to those of

the manufacturer and lately introduced calibration in [18].
We show that the proposed calibration method improves
depth accuracy by 70% for the whole working range of
Structure Sensor. Implementing the proposed calibration
method in the RGB-D SLAM system significantly improves
the 3D modeling error from 7 cm (default calibration) to
1.5 cm. Moreover, the calibrated model shows a significant
improvement on the model quality represented by the object’s
boundary and color.
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